Radial Radio Pell Mean Labeling of Subdivision of Graphs
Main Article Content
Abstract
A one-one mapping ϕ : V (G) → N for a connected graph G is defined as follows: d(x,y)+⌈(ϕ(x)+2ϕ(y))/2⌉≥1+r(G), where radius is denoted by r(G). Any vertex in G has a radial radio pell mean number of ϕ which is the maximum number and is represented by rrpmn(ϕ). Here, we look at the labeling of various graphs using the radial radio pell mean of subdivisions such as subdivision of star graph S(K_(1,n)) , subdivision of path graph S(Pn) , subdivision of friendship graph S(Fn), subdivision of wheel graph S(Wn), subdivision of quadrilateral book graph S(QB(4,3)), subdivision of closed helm graph S(CHn), subdivision of helm graph S(Hn), subdivision of double fan graph S(DFn) and subdivision of triangular book graph S(TB(3,n)).
Article Details
Issue
Section
Articles