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Abstract:  

In electricity grid management, optimizing distribution networks is a must for 

making sure that the grid is reliable, efficient, and resilient. Stochastic 

optimization methods have become very useful for dealing with the unknowns 

that come up in grid operations because of things like adding green energy, 

changing demand, and broken equipment. We present a new way to improve 

distribution networks when there is doubt in this study. It uses probabilistic 

graphical models (PGMs). Using PGMs lets us describe the complicated 

connections between loads, producers, and grid infrastructure, as well as the 

relationships between these parts of the distribution network. By recording 

these relationships, we can accurately show how unclear the grid is and make 

smart choices to make it work better. In particular, we use Bayesian networks 

(BNs) and Markov random fields (MRFs) to describe how the different factors in 

the network are likely to be related to each other. We show how well our 

method works by using it on a real-life delivery network problem. We look at a 

case study of a distribution network that has a lot of green energy sources and 

changing load levels. We use PGMs to build a statistical model of the 

distribution network by combining past data, weather forecasts, and real-time 

measures. Then, we create a stochastic optimization problem to find the best 

way to reduce the predicted operational cost while still meeting different 

operational restrictions, like voltage limits, power balance, and equipment 

limitations. We use advanced optimization algorithms, like stochastic gradient 

descent and genetic algorithms, to quickly solve the optimization problem that 

was given. We show that our method works and can be scaled up for handling 

distribution networks when there is doubt by doing a lot of computer tests and 

risk analyses. The suggested method can make delivery networks much more 

reliable, cost-effective, and resilient than traditional linear optimization 

methods, as shown by our results. Overall, this study shows that probabilistic 

graphical models can be a very useful tool for managing the electricity grid and 

finding the best ways to use distribution networks in the face of randomness. 

Including unknowns in the modeling process helps we make stronger and more 

dependable choices that will help current distribution systems work well. 

Keywords: Stochastic optimization, Distribution networks, Probabilistic 

graphical models, Electrical grid management, Renewable energy integration 
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Introduction 

For modern power systems to be stable and resilient, distribution networks must work reliably and 

efficiently. This is an important part of managing the electricity grid. With more green energy 

sources being used, more people wanting power, and equipment that is getting old, distribution 

network owners have to deal with a lot of problems to keep their networks running at their best while 

also handling uncertainty [1]. Traditional fixed optimization methods don't always take into account 

how random some of the things that affect grid operations are, like how green energy output changes, 

how demand changes without warning, and when equipment breaks down. Because of this, there is a 

growing need for advanced optimization methods that can deal with these unknowns and make 

delivery networks more reliable and efficient. Stochastic optimization has become a strong way to 

deal with the unknowns that come with managing a delivery network [2]. Stochastic optimization 

methods help people make better choices when they don't have all the facts. They do this by clearly 

describing how unclear factors are likely to change over time. In recent years, there has been a rise in 

interest in using probabilistic graphical models (PGMs) for random optimization in many areas, such 

as managing the electricity grid. PGMs are a fluid way to show and think about how factors in 

complex systems rely on each other based on probabilities [3]. This makes them perfect for modeling 

and improving distribution networks when there is doubt. 

Our study is mostly about how PGMs can be used in random optimization of distribution networks to 

make grid processes more reliable, efficient, and resilient. We suggest a new way of doing things 

that includes PGMs in the optimization process [4]. This way, distribution network workers can 

handle unknowns better and improve system performance in real time. By recording the statistical 

links between loads, producers, and grid infrastructure, as well as other parts of the distribution 

network, our method makes it possible to model the errors that affect grid operations more 

accurately. One great thing about using PGMs in stochastic optimization is that they can show how 

factors depend on each other in an uncertain way [5]. PGMs clearly show the doubt that comes with 

each variable and how they are connected, while standard optimization methods use fixed models. 

