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Abstract:  

Trilateration-based target localization using received signal strengths (RSS) 

within wireless sensor networks (WSN) often results in inaccurate location 

estimates due to the considerable fluctuations in RSS measurements encountered 

in indoor environments. Enhancing the precision of RSS-based localization 

systems has been a primary area of interest in extensive research efforts. This study 

introduces two range-free algorithms, Ensemble Learning (EL) and EL+KF, 

which leverage RSS measurements for localization. In contrast to trilateration, the 

EL- based localization approach enables the direct estimation of target locations 

based on field measurements, eliminating the need for distance calculations. 

Notably, unlike other cutting-edge localization and tracking (L&T) scheme like 

the support vector regression (SVR), the LSBoost (Least Squares Boosting) EL 

based localization architecture can be trained very quickly using RSS 

measurements to determine the mobile target's position. Furthermore, the 

proposed EL-based localization scheme incorporates the Kalman filter (KF) to 

achieve additional refinement in target location estimates. To assess the 

localization effectiveness of these proposed algorithms in the presence of noisy 

RF channels and dynamic target motion models, rigorous simulations were 

conducted. Thanks to the robust generalization capabilities of EL, the simulation 

results reveal that the presented EL-based localization algorithms exhibit superior 

performance compared to trilateration and the SVR-based localization scheme, 

particularly in terms of indoor localization accuracy. 

Keywords: Received Signal Strength (RSS); Wireless Sensor Network (WSN); 

Ensemble Learning (EL); LSBoost (Least Squares Boosting); localization and 

tracking (L&T); Support Vector Regression (SVR); Kalman Filter (KF). 

 

1. Introduction 
Target localization has been a focal point of extensive research in recent years, driven by the burgeoning 

demand for location-based services (LBS) across a myriad of applications [1-3]. These LBS offerings have 

the potential to enhance the quality of life for individuals in society in various ways. For instance, 

consider the convenience of a bike-sharing service, where a rider can effortlessly rent a bike via a mobile 

app and return it at any location once their ride is complete. To make this possible, interested riders 

rely on precise information about the locations of available shared bikes. Wearable devices such as 

smartwatches provide their owners with valuable services like activity monitoring, tracking, and 

emergency alerts. In the retail industry, localization technology can significantly boost profits by 

identifying customer locations and guiding them to products of interest, creating an improved 

shopping experience for customers and generating increased revenue for businesses. Another 

intriguing example of LBS is location-based flow management (LBFM), where location data from public 

spaces like metro stations, airports, and rail stations are harnessed to analyse passenger statistics, 

optimize their organization, and provide essential guidance. In industrial settings, logistics, 

productivity, and safety can be markedly improved through the application of LBS concepts. While the 

Global Positioning System (GPS) has long been a popular choice for outdoor location estimation, its 

accuracy and reliability falter in indoor environments due to the absence of GPS signals [4], [5]. Hence, 

GPS-independent localization and tracking (L&T) systems are imperative for achieving high target 

localization accuracy indoors. Wireless Sensor Networks (WSNs) have emerged as a dominant wireless 
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communication technology over the last three decades, offering a cost-effective, energy- efficient, and 

smart sensing solution that is ideal for indoor localization applications [6-8]. 

Signal propagation within a wireless medium, connecting a transmitter to a receiver, hinges on location-

specific data that can be harnessed for target localization. This data is derived from various signal 

measurement metrics, including Received Signal Strength (RSS), Time-of-Arrival (TOA), Time- 

Difference-of-Arrival (TDoA), Angle-of-Arrival (AOA), or combinations thereof [9]. Among these 

metrics, the RSS-based approach holds particular favor within Wireless Sensor Network (WSN)-based 

Localization and Tracking (L&T). Unlike the others, RSSI-based localization systems do not necessitate 

additional hardware components with the sensor nodes [10]. In the realm of localization techniques, 

two predominant methods are range-based localization and range-free localization. In range-based 

localization, the calculation of the distance between a transmitter and a receiver is pivotal, while range-

free localization dispenses with distance calculations. RSS plays a pivotal role in both these approaches. 

