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1.Introduction: In 1899, Rene Louis Baire introduced the terms of first and second category
sets. In classical Topology Baire space named in honor of Rene Louis Baire. The concept of
Fuzzy Baire Space was derivated by G.Thangaraj&S.Anjalmose and also they were discuss
the characterizations of strongly Fuzzy nowhere dense sets. In Intuitionistic set ANA #¢_, so
we using that result and derived the definition of strongly u;g-nowhere dense set from that
condition as well as talk about strongly p;g-baire space in GITS. In this paper we
demonstrate their basic properties.

2.Primary Needs: On the whole paper, we discussed the non-void set X and mentioned GITS
(Xr :uI) as X.

Definition:2.1[6]Let pu;be the collection of intuitionistic subsets of X. Then X is said to be
GITS if ¢_€u,; and p; is closed under arbitrary unions. Then the elements of y; are called y;-
open and their complements are named as p;-closed sets.

Definition:2.2[6] The y;-closure and y;-interior are defined as follows: c,, (A) = N{F: F is
p-closed setand A € F} and i, (A) =U {G:G is p;-open set, G S A}.

Definition:2.3[6]If ¢, (A) < U whenever A € U where U is p;- open setin X then A € X is
called u; g-closed set (1;2-CSGITS). Also ¢y, (A) and i, (A) are defined as follows, ¢, (4) =
N{F:F is pu;g-CSGITS and A € F} and i;,,(A) =U {G: G is p; g-open set (u;2-OSGITS), G <
A}.
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Definition:2.4[3] The p;g-Frontier, p;g-Exterior and y;g-border is defined as
follows: Fr; (A) = ¢, (4) —i;,(A), E;, (A) = i;;l(ff) and by, (A) = A — i, (4).

Definition:2.5[4] Ifc,, (A) = X. (resp.cy, (A) =X_) then A is named as p;g-DGITS
(resp.u;g-CDGITS).
Definition:2.6[4] A c X is said to be y;-nowhere dense set in GITS if iy, (c,, (4)) = ¢-.

Definition:2.7[4] A subset A of X is said to be u;g-NDGITS if the y;g-closure of A contains
no y, g- interior points or i, (c;,(4)) = ¢..

Definition:2.8[4]An intuitionistic set (IS)A in X is called p;g-FCGITS if A=U;2, B;,where
B;ENd*(u;). Remaining sets in X are said to be of yu;g-SCGITS. The complement of y;g-
FCGITS is called a y;g-residual set in X. The pair(X, ;) is said to be a y;g-Baire space
ifi;, (U2, 4;) = ¢, where A;ENd*(uy).

Theorem:2.9[6] If A is y1; g-CSGITS (resp.u; g-OSGITS) then c;;, (A) = A (resp.iy, (A) = A).

Proposition:2.10[4] Every subset of a ¢1;g-NDGITS is a y;g-NDGITS.

Proposition:2.11[6](a)c;; (A) = 1;,(A) ; (b)c;, (A) =i, (A); (c)cj;, (A) =iy, (A); (d) ¢, (A)
=1, (4).
Proposition:2.12[4] LetA be an ISs of X. If A € Nd*(y;) in X, then i, (A) = €.

Proposition:2.13[6] For A;;, B;; € X.Then
(D)iy, (A V iy, (Bgr) € iy, (Agr Y Bgp),
(i)cy, (Agr) Y ¢y, (Bgr) < ¢, (Agr U Bgr),
(iii)cy, (Agr N Bgp) € ¢, (Agr ) N ¢y, (Ber),
(iv)iy;, (Agr N Bgp) € iy,(Agr ) N iy, (Bgp)-
Corallary:2.14[4] LetA < X. If A is u; g-CSGITS with i, (A) = € then A is u; g-NDGITS.
Proposition:2.15[4] Let(X, ;) be a GITS. Then the following are equivalent
(1)(X, u;)is a u; g-Baire space.
(i)i;, (A) = €, VA € F*(up).
(iii) c;, (B) = U, for every y; g-residual set B in X.
Throughout this paper, we call (X, ¢, X)as€, (X, ¢, p) as O and (X, X, ) as U.
3. u;g- Strongly Nowhere Dense Set in GITS

Definition:3.1 An ISs A is said to be y;g-Strongly Nowhere dense set (in short,u; g-SNWDS)
if

i, (c;,(ANA)) = €. The collection of 11;g-SNWDS is denoted by SNd*(u;).
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Example:3.2 Let X = {Uy, hy, wx} with 1, ={C (X, {Ix}, {x}).{X, P, {Ax D AX, {Ix, hx}, D),

(X, {hx} i@y, Ox PAX, {ix}, d)AX, {0x ) {wx DAX, {9x ), )AX, {9y, iy} {wx}),
(X, {hx}, {9x 1)} Then SNd*(up) =

{GaUa(X' ¢' {19X' hX})a<X' {ﬁX' hX}' ¢),(X, {19X}' {hX}>a<X' {hx}, {19X}>a
(X, {0x}, {(hx, wx DAX, { By, {(Ox, @y AKX, {wx ), {fx, Ox DAX, {9y, g}, {wx}),
(X, {wx, hix}, {9x}), (X, {Ux, @x}, {fix})}.