This helps people make better choices by letting them think about all the possible results and how 

likely each one is to happen [6]. PGMs make it easy to include past data, real-time measurements, 

and expert knowledge in the improvement process, which makes the models even more accurate and 

reliable [7]. We look at Bayesian networks (BNs) and Markov random fields (MRFs), two PGMs 

that are used a lot. BNs use a directed acyclic graph to show the probabilistic links between 

variables. Each node in the graph is a random variable, and lines show the statistical connections 

between them. BNs are great for describing causal connections and drawing reasonable conclusions 

about the system's state based on data that has been collected. MRFs, on the other hand, use an 

undirected graph to show how variables are likely to be related to each other [8]. The nodes in this 

graph are random variables, and the lines are pairwise interactions. It is especially helpful to use 

MRFs to describe complicated relationships between factors without assuming a certain pattern of 

causes. 

We show how well our method works by using a real-life example of a distribution network with a 

lot of green energy sources and changing load levels. We use BNs and MRFs to build a statistical 

model of the distribution network that includes past data, weather forecasts, and readings taken in 

real time [9]. Then, we create a stochastic optimization problem to find the best way to reduce the 

predicted operational cost while still meeting different operational restrictions, like voltage limits, 

power balance, and equipment limitations. We use advanced optimization algorithms, like stochastic 

gradient descent and genetic algorithms, to quickly solve the optimization problem that was given 

[10]. We test our approach's performance and show that it works for handling distribution networks 

when there is doubt by doing a lot of numerical studies and risk analyses. The suggested method can 
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make delivery networks much more reliable, cost-effective, and resilient than traditional linear 

optimization methods, as shown by our results. By using PGMs for random optimization, people 

who run distribution networks can make better, more stable decisions. This keeps current distribution 

systems running smoothly even when things go wrong.  

I.Related Work 

The linked work table shows a summary of many studies that look at how to use probabilistic 

graphical models to improve the management of the electricity grid's distribution networks when 

they are subject to stochastic optimization. Each study is summed up by talking about its purpose, 

how it was done, and what it found. This shows the variety of methods and efforts in this area. The 

first set of studies in the table 1 is about optimization when there is doubt. These include "Stochastic 

Optimization of Distribution Networks Using Bayesian Networks" and "Markov Random Fields for 

Probabilistic Modeling of Distribution Networks." [19] These papers show how probabilistic 

graphics models, like Bayesian networks and Markov random fields, can be used to show the 

unknowns that come with running a distribution network [11]. Researchers have shown that these 

models work well for improving system performance by taking into account the statistical 

relationships between factors. 

"Stochastic Optimization of Distribution Networks with Renewable Energy Integration" is an 

example of a study that looks into how to add green energy sources to distribution networks. These 

papers talk about the problems that come up because green energy sources don't always work, and 

they suggest using stochastic optimization to lessen the risks [12]. Researchers want to improve the 

stability and efficiency of the system by using statistical models and optimization methods to make 

delivery networks work better while also taking into account the changing nature of green energy 

sources.  The table 1 also has studies about making distribution networks more resilient, such as 

"Probabilistic Graphical Models for Resilience Enhancement in Distribution Networks." These 

works talk about how to make distribution networks more resistant to different threats and problems 

[13]. Researchers have come up with ways to use statistical graphics models and optimization 

methods to find weaknesses, rate risks, and decide which prevention steps are most important. This 

will make delivery networks more resilient overall. There are papers on the linked work table that 

look at making decisions in distribution networks in real time, like "Efficient Operation of 

Distribution Networks Considering Uncertainties." These works show how important it is to make 

quick choices when things are unclear and conditions are changing in the distribution network [18]. 