However, it's worth noting that RSSI measurements are inherently noisy and subject to significant 

fluctuations due to the intricate RF environment found indoors [11], [12]. These RSSI measurements 

contend with a variety of indoor interferences, multi-path effects, noise sources, and the ever-changing 

channel conditions characteristic of dynamic indoor environments. Consequently, meticulous attention 

must be paid when designing an RSSI-based target Localization and Tracking algorithm to mitigate the 

risk of substantial localization errors. 

One of the most basic and traditional methods within RSSI-based target Localization and Tracking 

(L&T) is trilateration [13], [14]. Trilateration involves the direct conversion of RSSI measurements into 

distances between the transmitters and receivers involved. Subsequently, the target's location can be 

estimated with the aid of at least three of these distance measurements. However, the trilateration 

technique tends to suffer from error propagation and struggles to effectively adapt to dynamic 

environmental conditions, resulting in notably poor localization accuracy. In intricate indoor 

environments where signal interference, reflection, and refraction compound the challenges, 

fingerprint-based methods, leveraging machine learning (ML), often outperform trilateration in terms 

of localization accuracy. These methods rely on data matching algorithms utilizing a curated set of 

reliable RSSI data extracted from a pre-established fingerprint database [15]. Among various data 

processing techniques, ML algorithms stand out as highly promising. Their adaptive nature lends them 

the ability to cope with changing indoor conditions, reducing the need for extensive redesign efforts. 

In the offline phase of the process, a target localization model is trained using a suitable dataset to learn 

the intricate relationship between RSSI measurements and their corresponding reference positions. 

Once this model is trained, real-time RSSI measurements can be input into it during the online phase to 

estimate the corresponding target's location. Support Vector Machine (SVM), a pivotal ML variant, 

boasts superior data fitting capabilities, global optimality, and fewer control parameters [16-18]. Thanks 

to its exceptional generalization prowess, SVM, when adapted for regression estimation problems 

(referred to as Support Vector Regression or SVR), has become a favored choice over popular ML 

models like the Back Propagation Neural Network (BPNN), Radial Basis Function (RBF) Neural 

Network, Multilayer Perceptron (MLP), and Generalized Regression Neural Network (GRNN), 

showcasing superior forecasting performance [15]. The regression capability of the LSBoost (Least 

Squares Boosting) ensemble learning model is a notable feature that makes it suitable for solving 

regression problems. LSBoost is an ensemble learning method that combines the predictions of multiple 

weak learners, typically decision trees, to create a strong regression model. It is particularly well-suited 

for tasks where the goal is to predict a continuous numerical output, such as predicting stock prices, 

housing prices, or any other real-valued target variable. It focuses on minimizing the loss (usually least 

squares) by iteratively adjusting the model's parameters. SVR models tend to be simpler and more 

interpretable. They aim to find the best linear fit in the transformed feature space, which can be easier 

to understand. Whereas, LSBoost models can be highly complex due to the combination of multiple 

decision trees. While this complexity can lead to high accuracy. the choice between LSBoost and SVR 

depends on the specific characteristics of your dataset and your goals. LSBoost is often favored when 

high predictive accuracy is the primary objective and when nonlinear relationships need to be captured. 
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SVR, on the other hand, is a good choice when you need a simpler and more interpretable model, and 

when robustness to outliers is crucial. It's important to experiment with both methods and assess their 

performance on your data to make an informed decision. The research objective of this work is to 

harness the potential benefits of the proposed EL model to address the challenges of indoor target 

localization. The research conducted in this paper unfolds in two distinct phases, and its key 

contributions are as follows: 

1) We have introduced an innovative target localization framework based on LSBoost EL model 

to tackle the challenges associated with locating a single moving target in an indoor 

environment using Received Signal Strength Indicator (RSSI) measurements. In Phase I of our 

work, we conducted simulations to compare the performance of the proposed LSBoost EL- 

based approach with both the conventional trilateration technique as well as SVR based 

localization model. 

2) In addition, we have extended our proposed EL model by integrating it with a standard 

Kalman Filter (KF) to create an enhanced target localization framework, and is named as 

EL+KF. In the Phase II of our study, we conducted simulations to compare the performance of 

the EL+KF scheme with the previously introduced SVR-based approach and the traditional 

trilateration scheme. Remarkably, the EL+KF scheme achieved target localization accuracy to 

the scale of few meters. 

