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Abstract:  

Using Multimodal Contrastive Domain Sharing Generative Adversarial Networks 

(GAN) and topological embeddings, this study shows a new way to improve car 

tracking and classification across multiple camera feeds. Different camera 

angles and lighting conditions can make it hard for current car tracking systems 

to work correctly. This study tries to solve these problems. Common Objects in 

Context (COCO) and ImageNet are two datasets that are used in this method for 

training. Multimodal Contrastive Domain Sharing GAN is used for detection and 

tracking. It makes cross-modal learning easier by letting you see things from 

different camera angles. This framework lets the model learn shared 

representations, which makes it better at recognizing vehicles in a wider range 

of visual domains. The Topological Information Embedded Convolutional Neural 

Network (TIE-CNN) is used to re-identify the car after it has been found and 

tracked. This network embeds the paths of vehicles into a continuous latent 

space, keeping the important spatial connections needed for accurate tracking. 

Real-world multi-camera datasets used for experimental confirmation show 

that tracking accuracy and recognition performance are much better than with 

standard methods. The suggested framework works great in tough situations 

like blocked views and sudden changes in lighting, showing that it are reliable in 

complicated surveillance settings. This study adds to the progress in multi-

camera car tracking and identification by combining geometric data analysis 

with deep learning methods. This method uses Multimodal Contrastive Domain 

Sharing GAN and topological embeddings to improve the timing and spatial 

coherence of tracking results. It also sets the stage for future improvements in 

monitoring and self-driving systems. 

Keywords: Vehicle tracking, Multicamera surveillance, Generative Adversarial 

Networks, Topological embeddings, Cross-modal learning, Deep learning 

 

1. Introduction 

Vehicle following and acknowledgment over different cameras may be a basic challenge in video 

reconnaissance and shrewdly transportation frameworks, where dependable recognizable proof and 

localization are basic for guaranteeing security and effectiveness. Conventional strategies regularly 
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confront confinements in dealing with differing lighting conditions, occlusions, and varieties in 

vehicle appearances over diverse camera sees. To address these challenges, later headways use 

multimodal contrastive space sharing Generative Ill-disposed Systems (GANs) and topological 

embeddings, pointing to upgrade the vigor and exactness of vehicle following and acknowledgment 

frameworks [2]. Multimodal contrastive space sharing GANs speak to a cutting-edge approach in 

computer vision, especially suited for assignments including differing information sources and 

modalities. By joining numerous sorts of visual data, such as infrared, RGB, and profundity maps 

from different cameras, these GANs can viably learn shared representations over distinctive spaces. 

This capability is vital for relieving space move challenges that emerge due to contrasts in camera 

perspectives, natural conditions, and imaging advances. Through ill-disposed preparing, where a 

generator arrange learns to create practical multimodal tests and a discriminator organize recognizes 

between genuine and produced information, these GANs encourage space adjustment and make 

strides the generalization of vehicle following models. 

 

Figure 1: Overview of proposed Model 

In conjunction with GANs, topological embeddings offer a effective system for capturing and 

representing complex relationships between vehicles over camera sees [3]. Topological embeddings 

use scientific methods to outline high-dimensional information into lower-dimensional spaces 

whereas protecting imperative geometric and topological properties. This approach empowers the 

creation of embeddings that reflect the spatial and transient coherence of vehicles over different 

outlines and perspectives [4].  

2. Related Work 

Deep learning, generative models, and new spatial-temporal analysis methods [6–20] have led to big 

steps forward in the field of car tracking and recognition across multiple cams. Scientists have 

looked into a lot of different ways to make monitoring and transportation systems more accurate, 

reliable, and efficient. One important area of study is using deep learning to track vehicles. 