Researchers have come up with ways for distribution networks to work more efficiently and 

adaptably by combining random optimization methods with real-time data [14]. This will improve 

system performance in risky situations. Some of the studies in the table are about figuring out how to 

reduce risk and how to do it. These include "Risk-based Optimization of Distribution Networks 

Considering Extreme Weather Events" and "Probabilistic Risk Assessment of Distribution Network 

Failures." [15] These works show how important it is to look at the risks that come with bad weather, 

broken equipment, and other things that could go wrong with delivery networks and try to lower 

those risks. Researchers are using probabilistic risk assessment and optimization techniques to find 

the most likely failure cases, figure out how likely they are to happen, and rank the importance of 

reducing those risks in order to make networks more resilient and reliable. Studies that look at how 

to add smart grid technologies, demand response programs, distributed energy resources (DERs), and 

energy storage systems to distribution networks are shown in the linked work table [16]. These 

papers talk about how advanced technologies and variable resources might help make distribution 

networks more efficient and reliable. Researchers have come up with ways to make the best use of 

these resources by using statistical models and optimization methods [17]. This will make the system 

more flexible, reliable, and long-lasting. Overall, the linked work table shows all the different ways 
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people have worked on and added to the field of stochastic optimization of distribution networks 

using probabilistic graphical models in electricity grid management.  

Table 1: Summary of Related Work 

Method Approach Key Finding Application Limitation 

Bayesian 

Networks 

Probabilistic modeling 

using Bayesian inference 

Improved fault 

detection and 

localization 

Power system 

monitoring 

High computational 

complexity 

Markov Random 

Fields 

Modeling dependencies 

between network variables 

Enhanced reliability 

assessment 

Outage 

management 

Difficulty in parameter 

estimation 

Conditional 

Random Fields 

Utilizing conditional 

probabilities for inference 

Efficient prediction 

of grid state changes 

Smart grid 

operations 

Sensitivity to model 

structure choices 

Gaussian 

graphical models 

Representing correlations 

with Gaussian distributions 

Accurate forecasting 

of power flows 

Renewable 

energy 

integration 

Assumption of 

Gaussianity may not hold 

for all variables 

Hidden Markov 

Models 

Modeling latent states and 

observable emissions 

Effective anomaly 

detection 

Fault detection Limited scalability for 

large networks 

Factor Graphs Representing factorization 

of joint distributions 

Improved network 

reconfiguration 

Load balancing Challenge in handling 

high-dimensional data 

Dynamic 

Bayesian 

Networks 

Modeling temporal 

dependencies in network 

dynamics 

Enhanced short-term 

load forecasting 

Demand-side 

management 

Complexity in parameter 

learning 

Probabilistic 

Graphical 

Models 

Integrating various 

graphical models for 

comprehensive analysis 

Robust optimization 

under uncertainty 

Distribution 

system planning 

Complexity in model 

selection 

Graphical 

Gaussian Models 

Capturing dependencies 

with sparse precision 

matrices 

Improved voltage 

regulation 

Voltage control Difficulty in model 

interpretation 

Belief Networks Utilizing directed acyclic 

graphs for causal inference 

Effective risk 

assessment 

Asset 

management 

Complexity in model 

updating 

Graphical Lasso Employing L1 

regularization for sparse 

graphical models 

Enhanced fault 

location and isolation 

Distribution 

automation 

Sensitivity to choice of 

regularization parameter 

Structured 

Gaussian 

Processes 

Incorporating spatial 

correlations in Gaussian 

processes 

Improved spatial 

forecasting 

Distributed 

generation 

planning 

Computational overhead 

for large-scale 

applications 

Conditional 

Gaussian 

Networks 

Modeling conditional 

dependencies with 

Gaussian distributions 

Efficient probabilistic 

load flow analysis 

Distribution 

system 

optimization 

Limited scalability for 

large networks 

Copula-based 

Graphical 

Models 

Utilizing copulas to model 

complex dependencies 

Accurate risk 

assessment 

Portfolio 

optimization 

Complexity in copula 

selection 

 

The table 1 shows the progress that has been made in reducing uncertainty, improving system 

performance, making networks more resilient, and incorporating new technologies into distribution 

network operations. It does this by describing the scope, methods, and results of different studies.  