3) In both Phase I and Phase II of our study, we considered scenarios where the target exhibited 

maneuverable trajectories with high variations in its velocity during motion. It's important to 

note that we maintained constant noise levels in the RSSI measurements and maintained the 

same target motion statistics in both phases. The simulation results from both phases 

unequivocally illustrate the efficacy of our proposed SVR-based approaches in effectively 

handling noisy RSS measurements and dynamic target motion, outperforming both 

trilateration and GRNN methods. 

The manuscript is structured as follows: In Section 2, we delve into recent literature on RSSI- based 

target Localization and Tracking (L&T). Section 3 introduces our proposed LSBoost EL based 

architecture for localization. The overall system design is outlined in Section 4, while Section 5 presents 

a detailed discussion of the results obtained. Finally, in Section 6, we summarize the key findings of 

our research. 

 

2. Related Work 
Indoor localization methods that utilize RSSI field measurements can be broadly categorized into two 

main branches: Machine Learning methods and Filters-based methods. The first approach primarily 

employs supervised learning techniques for target Localization and Tracking (L&T) through RF 

fingerprinting. Several possibilities exist within this approach, including K-Nearest Neighbor (KNN), 

Radial Basis Function (RBF), Multilayer Perceptron (MLP), Extreme Learning Machine (ELM), 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Backpropagation Neural 

Network (BPNN), and Support Vector Machines (SVM). These methods involve a training phase where 

the relationship between RSSI measurements and corresponding target locations is established. This 

allows the adjustment of model parameters specific to the indoor RF environment. Once the model is 

trained, real-time target locations can be estimated from random RSSI field measurements during the 

offline phase. For instance, in [19], an RF fingerprint is created using RSSI measurements in an indoor 

environment with a moving target. During the online location estimation phase, the k-nearest positions 

are calculated using the least squares method, and the target location is determined by averaging these 

k-nearest positions. In [20], the authors proposed a scheme called Kernel Online Sequential Extreme 

Learning Machine (KOS-ELM), which combines RF fingerprinting and trilateration for target 

localization in the offline stage. The KNN framework is then employed for target localization during 

the online estimation phase. In another study by Wafa et al. [21], a CNN-based localization framework 

for an IoT-Sensor System was developed for target localization. This work transformed the 2D 

localization problem into a 3D tensor identification problem. Constructing a 3D image tensor from a 

2D matrix of RSSI measurements resulted in an average localization accuracy of 2 meters. Another 
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approach utilizing CNN and hybrid wireless fingerprint localization was proposed in [22], where RSSI 

ratios from various access points (APs) were used. Large numbers of RSSI fingerprints were collected 

over a 12.5m x 10m area from deployed APs for fifteen days. The average localization errors for KNN, 

SVM, and CNN-based approaches were found to be 4.1681 meters, 4.1145 meters, and 3.9118 meters, 

respectively. While CNN showed superior performance, it relies on parameters such as learning rate, 

activation function, and threshold process, which must be fine-tuned for high localization accuracy. 

This parameter tuning can be time- consuming and makes CNN-based localization suitable for specific 

system conditions but not ideal for general applications. In [23], the authors proposed an RSSI-based 

robot indoor positioning scheme based on the Kernel Extreme Learning Machine (K-ELM) algorithm. 

They collected 68,500 samples of RSSI measurements over a 32m x 16m area using eight APs. The 

fingerprint-based localization scheme was evaluated using the proposed K-ELM scheme as well as 

Bayesian, KNN, classic ELM, and online sequential ELM (OS-ELM) algorithms. The K-ELM-based 

scheme achieved a localization accuracy of 8.125 meters, surpassing other considered methods. 

Additionally, Backpropagation Neural Networks (BPNN) can also be employed for indoor target 

localization [24]. However, BPNN has a notable limitation in that it requires multiple iterations to 

converge to the optimal location estimation. 

The authors in [25] introduced a localization scheme based on Support Vector Machines (SVM) for target 

localization in ad hoc networks. This scheme operates under the assumption of full connectivity among 

all network nodes, and it requires prior knowledge of anchor node positions. The classification model 

is constructed using field measurements collected by these anchor nodes, which is then employed for 

real-time target localization. It is worth noting that this SVM-based scheme performs optimally in 

networks with densely distributed sensors. The research work in [26] demonstrated an analysis of the 

SVM-based localization scheme proposed by Nguyen et al. for Wireless Sensor Networks (WSN)-based 

target localization. In their study, the authors established an upper bound for the localization error. 