Convolutional Neural Networks (CNNs) are often used to get hierarchical features from pictures of 

vehicles, which lets them be precisely located and categorized [7]. Many methods, including region 

proposal networks (RPNs) and Faster R-CNN, have been combined to find cars instantly in various 

camera views [8]. While CNN-based methods work very well in controlled settings, they often have 

trouble with the lighting, occlusions, and changes in viewpoint that come with using more than one 

camera. Domain adaptation methods are becoming more popular as a way to deal with these 
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problems. Domain adaptation tries to make feature distributions more consistent across different 

domains, like cameras, so that models can be used in more situations. Adversarial learning, shown by 

Generative Adversarial Networks (GANs), has been used to learn models that don't depend on the 

topic [9]. This idea is taken a step further with multimodal contrastive domain sharing GANs, which 

use more than one mode (like RGB and infrared) to deal with different camera angles and weather 

conditions [10]. These models make strong feature learning easier by encouraging shared 

representations across modes while still letting the models recognize different types of vehicles. 

Topological embeddings, on the other hand, have become a strong way to show complicated spatial 

connections in tracking systems with more than one camera [11]. Topological data analysis methods, 

like Persistent Homology, make it possible to pull out important topological traits that show how cars 

are connected and stay the same across frames [12]. Putting cars into a topological space makes it 

easier to track them even when there are obstacles and only partial vision. This is something that 

standard geometry methods might not be able to do. Adding topological embeddings to deep learning 

is also a complete way to improve tracking accuracy. Topological embeddings can be used as extra 

features by deep neural networks (DNNs) to help them do better at classification and localization 

tasks [13]. Combining deep learning and topological analysis takes advantage of the best parts of 

both, making it easier to handle complicated situations in car tracking. Some new research has also 

looked into mixed designs that take the best parts of CNNs, GANs, and topological embeddings [14–

20]. Along with topologically informed decision-making frameworks, GAN-based feature extraction 

has shown promise in real-world monitoring uses [15]. These mixed methods not only make tracking 

better, but they also help make adaptable systems that can learn from different data sources over 

time. 

Table 1: Related work summary  

Method Approach Key Finding Limitation Application 

Convolutional 

Neural Networks 

[15] 

Extract hierarchical 

features from vehicle 

images 

High accuracy in 

controlled environments, 

struggles with variations 

like lighting and 

occlusions 

Limited robustness 

in multi-camera 

setups 

Surveillance, real-

time vehicle 

detection 

Faster R-CNN 

[16] 

Region proposal 

networks for real-time 

vehicle detection 

Efficient localization and 

classification across 

different camera views 

Sensitivity to 

occlusions and 

viewpoint changes 

Intelligent 

transportation 

systems, traffic 

management 

Domain 

Adaptation 

Techniques [17] 

Use GANs to learn 

domain-invariant 

representations 

Aligns feature 

distributions across 

diverse camera domains 

for improved 

generalization 

Requires significant 

data for domain 

adaptation 

Cross-domain 

vehicle tracking, 

adaptive systems 

Multimodal 

Contrastive 

Domain Sharing 

GANs [18] 

Incorporate multiple 

modalities (e.g., RGB, 

infrared) to handle 

diverse environmental 

conditions 

Encourages shared 

representations across 

modalities while 

maintaining 

discriminative 

capabilities 

Complexity in 

training and model 

convergence 

Enhanced feature 

learning, robust 

vehicle recognition 

Topological 

Embeddings [19] 

Apply topological data 

analysis (e.g., Persistent 

Homology) to capture 

spatial relationships 

Extracts meaningful 

topological features that 

encode vehicle 

connectivity across 

Computational 

complexity with 

large datasets 

Robust tracking in 

the presence of 

occlusions 
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frames 

Deep Neural 

Networks [20] 

Integrate deep learning 

architectures with 

topological embeddings 

Utilizes topological 

embeddings as auxiliary 

features to improve 

classification and 

localization tasks 

Requires careful 

parameter tuning 

and model 

optimization 

Hybrid 

architectures for 

adaptive vehicle 

tracking 

Adversarial 

Learning [21] 

Employ adversarial 

training to improve 

model robustness 

Enhances model 

resilience to domain 

shifts and environmental 

variations 

Vulnerable to mode 

collapse and training 

instability 

Adaptation to 

diverse 

environmental 

conditions 

Hybrid 

Architectures [2] 