II. Proposed Methodology 

1. Data Collection and Pre-processing: 

In the first step of the method as illustrated in the figure (1), it is very important to collect past data 

on different parts of the delivery network. This includes information about load levels, the 

production of green energy, weather trends, machine breakdowns, and other important factors. These 

files give us useful information about how the distribution network worked and behaved in the past. 

They are used as a basis for further research and models. Raw data, on the other hand, often has 
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noise, missing values, and errors that can make later studies less reliable. So, steps called 

"preprocessing" are needed to clean up the data and get it ready for more research. This includes 

getting rid of errors, filling in empty values using estimation methods, and making sure that data 

from different sources is consistent and works with each other. By preparing the data, experts can 

improve the quality and trustworthiness of later studies. This makes it easier to model and improve 

the distribution network when there are unknowns. 

 

Figure 1: Block diagram of Proposed Methodology 

2. Probabilistic Graphical Model Construction: 

Choosing the right Probabilistic Graphical Models (PGMs) for managing distribution networks is 

very important during the building phase. These models must be tailored to the network's features 

and risks. Bayesian networks (BNs) and Markov random fields (MRFs) are often used because they 

can show how factors are likely to be related to each other. Bayesian networks are directed acyclic 

graphs with nodes that represent variables and lines that show how variables are likely to be related 

[20]. Because these networks are good at describing how factors are related to each other, they work 

best when the system's causal structure is known or can be inferred. In the setting of distribution 

networks, BNs can show how factors like load patterns, green energy production, weather 

conditions, machine states, and their relationships are linked. As an example, a BN could record how 

changes in the weather affect the production of green energy, which in turn changes the load patterns 

and states of equipment. 

 

Figure 2: Factors of Markov Random Fields 

Markov random fields, illustrate in figure 2, on the other hand, are undirected graphs that show how 

factors depend on each other pairwise. MRFs are better than BNs because they can model both 

spatial and temporal correlations [21]. This makes them useful in situations where factors combine 
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and depend on each other in complex ways. In distribution network management, MRFs can show 

how nearby nodes or equipment states are connected, taking into account things like how close they 

are to each other, practical limitations, and environmental factors. BNs and MRFs can work together 

in real life, with BNs recording causal connections and MRFs capturing correlations in space and 

time. By making these PGMs, professionals can get a full picture of the probabilistic relationships in 

the distribution network. This lets them make more accurate and well-informed choices when dealing 

with uncertainty and improving network performance. 

3. Parameter Estimation: 

Estimating parameters is a very important part of making probabilistic graphical models (PGMs) for 

managing distribution networks. In this step, existing data is used to figure out the features of the 

models and make sure they are accurate and reliable. Maximum likelihood estimation (MLE), 

Bayesian reasoning, and data-driven methods are some of the most popular ways to estimate 

parameters. The goal of maximum likelihood estimation is to find the parameter values that make the 

recorded data most likely to match the model. When it comes to PGMs, MLE means changing the 

parameters over and over to make the model fit the data better. This is usually done with 

optimization methods like gradient descent [22]. This way of doing things works best when the 

underlying distribution of the data is known or can be properly supposed to be known. 

Mathematical Estimation: 

A. Bayesian Networks: 

• Conditional Probability: 

For each node 𝑋𝑖 in the graph with parents Pa(𝑋𝑖), the conditional probability is represented as: 

𝑃( 𝑋𝑖 ∣∣ 𝑃𝑎(𝑋𝑖) ) 

• Joint Probability: 

The joint probability distribution for all variables 𝑋1, 𝑋2, ..., 𝑋𝑛 is given by the product of 

conditional probabilities: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) =  ∏𝑖 = 1𝑛 𝑃( 𝑋𝑖 ∣∣ 𝑃𝑎(𝑋𝑖) ) 

B. Markov Random Fields: 

• Potential Functions: 

For each clique 𝑐 in the graph with variables 𝑋𝑐, a potential function (𝑋𝑐) is associated. 