Leveraging this upper bound, they improved target localization accuracy through an advanced 

optimization technique based on the concept of mass- spring. In another study by a different group 

[16], a multi-class SVM trained with RSSI field measurements was proposed for zoning localization. 

This SVM-based framework was trained using datasets collected from two real-world scenarios, a 

laboratory building, and a hospital. The results showed that this model outperformed an Artificial 

Neural Network (ANN)-based scheme in terms of estimation accuracy. Furthermore, an indoor target 

localization model based on two types of measurements, namely RSSI and Channel State Information 

(CSI) features, was introduced by authors in [27]. In the offline stage, dimension reduction was achieved 

using Principal Component Analysis (PCA) through CSI measurements. Subsequently, SVM was 

employed to create a location-based regression function, enabling target locations to be estimated with 

an accuracy of approximately 1 meter. In a different context, a scheme for RF-based beacon localization 

was proposed by authors in [17], which involved an Unmanned Aerial Vehicle (UAV) guided by the 

pure pursuit guidance law. This scheme, based on Support Vector Regression (SVR), directly located 

the beacon using RSSI measurements. Simulation results demonstrated that the proposed SVR-based 

localization scheme achieved position accuracy within 2 meters. The authors in [18] introduced a 

Least Squares Support Vector Regression (LSSVR) localization scheme that utilized RSSI-based ranging 

values as inputs. To address fluctuations in the RSSI measurements, a queue was employed to store the 

most recent values while removing older ones. The average of all RSSI values was computed to ensure 

queue stability over the RSSI sampling period. During LSSVR-based localization, optimization was 

conducted for target localization error, RBF kernel function parameters, and the grid width parameter 

of LSSVR to enhance target localization accuracy. The results indicated that the average localization 

error of the proposed LSSVR algorithm, without SVR parameter optimization, was 21.82%, and with 

SVR parameter optimization, it improved to 11.70%. 

In the realm of filter-based localization approaches, Kalman Filtering (KF) and Particle Filtering (PF) 

stand as pivotal techniques offering a wide array of solutions for target localization challenges. As state 

estimation methods, filter-based localization involves two fundamental steps: prediction and 

measurement. A study presented in [28] introduces an innovative approach known as online semi-
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supervised Support Vector Regression (OSS-SVR) for target positioning, with the goal of minimizing 

the need for labeled training data. Additionally, this proposed algorithm is fused with KF and compared 

against semi-supervised manifold learning, online Gaussian process, and online semi- supervised 

localization techniques. Simulation results clearly demonstrate the robustness of the OSS- SVR 

algorithm in the face of varying system noise, highlighting its capacity to accurately estimate locations 

with minimal reliance on labeled training data. In a different investigation detailed in [29], the authors 

explored various Machine Learning (ML) techniques, including Recurrent Neural Networks (RNN), 

Multilayer Perceptrons (MLP), Radial Basis Functions (RBF), and compared them with KF within the 

context of indoor target localization. The simulated environment covered an area of 26x26 meters and 

involved the deployment of eight anchor nodes at the area's edges. The results of the simulations 

revealed that RBF outperformed the other techniques, although MLP exhibited a favorable balance 

between computational complexity and localization accuracy. The study also concluded that KF 

demonstrated lower average localization error but required multiple iterations to achieve a similar level 

of accuracy compared to the other presented architectures. Furthermore, in a previous research 

endeavor [30], the authors integrated Generalized Regression Neural Networks (GRNN) with KF to 

develop a robust localization system for moving targets in Wireless Sensor Networks (WSN). The 

proposed algorithms, GRNN+KF and GRNN+UKF, effectively addressed the challenge of uncertainty 

in RSSI measurement noise. In this approach, the GRNN architecture was trained with input vectors 

comprising four RSSI measurements and corresponding 2-D locations of the mobile target. The 

location estimates obtained from GRNN were further refined by KF and Unscented Kalman Filtering 

(UKF), leading to significantly improved location estimates compared to GRNN alone. 