Combine CNNs, GANs, 

and topological 

embeddings for 

comprehensive feature 

extraction 

Synergistic approach 

leveraging strengths of 

different methodologies 

Integration 

complexity and 

computational cost 

Real-world 

surveillance, 

autonomous 

vehicle navigation 

Spatial-Temporal 

Analysis [3] 

Analyze vehicle 

movements over time 

and space using 

sequential data 

Captures dynamic 

changes in vehicle 

behavior and movement 

patterns 

Limited by temporal 

resolution and data 

synchronization 

Traffic flow 

analysis, anomaly 

detection 

Transfer Learning 

[4] 

Transfer knowledge 

from pre-trained models 

to improve recognition 

in new camera 

environments 

Accelerates model 

training and adaptation 

across diverse 

surveillance scenarios 

Requires annotated 

datasets for effective 

transfer 

Cross-camera 

vehicle 

identification, 

surveillance 

upgrades 

 

3. Dataset Description 

The COCO (Common Objects in Context) collection is a popular tool in computer vision for jobs 

like finding objects, separating them into groups, and giving them names. It has more than 200,000 

pictures, and each one has object instances, segmentation masks, and comments added to it. The 

collection has 80 different types of objects, as well as complicated scenes and a wide range of visual 

settings. This makes it useful for training and testing algorithms in real-life situations. COCO is 

known for its high-quality comments and large number of different images. It serves as a standard 

for furthering study in areas like scene parsing, visual learning, and picture understanding, sample 

image dataset shown in figure 2. 

 
Figure 2: Sample snapshot of COCO Dataset 

4. Methodology 

Multimodal contrastive domain sharing GANs and topological embeddings are used to improve car 

tracking and identification across multiple cameras. To begin, multimodal GANs are used to find 

similar representations across different types of data (for example, RGB and infrared) so that domain 

changes are lessened. Second, topological embeddings, which use methods like Persistent 
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Homology, store how cars are connected in space and time. These embeddings make tracking more 

reliable in tough situations like occlusions. These two approaches are combined in hybrid designs, 

which use deep learning's feature extraction skills along with topological ideas to make monitoring 

and transportation systems more accurate and flexible in the real world. 

A. MCDS-GAN: 

The Multimodal Contrastive Domain Sharing Generative Adversarial Network (MCDS-GAN) is a 

high-tech system created to improve feature learning and domain adaptation in difficult visual tasks, 

especially when watching a car with multiple cameras. MCDS-GAN is different from other GANs 

because it uses more than one mode (like RGB and infrared) to learn shared representations across 

different domains. This lets it handle changes in lighting, viewpoint, and environmental conditions 

more effectively. MCDS-GAN makes it easier to get accurate features and learn representations that 

don't change over time by using adversarial learning. In this method, a generator network creates 

realistic multimodal samples and a discriminator tells the difference between real and created data. 

This method not only makes car tracking models more general, but it also makes them better at 

adapting to changes in area. This makes systems used for spying, transportation, and city 

management more accurate and flexible. 

Algorithm step wise 

𝑆𝑡𝑒𝑝 1: 𝐷𝑎𝑡𝑎 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

   − 𝐼𝑛𝑝𝑢𝑡 𝐷𝑎𝑡𝑎:  

𝐿𝑒𝑡 𝑋_𝑖 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑖 (𝑒. 𝑔. , 𝑅𝐺𝐵, 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑). 

   − 𝐷𝑎𝑡𝑎 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 𝑋_𝑖 𝑡𝑜 𝑧𝑒𝑟𝑜 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑢𝑛𝑖𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒. 