The joint probability distribution is given by the product of potential functions over all cliques: 

𝑃(𝑋1, 𝑋2, . . . , 𝑋𝑛)  =  1/𝑍 ∏𝑐 ∈ 𝐶 𝜓𝑐(𝑋𝑐) 

• Inference: 

3. Marginalization: 

Compute the marginal probability of a subset of variables 𝑋𝐴 by summing (or integrating) over the 

other variables: 

𝑃(𝑋/𝐴) =  ∑
𝑋

[𝐴 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛)]
 

• where 𝑋\𝐴 denotes all variables except those in 𝑋𝐴. 
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4. Conditional Probability: 

Compute the conditional probability of a variable 𝑋𝑖 given evidence 𝐸: 

𝑃( 𝑋𝑖 ∣ 𝐸 ) =
𝑃(𝑋𝑖, 𝐸)

𝑃(𝐸)
 

 

5. Learning: 

• Parameter Estimation: 

• Estimate the parameters (conditional probabilities for Bayesian networks or potential 

functions for Markov random fields) from data. 

• For Bayesian networks, parameters are typically estimated using maximum likelihood 

estimation: 

𝑃( 𝑋𝑖 ∣∣ 𝑃𝑎(𝑋𝑖) ) =
𝐶𝑜𝑢𝑛𝑡(𝑋𝑖, 𝑃𝑎(𝑋𝑖))

𝐶𝑜𝑢𝑛𝑡(𝑃𝑎(𝑋𝑖))
 

• For Markov random fields, potential functions can be estimated using similar techniques. 

Bayesian reasoning, on the other hand, uses what you already know or believe about the factors to 

help you make your guess. Bayesian reasoning is a way to figure out what parameters to use by 

mixing previous knowledge with new data. It does this by using a set of rules to measure and 

normalize error. This method works well when there isn't a lot of data or when you already know 

what the factors are. In addition to these more standard approaches, data-driven methods like 

machine learning programs can also be used to estimate parameters. These methods use the data that 

is already there to figure out the PGMs' properties straight from the data that has been collected, 

without having to make clear assumptions about probability. As soon as the factors are estimated, 

they need to be checked to make sure they are correct and reliable. Cross-validation methods can 

help with this. In these methods, the estimated values are tested on separate sets of data. Instead, 

comparing the models' results to separate datasets can give more proof of how well they work. By 

checking the accuracy of the predicted parameters, professionals can make sure that the PGMs are 

stable and can be used in other situations, which makes them more useful for making decisions in 

distribution network management. 

IV. Stochastic Optimization Formulation 

During the stochastic optimization formulation stage, the main goal is to create a mathematical 

method for improving how the distribution network works when there is doubt. For this, you need to 

define decision factors, goal functions, and limits that take into account the fact that the system is 

uncertain. Decision factors are the parts of the distribution network that can be changed, like the 

amount of power generated, the sets for voltage regulation, and the use of energy storage. The goal 

function tells you how to measure your optimization goals, which could be to lower operational 

costs, raise reliability, or find a middle ground between two goals that are at odds with each other. It 

is important to note that the objective function is designed to clearly take into account 

unpredictability by looking at the expected value or risk measures that come with random factors like 

load predictions, green energy output, and equipment breakdowns. Constraints are very important for 

making sure that the best option works with the delivery network's practical needs and physical 

limits. There are many things that need to be taken into account, such as voltage limits, power 

balance calculations, machine capabilities, government rules, and environmental restrictions. To 

account for the system's natural uncertainty, stochastic models and scenario creation results are also 



Panamerican Mathematical Journal 

ISSN: 1064-9735 

Vol 34 No. 1 (2024) 

 

59 https://internationalpubls.com 

added to the optimization formula. In order to do this, unclear factors like load fluctuations, green 

energy intermittency, and weather-related events need to be represented using probability 

distributions or scenario-based representations. 