 

3. Proposed LSBoost EL Model for Target Localization 
LSBoost, or Least Squares Boosting, is a highly capable ensemble learning model in regression tasks. Its 

strength lies in its ability to effectively capture complex non-linear relationships between input and 

output variables. By iteratively fitting simple regression models to the residuals of previous models, 

LSBoost progressively refines predictions, reducing the mean squared error with each iteration. This 

makes LSBoost particularly well-suited for tasks where the underlying mapping between variables is 

intricate and non-linear in nature. Its robust performance, coupled with its capacity to handle diverse 

datasets, has positioned LSBoost as a valuable tool in regression modeling, yielding accurate and 

reliable predictions even in challenging scenarios. 

During the offline training phase, the system accumulates RSSI measurements obtained from anchor 

nodes (ANs) strategically positioned within the designated operational area. These measurements are 

combined with their associated target locations to establish a comprehensive training database. 

Subsequently, in the online location estimation stage, real-time RSSI measurements are input into the 

proposed pre-trained EL model. The EL model undertakes a search within thetraining database to 

identify patterns in the RSSI data that closely resemble the incoming measurements. Once a close match 

is identified, the proposed EL model returns the corresponding target location, which is deemed to be 

the closest possible estimation based on the provided RSSI pattern. The visual representation of this 

proposed EL model can be observed in Figure 1. 
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Figure 1. System Block Diagram for proposed EL Based Target Localization Scheme 

 
The RSSI measurements are generated through a logarithmic shadow fading model as described by 

Equation (1) [30], [31]: 

z 
j,k 

= Pr (d0 ) − 10n log(dlj ,k /d0) + X , (1) 

Where, 

(z j ,k ) - RSSI value received at node N having coordinates (x k , y k ) from node N j with coordinates 

( x jk , y jk ) at k time instance, 

Pr (d0 ) - RSSI value received at receiver node kept at a distance of d0 (preferably 1 meter), 

X - Normal random variable, 

 - Path loss exponent. 

The SVR model can be formulated using the concept of structural risk minimization as given 

by Equation (2) [26]: We used default values of C ,  , and  , and therefore these are set to 1, 0.01, and 

0.001, respectively. However, these parameters can be fine-tuned to get optimum results from SVR 

model for the underlying application. In this work, we adopted radial basis function (RBF) to create the 

SVR model because of its ability of fast convergence, simplicity, and optimality in high- dimensional 

spaces as compared to other types of kernels [16]. The RBF kernel function is given by Equation (5): 

 

4. SYSTEM DESIGN 
This research endeavour aims to track the movement of a single target within a 100-meter × 100-meter 

area, utilizing merely six anchor nodes in both Phase I and Phase II, as illustrated in Figure 

2. As previously discussed, Phase I involves a comparison of trilateration, GRNN, and the proposed 

SVR localization methodologies. In Phase II, we propose the fusion of SVR and Kalman Filtering (KF). 

In this latter phase, we compare the performance of the proposed SVR and SVR+KF techniques against 

the conventional trilateration approach concerning localization accuracy. While six anchor nodes are 

deployed within the operational area of the WSN, it is noteworthy that only three anchor 
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nodes are required to effectively determine the mobile target's position using the proposed SVR and 

SVR+KF localization techniques. Both Phase I and Phase II consider RSSI measurements from AN1, 

AN2, and AN3. In contrast, the GRNN-based scheme incorporates RSSI measurements from AN1, AN2, 

AN3, and AN4. Meanwhile, the trilateration-based scheme utilizes RSSI measurements from all anchor 

nodes, selecting three RSSI measurements with the highest values, specifically those from the anchor 

nodes closest to the target at a particular time instance. Consequently, the proposed SVR and SVR+KF 

localization techniques impose fewer constraints regarding RSSI measurements from anchor nodes for 

location estimation compared to trilateration and GRNN-based approaches. It is assumed that the 

mobile target carries a receiving node, which continuously collects RSSI measurements (RF signals) 

from the six anchor nodes deployed within the WSN area. These RSSI measurements from the six 

anchor nodes are denoted as RSSI1 through RSSI6, respectively. The deployment details of the anchor 

nodes are provided in Table 1 and depicted in Figure 2. These anchor nodes have been randomly 

positioned within the designated WSN area and are assumed to remain static. 

Table 1. Deployment of Anchor Nodes in the simulations 

Anchor Node Number 2-D Location Anchor Node Number 2-D Location 

1 (30, 25) 4 (30, 90) 

2 (10, 60) 5 (80, 60) 

3 (50, 50) 6 (70, 90) 

 
 

Figure 2. Anchor Node Deployment in the Indoor Environment. 
 