𝑆𝑡𝑒𝑝 2: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 (𝐺) 

   − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐 𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

   − 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 

     𝑋ℎ𝑎𝑡𝑖
=  𝐺𝑖(𝑍𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑍𝑖~ 𝑝(𝑍𝑖) 

     𝐺𝑖𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑖, 𝑍𝑖𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑝(𝑍_𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

𝑆𝑡𝑒𝑝 3: 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 (𝐷) 

   − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

   − 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 

     𝐿𝐺𝐴𝑁(𝐷𝑖,𝐺𝑖) =  𝐸
{𝑋𝑖~ 𝑝𝑑𝑎𝑡𝑎(𝑋𝑖)}[log 𝐷𝑖(𝑋𝑖)]

+ 𝐸
{𝑍𝑖~ 𝑝(𝑍𝑖)}[log(1 − 𝐷

𝑖(𝐺
𝑖(𝑍𝑖)

)
)]

 

     𝐿𝐺𝐴𝑁𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝐺𝐴𝑁 𝑙𝑜𝑠𝑠 𝑓𝑜𝑟 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑖, 

 𝑝𝑑𝑎𝑡𝑎(𝑋𝑖)𝑖𝑠𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,  

𝐷_𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑖. 

𝑆𝑡𝑒𝑝 4: 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 𝐷𝑜𝑚𝑎𝑖𝑛 𝑆ℎ𝑎𝑟𝑖𝑛𝑔 

   − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝐿𝑒𝑎𝑟𝑛 𝑑𝑜𝑚𝑎𝑖𝑛 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠. 

   − 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 
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     𝐿𝐶𝐷𝑆(𝐺𝑖,𝐺𝑗) =  𝑠𝑢𝑚
{𝑘=1}

{𝑙=1}
𝐸
{𝐿}

{𝐾}𝑠𝑢𝑚  {𝑋𝑖𝑘, 𝑋𝑗𝑙~ 𝑝𝑑𝑎𝑡𝑎} [𝑑 (𝐺𝑖(𝑋𝑖𝑘), 𝐺𝑗(𝑋𝑗𝑙))] 

     𝐿𝐶𝐷𝑆𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑙𝑜𝑠𝑠  

𝑆𝑡𝑒𝑝 5: 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

   − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝐺𝐴𝑁 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑠ℎ𝑎𝑟𝑖𝑛𝑔. 

   − 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 

     𝐿𝑡𝑜𝑡𝑎𝑙(𝐺𝑖,𝐷𝑖) =  𝑙𝑎𝑚𝑏𝑑𝑎𝐺𝐴𝑁 ∗  𝐿𝐺𝐴𝑁(𝐺𝑖,𝐷𝑖) +  𝑙𝑎𝑚𝑏𝑑𝑎𝐶𝐷𝑆 ∗  𝑠𝑢𝑚{𝑗 != 𝑖}𝐿
𝐶𝐷𝑆(𝐺𝑖,𝐺𝑗)

 

𝑆𝑡𝑒𝑝 6: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

   − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠. 

   − 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 

     𝑡ℎ𝑒𝑡𝑎_𝑖 ∗ =  arg min
{𝑡ℎ𝑒𝑡𝑎𝑖}

𝐿_𝑡𝑜𝑡𝑎𝑙(𝐺_𝑖, 𝐷_𝑖) 

     𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒𝑡𝑎_𝑖 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝐺_𝑖 𝑎𝑛𝑑 𝐷_𝑖 𝑢𝑠𝑖𝑛𝑔 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡 𝑜𝑟 𝐴𝑑𝑎𝑚 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟. 

 

B. Multi object tracking module 

The multi-object following module is significant in computer vision, guaranteeing persistent protest 

distinguishing proof over video outlines. It utilizes calculations for location, affiliation, and forecast, 

vital for keeping up protest characters. Question discovery (D) finds objects in outlines, affiliation 

(A) joins location over outlines, and forecast (P) estimates question states. Movement modeling (M) 

and appearance highlights (Ap) refine forecasts and help re-identification. Following scores (S) 

survey quality, optimized (O) for strength, and kept up (TM) for determined following. This module 

coordinating these components to track objects precisely in energetic situations, basic for observation 

and independent frameworks.  

Step wise Process: 

1. Object Detection (D): 

- Detect objects in each frame using detectors like YOLO or Faster R-CNN. 

  𝐷_𝑡 =  𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟(𝐼_𝑡) 

• where I_t is the image frame at time t and D_t is the set of detected objects. 

2. Object Association (A): 

- Associate detections across frames to maintain object identities. 

  𝐴𝑡 =  𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝐷{𝑡−1}, 𝐷𝑡) 

• where A_t denotes the associations between detections at t-1 and t. 