In this step, a stochastic optimization problem is created. This problem gives us a solid mathematical 

framework for making choices when we don't know what will happen. This lets distribution network 

workers make smart, safe choices that improve system performance. The solutions that are found are 

better at handling changing working conditions because they take uncertainty into account in the 

optimization process. This makes the delivery network more reliable, efficient, and robust. The 

stochastic optimization approach also makes sensitivity analysis and scenario-based decision-making 

easier. This means that operators can see how different uncertainty situations affect the optimal 

answer and come up with good ways to deal with risks and uncertainties.  

A. Optimization Algorithm: 

One of the best optimization methods to use to solve the given random optimization problem quickly 

is an evolutionary algorithm, more specifically the Genetic Algorithm (GA). Genetic algorithms are 

a type of evolutionary algorithms that are based on genetics and the process of natural selection. 

They work well for handling difficult optimization problems, especially ones with many dimensions 

and goal functions that are not linear.  

Gene-based algorithms are a good choice because of the following: 

1. Exploration and taking advantage of Gene-based algorithms find the best mix between exploring 

the search area and making money off of it. They look through the search area to find new, maybe 

better answers using methods such as crossing and transformation. At the same time, they take 

advantage of good parts of the search area by picking the best people and spreading them around.  

2. Parallelism: Genetic algorithms allow parallelism by nature. They keep track of a group of 

possible answers and do operations like crossing and mutation at the same time, which can speed up 

the search process a lot, especially on systems that use parallel computing.  

3. Robustness: Genetic algorithms are strong and can be used in many situations. They can deal with 

noisy, non-convex, and discontinuous objective functions. This means they can be used for 

optimization problems whose behaviors are complex and unclear, like stochastic optimization 

problems in distribution network management.  

4. community-Based Optimization: Genetic Algorithms keep a community of possible solutions alive 

to encourage diversity and stop problems from settling too quickly on less-than-ideal solutions. This 

makes it easier for them to look through the search area in depth and find generally optimal or nearly 

optimal answers.  

5. Flexibility: Genetic algorithms can change to work with different types of problems and goals by 

using the right selection, crossing, and mutation operators. You can change and improve them to fit 

the needs and restrictions of your individual stochastic optimization problem in distribution network 

management. 

For the most part, Genetic Algorithms are a strong and adaptable way to solve unpredictable 

optimization problems quickly. They are good at finding the best distribution networks when things 

are unknown because they can balance exploring and exploiting, work in complicated search spaces, 

and keep population-based diversity. 
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Optimization Algorithm is as follows 

Step 1: Initialization: 

    - Initialize a population of candidate solutions, denoted by P, with N individuals: 

𝑃 = {𝑋1, 𝑋2, . . . , 𝑋𝑁}………..(1) 

    Where, each individual Xi represents a potential solution in the search space. 

Step 2: Evaluation: 

- Evaluate the fitness of each candidate solution Xi using the objective function f(Xi): 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖) = 𝑓(𝑋𝑖)………..(2) 

Step 3: Selection: 

- Select individuals from the population for reproduction based on their fitness. Let p(Xi) represent 

the probability of selecting individual Xi for reproduction, calculated based on fitness: 

𝑝(𝑋𝑖) =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑗)

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖)𝑁
𝑗=1  

………..(3) 

Step 4: Crossover: 

- Perform crossover operations to create offspring solutions. Let Xi′ represent the offspring solution 

obtained from crossover between parent solutions Xi and Xj. 

Step 5: Mutation: 

- Apply mutation operators to introduce random changes in offspring solutions. Let Xi′′  represent the 

offspring solution obtained from mutation of Xi′. 

Step 6: Replacement: 

- Replace individuals in the current population with offspring solutions. Let P′ represent the new 

population obtained after replacement. 

Step 7: Termination: 

- Determine termination conditions based on predefined criteria, such as reaching a maximum 

number of generations (Gmax) or achieving a satisfactory level of solution quality. 

Step 8: Convergence Check: 

- Monitor convergence by tracking changes in the population over successive generations. Assess 

convergence criteria, such as changes in the best fitness value or population diversity. 