The study assumes that the target traverses a total of 40 positions within the WSN area, and these 

positions are to be estimated using trilateration as well as the proposed SVR and SVR+KF schemes. In 

the offline phase, the proposed EL and EL+KF architectures undergo training using 120 sets of RSSI 

measurements, each associated with a corresponding 2-D location, as depicted in Figure 

1. Once the training of the proposed EL-based localization architecture is completed, it becomes ready 

for use in estimating the mobile target's location during the online localization stage. During the online 

phase, for each target position within the WSN area during its motion, the input vectors ( Xk ) for the 

SVR and the proposed EL architectures at a specific time instance k are defined as follows, as shown in 

Equation (6) and Equation (7) respectively. 

X
k 

= [RSSI
1 
, RSSI

2 
, RSSI

3 
, RSSI

4 
], k = 1, 2, ... , 40 (6) 

Xk  = [RSSI
1 
, RSSI

2 
, RSSI

3 
], k = 1, 2, .... , 40 

(7) 
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The   state   vector   representing   the   mobile   target   at   a   given   time   instance k is 

Xk  = (xk , yk , xk , yk )' . Within this vector, xk and yk correspond to the target's position, while xk and 

indicate the speed in x and y directions respectively at 

mathematically expressed using following equations: 

k th time instance. These state vectors can be 

 

xk  = xk −1 + xk  dt , 

yk = yk −1 + yk dt , 

(8) 

(9) 

 

Where, dt = k − (k −1) represents the time interval between two consecutive time instances, and is 

maintained at 1 second. The sudden variations in the target's velocity throughout the entire duration 

of the target's motion of T= 40 seconds are characterized by the equations from (10) to (13) as given 

below. 

xk = 2, yk = 5, for 0  k  9 sec, (10) 

xk = 5, yk = 2, for 9  k  15 sec, (11) 

xk = 0, yk = 0, for 16  k  17 sec, (12) 

xk = 2, yk = −3, for 18  k  35 sec. (13) 
 

a) b) 
Figure 3. a) Target velocity variation along x direction, 

b) Target velocity variation along y direction. 

 

The effectiveness of the trilateration, proposed EL, and EL+KF algorithms in estimating target locations 

is evaluated using three key metrics: average localization error, root mean square error (RMSE), and 

the coefficient of correlation ( R ). For each time instance k , we calculate the localization errors with  x  

coordinate as  ( x̂k   − xk ) , and  y  coordinate estimate as  ( ŷk  − yk ) .  The localization error 

for a k 
th 

time instance is obtained by averaging these two error values. Subsequently, the average 

localization error during a during the total time duration T is determined using Equation (17). Similarly, 

RMSE values for the x and y coordinate estimates are computed separately, and the average RMSE is 

obtained by averaging these two RMSE values. In pursuit of higher localization accuracy, it is essential 

for both the localization error and RMSE to be minimized, ideally approaching zero. The value of R 

quantifies the strength of correlation between the estimated values and the actual values. The R value 

close to 1 signifies high localization accuracy. The R value can be directly computed using the MATLAB 

plotregression command. 
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k =1 T 

1  T   ( x̂   − x  ) + ( ŷ   − y  ) 
Average Localization Error = 

    k k k k 
 (14) 

 

Where, 

T k =1 2 

( x̂k , ŷk ) - Target location estimated for  k time instance, 

(xk , yk ) - Actual location of target at k time instance. 

RMSEx = . 
(15) 

RMSEy = 

RMSEavg = 

. 

(RMSEx + RMSEy ) 

2 

(16) 

(17) 

5. DISCUSSION ON RESULTS 
The idea behind conducting simulation experiment is in phase I to explore the target localization 

capability of the proposed SVR based target localization model as compared against to that of 

trilateration and GRNN based schemes. As mentioned earlier in Section III and Section IV, the 

trilateration exploits the advantage of all the six AN’s for localization for RSSI measurements, whereas 

the GRNN and the proposed SVR rely on only four and three AN’s respectively. Once it is confirmed 

that the SVR based scheme outperforms the GRNN based scheme, more focus is given on SVR based 

localization approach in phase II. The environmental and system setup for phase II is kept same as that 

for phase I. The aim of the phase II is to evaluate the SVR+KF based fusion scheme with SVR based 

scheme and trilateration technique. As the trilateration-based target localization using RSSI 

measurements is widely used approach by the research community to evaluate the proposed the RSSI 

based algorithms, we kept localization comparison with traditional trilateration in both the phases. 