3. State Prediction (P): 

- Predict object states based on past trajectories. 

  𝑃𝑡 =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝐴𝑡) 

• Predict future states P_t using historical associations A_t. 
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4. Motion Model (M): 

- Model object motion to refine predictions. 

  𝑀𝑡 =  𝑀𝑜𝑡𝑖𝑜𝑛(𝑃𝑡) 

• Incorporate motion M_t to adjust predicted states. 

 

5. Appearance Model (Ap): 

- Model object appearances for re-identification. 

𝐴𝑝_𝑡 =  𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝐷_𝑡) 

• Capture appearance features Ap_t for each detection. 

6. Tracking Score (S): 

- Compute scores to evaluate tracking quality. 

  𝑆𝑡 =  𝑆𝑐𝑜𝑟𝑒(𝑃𝑡, 𝑀𝑡 , 𝐴𝑝𝑡) 

• Evaluate tracking quality using predicted states, motion models, and appearance features. 

7. Optimization (O): 

- Optimize associations and predictions for robust tracking. 

  𝑂_𝑡 =  𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑆_𝑡) 

• Optimize scores S_t to refine associations and predictions. 

8. Track Maintenance (TM): 

- Maintain persistent tracks over time. 

  𝑇𝑀𝑡 =  𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑂𝑡) 

• Maintain and update tracks TM_t using optimized associations and predictions. 

The multi-object tracking module integrates these components to achieve robust and accurate 

tracking across varying conditions, crucial for applications in surveillance, autonomous vehicles, and 

human-computer interaction systems. 

C. Topological Information Embedded CNN for Vehicle Re-identification 

We use topological data analysis in the Topological Information Embedded CNN for car Re-

identification to make car re-identification systems more accurate and reliable. Using methods like 

Persistent Homology to insert cars into a topological space, the model is able to show complex 

spatial relationships and continuity between frames. This method is better than regular CNNs 

because it includes topological features that store information about how each car is built [5]. These 

embeddings make it easier to make models that are more discriminative, which is especially helpful 

when there are occlusions or limited sight. The network improves re-identification accuracy by 

mixing deep learning with topological observations. This makes it useful for security, spying, and 
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smart transportation systems [7]. The fact that the method works well in a variety of environments 

and camera angles shows how useful it is for reliable and quick car tracking and re-identification 

jobs in the real world. 

1. Input Image Representation (I): 

   - Represent the input image I as a matrix of pixels: 

     𝐼 =  {𝐼_𝑖𝑗}, 𝑖 =  1, . . . , 𝐻;  𝑗 =  1, . . . , 𝑊 

   where I_ij represents the pixel intensity at position (i, j). 

2. Convolutional Layer (Conv): 

   - Apply convolution operation using a filter W with bias b and activation function σ: 

     𝐶𝑜𝑛𝑣(𝐼, 𝑊, 𝑏) =  𝜎(𝑊 ∗  𝐼 +  𝑏) 

   where * denotes the convolution operation. 

3. Pooling Layer (Pool): 

   - Perform max pooling to downsample feature maps: 

     𝑃𝑜𝑜𝑙(𝐼) = max(𝐼𝑖𝑗) , 𝑖 =  1, … , 𝐻𝑜𝑢𝑡;  𝑗 =  1, … , 𝑊𝑜𝑢𝑡 

   where H_out and W_out are the dimensions of the pooled output. 

4. Topological Embedding (Topo): 

   - Apply topological data analysis, such as Persistent Homology, to capture spatial relationships: 

     𝑇𝑜𝑝𝑜(𝐼)  =  𝑃𝐻(𝐼) 

   where PH computes the persistent homology features of I. 

5. Fully Connected Layer (FC): 

   - Connect all neurons from the previous layer to every neuron in the next layer with weights W_fc 

and bias b_fc: 

     𝐹𝐶(𝐼) =  𝜎(𝑊𝑓𝑐 ⋅  𝐼 +  𝑏𝑓𝑐) 

   where ⋅ denotes matrix multiplication. 