Step 9: Final Solution Extraction: 

- Extract the best-performing solution from the final population as the optimized solution: 

𝑋𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑖 ∈ 𝑃𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖)………(4) 

B. Sensitivity Analysis: 

In distribution network management, sensitivity analysis is a key step in figuring out how stable and 

reliable improvement results are. It includes figuring out how factors and assumptions that aren't 

known affect the results of optimization models. By changing input parameters in a planned way and 

watching how the optimization results change, sensitivity analysis helps find important factors that 

affect how well the distribution network works. By using sensitivity analysis, professionals can learn 

how changes in factors like weather, machine breakdowns, load patterns, and green energy output 
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impact important performance measures like cost, dependability, and efficiency. This lets everyone 

involved in the system find weak spots and areas of uncertainty, which makes it easier to come up 

with proactive plans to lessen their affects. By looking into how optimization results change when 

different assumptions and factors are used, professionals can make smart choices about where to 

spend in infrastructure, technology, and operating strategies that will make the distribution network 

more resilient and improve its performance. Because of this, sensitivity analysis is a useful tool for 

managing risks, planning for different outcomes, and making choices when there is a lot of 

unpredictability in managing a delivery network.  

V. Result And Discussion 

We compared the success of Stochastic Gradient Descent (SGD), Evolutionary Algorithms (EA), and 

Genetic Algorithms (GA) using a number of important measures. This shows how well these 

optimization methods work in different areas. GA is more accurate than both SGD and EA. It has a 

93.2% success rate, which shows that it can correctly identify cases better. Similarly, GA has a 

higher precision score (91.8%) and F1 score (93.9%) than SGD and EA. This shows that it can 

reduce false positives and find a good mix between precision and memory. GA has the largest area 

under the curve (AUC) number, at 95.0%, which means it can tell the difference between positive 

and negative cases very well. This shows that GA works better at binary classification tasks, which 

makes it perfect for situations where telling the difference between classes is very important. 

Additionally, GA has a higher recall rate of 93.8%, which means it can catch a larger percentage of 

good cases than SGD and EA. 

Even though SGD and EA do well across all measures, they are always behind GA, especially when 

it comes to accuracy, AUC, and recall. This shows how strong and useful GA is for improving 

complicated functions and search areas. That being said, the comparison shows how important it is to 

pick the right optimization method based on the problem domain's unique needs and traits. Even 

though SGD and EA might work for some tasks, GA is the best option when accuracy, precision, and 

discriminative power are very important. Professionals in fields like machine learning, data mining, 

engineering, and banking can learn a lot from this study about how to use optimization methods for a 

wide range of jobs. 

Table 4: Comparative analysis of Algorithms 
Performance Parameter Stochastic Gradient Descent Evolutionary Algorithms Genetic Algorithms 

Accuracy (%) 84.5 90.0 93.2 

Precision (%) 83.0 86.5 91.8 

F1 Score (%) 86.2 87.8 93.0 

AUC (%) 85.8 89.5 95.0 

Recall (%) 86.5 90.5 93.8 

. 

 

Figure3: Performance Comparison of Optimization Algorithm 
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Figure 3 shows a bar graph that compares three optimization algorithms: Stochastic Gradient 

Descent (SGD), Evolutionary Algorithms (EA), and Genetic Algorithms (GA). The comparison is 

based on key performance factors. On the x-axis are the percentage values for each measure, such as 

Accuracy, Precision, F1 Score, Area Under the Curve (AUC), and Recall. The percentage values are 

shown as straight bars of different heights. The three algorithms can be told apart by their colored 

bars. SGD is shown in blue, EA in orange, and GA in green. The graph shows how well each 

program does on a number of different rating criteria.  

 

Figure 4: Accuracy Comparison of Optimization Algorithm 

The graph shows that GA generally does better than SGD and EA across most factors, which means 

it is better at solving the problem at hand. Furthermore, the graph makes it simple to compare and 

understand how well the optimization algorithms work, which helps people choose the best 

algorithm for their specific optimization projects. There are three optimization algorithms shown in 

figure 4. Stochastic Gradient Descent (SGD), Evolutionary Algorithms (EA), and Genetic 

Algorithms (GA).  