 

Phase I: Comparison of SVR with Trilateration and GRNN 

The Figure 4 illustrates the actual target track in the WSN defined area and the location estimates 

obtained with Trilateration, GRNN, and the SVR based localization schemes. The Figure 4 clearly shows 

that the locations estimated with proposed SVR based scheme are closer to the actual target locations 

as compared to that with Trilateration and GRNN. Although few location estimates of target obtained 

with SVR are away from the actual target locations, the location estimates obtained for those actual 

target locations with Trilateration and GRNN are more away than actual target locations as compared 

to the proposed SVR scheme. Figure 5, and Figure 6 plot the location estimation errors with 

Trilateration, GRNN, and SVR based localization schemes in x direction, y direction respectively. In 

order to assess the overall estimation accuracy, the average of estimation errors is plotted for each actual 

target location in Figure 7. From results it can be observed that location estimates obtained with the 

proposed SVR are far better than trilateration and GRNN. From Figure 5, Figure 6, and Figure 7, it can 

be observed that estimation errors with the proposed SVR based scheme are approximately below 15 

meters. The estimation errors with trilateration are quite worst for many locations as compared to that 

with other considered schemes. From Table 2 it is clear that the RMSE and average localization error 

with trilateration are very high as compared to that with GRNN and SVR based schemes. The average 

RMSE with GRNN and SVR is decreased by 52% and 

 
k =1 
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62% respectively as compared to that with trilateration. The average localization error with GRNN and 

SVR is decreased by 51% and 66% respectively as compared to that with trilateration. In order to clarify 

the localization performance of the considered three localization schemes, four target locations are 

selected and estimations obtained with the considered three schemes are compared in Table 3. For first 

location (16, 25) considered in Table 3, we can see that estimations with GRNN are better than SVR. 

Whereas, the negative estimated coordinates with trilateration for first location means these are out of 

WSN defined area considered during simulation. In simple words, the estimations with trilateration 

for target location (16, 25) are out of WSN defined area, and that’s why these are not visible in Figure 

4. For other considered locations in Table 3, we can see that for some locations SVR yield very close 

location estimates, while for other GRNN performs better. From Figure 8, Figure 9, and Table 4, it is 

clear that R values obtained for SVR based localization scheme is more close to 1 as compared to 

trilateration and GRNN. 
 

Figure 4. Phase I Result: Location estimation of mobile target with Trilateration, GRNN, and proposed SVR 

based localization schemes. 

 
Figure 5. Phase I Result: Location estimation error in x direction with Trilateration, GRNN, and proposed SVR 

based localization schemes. 
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Figure 6. Phase I Result: Location estimation error in y direction with Trilateration, GRNN, and proposed SVR 

based localization schemes. 

 

        
 

Figure 7. Phase I Result: Location estimation error in x-y direction with Trilateration, GRNN, and proposed SVR 

based localization schemes 

Table 2. RMSE and average localization error obtained in Phase I 

Name of Localization 

Algorithm 

RMSE for x 

Coordinate 

RMSE for y 

Coordinate 

Average RMSE 

for x & y 

Coordinate 

Average 

Localization 

Error 

Trilateration 15.8403 12.7018 14.2711 11.0682 

GRNN 7.6033 6.1926 6.8979 5.3772 

SVR (Proposed) 5.0755 5.6407 5.3581 3.7995 

 

Table 3. Location wise estimation results for four target locations for Phase I 

Location 

Number 

Actual 

Coordinate 

Coordinates 

estimated with 

Trilateration 

Coordinates 

estimated with 

GRNN 

Coordinates 

estimated with SVR 

(Proposed) 

1 (16, 25) (-0.70, -4.66) (15.77, 24.15) (19.24, (17.12) 

2 (32. 65) (23.74, 84.23) (37.22, 73.01) (33.67, 68.80) 

27 (55, 66) (41.76, 52.54) (56.58, 68.10) (55.77, 65.37) 

35 (85, 81) (86.99, 73.01) (79.74, 96.21) (70.77, 82.51) 
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(a) 
 

(b) 