6. Activation Function (ReLU): 

   - Apply rectified linear unit (ReLU) activation to introduce non-linearity: 

     𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 

7. Loss Function (Loss): 

   - Define the loss function L to measure the difference between predicted and actual vehicle 

identities: 

     𝐿(Ŷ, 𝑌) =  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(Ŷ, 𝑌) 
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   where Ŷ is the predicted vehicle identity and Y is the ground truth. 

8. Optimization (Opt): 

   - Use gradient descent or its variants to minimize the loss function L with respect to network 

parameters θ: 

     𝜃𝑛𝑒𝑤 =  𝜃 −  𝜂 ⋅  𝛻𝜃𝐿(𝜃) 

   where η is the learning rate. 

9. Training: 

   - Train the network iteratively on a dataset D consisting of vehicle images with ground truth labels: 

     𝜃𝑓𝑖𝑛𝑎𝑙 = arg min
𝜃

𝛴𝐼,𝑌 ∈ 𝐷 𝐿(Ŷ, 𝑌) 

10. Prediction: 

    - Make predictions on new vehicle images using the trained model: 

      Ŷ =  𝐶𝑁𝑁(𝐼) 

   where Ŷ is the predicted vehicle identity. 

D. Horse Herd Optimization Algorithm 

The Horse Herd Optimization Algorithm (HHO) uses the way a herd acts to help with optimization 

problems. Setting up a community of horses (solutions), testing their health against an objective 

function, and moving them to find the best solution is how HHO finds a balance between exploring 

and taking advantage of opportunities. This method supports exploring the search area in a variety of 

ways while taking advantage of potential answers. HHO tries to find the best solutions in complex 

optimization problems by making small changes over time that are influenced by both global and 

local factors. This means that it can be used in many areas where finding the best solutions is 

important. 

Algorithm: 

1. Initialization: 

   - Initialize the position of each horse Xi within the search space: 

     𝑋𝑖 =  (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑), 𝑖 =  1, 2, . . . , 𝑁 

• where N is the population size and d is the dimensionality of the problem. 

2. Objective Function Evaluation: 

   - Evaluate the objective function f(Xi) for each horse to determine its fitness: 

     f(Xi) 

3. Movement Towards Best Solution: 

   - Update the position of each horse based on its movement towards the best solution found 

so far: 

     𝑋𝑖𝑡+1 =  𝑋𝑖𝑡 −  𝛼 ∗  𝑟𝑎𝑛𝑑(⬚) ∗ (𝑋𝑖𝑡 −  𝑋 ∗) 

• where X* is the position of the best horse (global best), α is a control parameter, and 

rand() is a random number generator. 
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4. Exploration and Exploitation: 

   - Encourage exploration and exploitation by balancing global and local search capabilities: 

     𝑋𝑖𝑡+1 =  𝑋𝑖𝑡 +  𝛽 ∗  𝑟𝑎𝑛𝑑((𝑋𝑟𝑎𝑛𝑑𝑡 −  𝑋𝑖𝑡))  

 

5. Result and Discussion 

In computer vision, tracking and identification methods are tested using a number of important 

performance measures to see how well they work in real-world situations. We will compare and 

contrast these methods using measures like memory, delay, accuracy, and reaction time analysis. 

Accuracy is a basic statistic that shows what percentage of items or events were correctly named out 

of all of them. Higher accuracy means that the system is better at correctly spotting things in a 

variety of settings and situations. For example, techniques like MCDS-GAN and TI-VRI often get 

very good results by using advanced feature extraction methods and strong models that have been 

trained on a variety of datasets. 

Table 2: Performance Metrics Comparison of Various Tracking and Recognition Methods 

Method Accuracy (%) Precision (%) Recall (%) Latency (ms) Response Time 

Analysis (ms) 

MCDS-GAN 92.5 94.3 91.2 15 25 

OC-MCT-OFOV 88.7 89.6 87.5 20 30 

MT-MCT-VM-CLM 91.0 92.1 90.3 18 28 

TI-VRI 90.2 91.5 89.8 17 27 

 

Precision is the ratio of the number of correctly identified positive predictions to the total number of 

positive predictions that the system made. It shows how well the system can reduce false results, 

which is very important in situations where high stability and low mistake rates are needed. Methods 

like OC-MCT-OFOV and MT-MCT-VM-CLM focus on accuracy to make sure that objects are 

correctly identified in complicated settings with different levels of noise and obstructions, accuracy 

illustrate in figure 3.  