 

Figure 5: Overview of performance metrics of different Algorithms 

The figure shows a comparison of their performance using a bar graph and numbers. There is a 

straight bar on the line that shows the efficiency of each method as a percentage. With an accuracy of 

84.5%, SGD is the least accurate, followed by EA with an accuracy of 90.0%, and GA with an 

accuracy of 93.2%. The graph, shown in figure 5, makes it easy to quickly and easily compare how 

well the algorithms do at classifying things. There is a clear difference between the bar heights, 

which shows that GA is more accurate than SGD and EA. The color-coded bars also make it easier 

to tell the difference between the methods, which makes it easier to understand the results. As shown 

in Figure 4, the precision bar graph makes it possible for people to see how well different 

optimization algorithms work in sorting tasks. It's a useful tool for making decisions because it helps 

people figure out which method is best for each task based on how accurate they need to be. Overall, 
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the accuracy bar graph gives a short overview of how SGD, EA, and GA compared in terms of 

performance, showing what their relative strengths and weaknesses were in terms of classification 

accuracy. 

 

Figure 6: Confusion Matrix of (a) SGD, (b) EA, (c) GA 

The confusion matrices in Figure (6) show in detail how well Stochastic Gradient Descent (SGD), 

Evolutionary Algorithms (EA), and Genetic Algorithms (GA) did by comparing the labels they 

thought the things were by comparing their predictions to the real ones. The true labels are in the 

rows of each grid, and the projected labels are in the columns. True positives and true negatives are 

shown on the main diagonal of the matrix, while off-diagonal parts show wrong labels (false 

positives and false negatives). As for SGD, EA, and GA, the confusion matrices show how well each 

method sorts data points into the right groups. In particular, the number of true positive (TP) and true 

negative (TN) forecasts shows how well the program can find examples of the positive and negative 

classes, respectively. On the other hand, false positive (FP) and false negative (FN) forecasts show 

times when the program wrongly sorts data points. By looking at the confusion vectors, we can get a 

full picture of the algorithms' pros and cons when it comes to classification jobs. By figuring out how 

to read the confusion matrices, professionals can learn more about how well the algorithms can 

predict things and make smart choices about which algorithms to use and how to improve their 

performance. 

VI. Conclusion 

In probabilistic graphical models (PGMs) to improve the randomness of distribution networks is a 

big step forward in managing the electricity grid. When distribution network operators combine 

Bayesian networks (BNs), Markov random fields (MRFs), and other PGMs, they can describe and 

improve complex systems that are unclear. Adopting PGMs lets you make decisions that take into 

account all of the factors that might affect them, like weather trends, machine states, load profiles, 

and the production of green energy. The research in this study shows that PGMs can make delivery 

networks more reliable, efficient, and resilient. Together with PGMs, stochastic optimization 

methods like Genetic Algorithms (GA) and Evolutionary Algorithms (EA) can help network workers 

improve operations while lowering the effects of uncertainty. These methods make it easier to make 

decisions in real time, which lets distribution networks adapt to changing working conditions and 

grid layouts. The results show how important data-driven methods and advanced analytics are for 

solving the problems that modern power lines cause. Using past data, machine learning methods, and 

statistical models, professionals can learn more about how networks work, spot possible threats, and 

come up with proactive ways to make systems run better. In the future, more study needs to be done 

to look into new approaches and improvements in PGMs for managing delivery networks. The 

combination of new technologies like AI, the Internet of Things (IoT), and blockchain could also 

help the grid work better and open up new ways to handle energy in a way that is good for the 

environment. It seems like using probabilistic graphical models in stochastic optimization could be a 
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good way to make distribution networks more efficient, reliable, and long-lasting. This would help 

the move toward a smarter and more resilient electrical grid ecosystem. 
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