Figure 8. Phase I Result: a) Regression Coefficient with Trilateration, and proposed SVR for x direction, b) 

Regression Coefficient with Trilateration, and proposed SVR for y direction 

 
 

 

(a) 
 

  
 

(b) 

Figure 9. Phase I Result: a) Regression Coefficient with GRNN, and proposed SVR for x direction, b) Regression 

Coefficient with GRNN, and proposed SVR for y direction. 
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Table 4. Comparison of R values for Phase I 
 

Name of Localization 

Algorithm 

R Value for x Coordinate 

Estimation 

R Value for y 

Coordinate Estimation 

Trilateration 0.80627 0.83264 

GRNN 0.9425 0.94046 

SVR (Proposed) 0.97975 0.9436 

Case II: Combination of SVR and Kalman Filter for target localization 

In order to focus more upon SVR based scheme, in case II we compared SVR and SVR+KF 

based schemes with only trilateration. Like Figure 4 in case I, the Figure 10 in case II illustrates the 

actual target trajectory and the estimates obtained with Trilateration, and both SVR based localization 

schemes. From Figure 10 it is clear that SVR+KF based estimations are even better than plain SVR based 

estimations, and are closely following the actual target track. Figure 11, and Figure 12 plot the location 

estimation errors with Trilateration, and both SVR based localization schemes in x direction, y direction 

respectively. Figure 13 plots the average of estimation errors for each target location. From Figure 11 to 

Figure 13 it can be observed that the location estimation errors with SVR+KF scheme are lowest as 

compared to trilateration and plain SVR based scheme are well below 2.5 meters. From Figure 13 it is 

observed that the estimation errors with trilateration are very high and vary between 2 to 26 meters. 

Table 5 compares RMSE and average localization errors with the three considered localization schemes 

in case II. The average RMSE and average localization error with SVR+KF scheme is decreased by 

approximately 95% and 79% respectively as compared to that with plain SVR scheme. From Figure 14 

and Table 6, it is seen that the R value with SVR+KF scheme is very close to 1. Thus, by fusing SVR and 

KF yield very high improvement in the target localization accuracy. 
 

 
Figure 10. Phase II Result: Location estimation of mobile target with Trilateration, and proposed SVR and 

SVR+KF based localization schemes 

 

 

Figure 11. Phase II Result: Location estimation error in x direction with Trilateration, and proposed SVR and 

SVR+KF based localization schemes 
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Figure 12. Phase II Result: Location estimation error in y direction with Trilateration, and proposed SVR and 

SVR+KF based localization schemes. 

 
Figure 13. Phase II Result: Location estimation error in x-y direction with Trilateration, and proposed SVR and 

SVR+KF based localization schemes. 

Table 5. RMSE and average localization error obtained in Phase II 

Name of Localization 

Algorithm 

RMSE for x 

Coordinate 

RMSE for y 

Coordinate 

Average RMSE 

for x & y 

Coordinate 

Average 

Localization 

Error 

Trilateration 13.6668 14.9266 14.2967 11.2034 

SVR 5.6929 5.8932 5.7930 4.0430 

SVR+KF (Proposed) 0.3497 0.1725 0.2611 0.8528 

 

Table 6. Comparison of R values for Phase II 

Name of Localization 

Algorithm 

R Value for x Coordinate 

Estimation 

R Value for y Coordinate 

Estimation 

SVR 0.97379 0.94881 

SVR+KF (Proposed) 0.99871 0.99221 

(a) 
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(b) 

Figure 14. Phase II Result: a) Regression Coefficient with proposed SVR and SVR+KF for x direction, b) 

Regression Coefficient with and proposed SVR and SVR+KF for y direction 

V. Conclusion And Future Scope 
This paper proposes a novel SVR based target localization scheme to track a single target moving in 

indoor with the help of RSSI field measurements. The proposed SVR based scheme effectively deal with 

highly fluctuating field measurements as well as high maneuver in target trajectory. The applications 

wherein a localization accuracy of 5 to 6 meters is required, the proposed plain SVR based architecture 

is good lightweight option for the indoor target localization. Whereas the applications demanding 

target tracking accuracy below 1 meter, the proposed SVR+KF localization scheme will be a very good 

option. We believe that the proposed SVR based localization schemes can be extended to solve the 

problem of multi-target tracking (MTT) in indoor environment. 
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