 

Figure 3: Representation accuracy of Different Model with Proposed Model 

Recall, which is also called sensitivity, is a number that shows how many true positives the system 

correctly picks out of all the real positives, shown in figure 5. High recall means that the method 

correctly identifies most of the important cases, even if it means that there are more false alarms. 
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High recall is important for techniques like MT-MCT-VM-CLM to make sure that items are found in 

all frames and from all angles, precision illustration in figure 4. 

 

Figure 4: Comparison of Precision for Different Model with Proposed Model 

This is the amount of time it takes for the system to handle a single frame or event. It is very 

important in real-time situations like monitoring and self-driving systems where quick decisions need 

to be made. Less delay makes sure that the system can quickly adapt to changes in its surroundings. 

Lower lag is usually seen in methods that use fast algorithms and parallel processing, like MCDS-

GAN, which makes the best use of computing resources for real-time performance.  

 

Figure 5: Comparison of recall for Different Model with Proposed Model 

Response Time Analysis measures how quickly and efficiently a system can respond and do 

calculations. It looks at how long it takes to finish a set of tasks or actions, which shows how well the 

system can do complicated calculations and give results on time. Advanced techniques are used in 

methods like TI-VRI to speed up processing and lower reaction times. This improves system 

performance and the user experience as a whole. In real life, the tracking and recognition method that 

is used depends on the needs of the program and the limitations of the system. In places where 

accuracy is important, like medical imaging or industrial automation, methods with high accuracy 

and low delay are chosen to make sure things work correctly and quickly, latency shown in figure 6. 

For example, apps like traffic tracking or video security may put a high value on quick memory and 

reaction times so they can work well in settings that are changing and being new all the time.  
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Figure 6: Representation Latency of Different Model 

Stakeholders can make smart choices about which method to use and how to improve performance 

by comparing these performance measures across different methods. The creation of algorithms and 

hardware powers keeps getting better, which makes these measures even better. This makes tracking 

and recognition systems stronger and more accurate in the real world. Comprehensively evaluating 

these measures helps set performance standards and push the limits of what is possible in computer 

vision apps, all metrica comparison shown in figure 7. 

 

Figure 7: Comparing all the metrics (Accuracy, Precision, Recall, Latency, and Response Time 

Analysis) across the different methods 

6. Conclusion 

Adding Multimodal Contrastive Domain Sharing GAN (MCDS-GAN) and topological embeddings 

is a big step forward in tracking and recognizing vehicles across multiple cameras. Using generative 

adversarial networks, this method learns features that don't change across different camera views and 

modes. This makes car recognition systems more reliable and useful in a wider range of situations. 

The model handles problems like occlusions and changing viewpoints by using topological 

embeddings to show complicated spatial relationships and the continuation of cars across frames. 

The usefulness of MCDS-GAN lies in its ability to combine different types of visual data, like RGB 

and infrared images, into a single picture of a car. This makes it more accurate and reliable in 

difficult real-life situations. This method not only improves the accuracy and memory of identifying 

vehicles, but it also makes computations simpler by using the same feature extraction across 

domains. Additionally, using topological embeddings adds physical and structure information to the 
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feature space, making it easier to make models that are more accurate and can handle changes in the 

environment and limited view. This all-around method helps us learn more about how vehicles move 

and act in multi-camera sets, which is important for smart transportation systems, tracking, and 

security. Future study could look into how to make MCDS-GAN designs work better for real-time 

applications, how to make them more scalable across bigger datasets, and how to add adaptable 

learning methods to make the system work better over time. It might also be helpful to see if these 

methods can be used for things other than tracking vehicles. For example, they might be useful for 

recognizing objects in factory robotics or medical images. 
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