Theorem:3.3 Every y;g-NDGITS is a y;g-SNWDS.
Proof: Suppose éx€ Nd*(u,) then ij; (c;; (§x)) = €. Now i, (c; (§xNEx Sz, (i, (EINS,
(C;Z(fX)) =€ = ¢y €SNd™ ().

Remark:3.4 The p;2-SNWDS need not be a p;g-NDGITS. For example:3.2, U,

(X, {9x, hx}, DIAX, {Ox 3, {Ax DAX, {Ax}, {9x DAX, {9x}, {Ax, wx DAX, {Rix ), {Ox, D)),
(X, {Ox, hix}, {wx AX, {@x, fix}, {0x}) and (X, {Ix, @y}, {fix}) are u;g-SNWDS but not a y, g-
NDGITS.

Remark:3.5 The p;g-SNWDS and p;-nowhere dense set are not related to each other. In
Example:3.2, HI’nOWhere dense set = {(X, (,b, {ﬁx}),(X, (nb' {19Xl ?HX}),(S, <Xﬁ ()b' {19X' hX})a
(X, {wx}, {(9x ).{X, {wx}, {hx, 9x})}. So both are independent to each other.

Theorem:3.6 If i, (§x) is a u;g-DGITS, for an ISs ¢y defined on y,, then &x is  p;g-
SNWDS.

Proof: Suppose that i;; (£x) is 1;g-DGITS then ¢, (i, (éx)) = U. Now i, (c;, (6xNEx)) S,

(i (E) N, (e, (Ex NS (e, G Ny (1, Go)) =6y (i NN E=E = &x  is a pyg-
SNWDS.

Theorem:3.7 If &yis u;g-NDGITS, then &y is u;g-SNWDS but the converse need not be true.

Proof: Assume that &xis p;g-NDGITS. Then i, (c;;,($x)) = €. Now i, (c;, (§xNEx )<y,
(¢, (ENNE;; (¢ (Ex)SE. But € < i, (c;,,(6xNEx)) and hence we get &y is a p;g-SNWDS.

But the reverse yields to false. From Example:3.2, {x= (X, {wy}, {Ax, 9x}) is a u;g-SNWDS
but & = (X, {9y, iy}, {wy}) is not a y;g-NDGITS.

Theorem:3.8 If ¢ (i, (g)) =U, for a y;g-OSGITS &y, then & is y;g-SNWDS.

Proof: Given that ¢, (i, (a)) = U, for an ISs &y defined on y;. Taking complements on

both side, ¢, (1;,(Ex))=C = ¢;;, (¢, (€x))=€ = iy, (c;,(6x)) = € = &4 € Nd * (i) and
using Theorem 3.3, we have, &y is a y;g-SNWDS.

Theorem:3.9 If &y is a y1;2-SNWDS then &y is also a y;g-SNWDS.

Proof: Let & € SNd*(w). Then i (c; (6xN&x)) = €. Now i (ch (Ex N&x)) =iy,
(¢, (éx N éx)) = €. Hence &y is also a 1, g-SNWDS.

Theorem:3.10 If &y is 1;g-NDGITS then &y is u;2-SNWDS but the < tends to fails.
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Proof: Using Theorem 3.3 and 3.9 we get E,€SNd * (y;) but the converse is not true. In
Example 3.2, £x = (X, {0y, @y}, {hx})ﬁg = (X, {hx}, {Ux, @x}) is a p;g-SNWDS but &y is
not a y;g-NDGITS.

Theorem:3.11 If &y is u;g-SNWDS then CZI(EX U E) =U.

Proof: Suppose that {x€p;g-SNWDS then i;l(c,’jl(fxﬂa)) = €. Taking complements on
both sides we have c;; (¢, (6xNEx)) = U=cy, (is, (xNEx) = U. But ¢, (if;, (§x U &) €
¢, (éx Uéx)= U cc; (&x U &x). Therefore ¢, (éx U éx) =U.

Theorem:3.12 If i, (Fr,; (§x)) = €, for a y;g-OSGITS &y, then &y is p;g-SNWDS.

Proof: Now i, ( cﬁ,(fxﬂg)) C iy, (Fr; (&x)) = €. Therefore &y is ;g-SNWDS.
Theorem:3.13 If &y is 1;g-CSGITS with i, (§x) = €, then {x € p;g-SNWDS.

Proof: i;,(c,’j,(fxﬂa)) c i, (&N U) = iy, (§x) = €. Therefore {x € p;g-SNWDS.
Theorem:3.14 If & is 11, g- OSGITS and & € 11, g-DSGITS then &, € y,g-SNWDS.

7

Proof: i;;l(c;[(fxﬂg)) c i;I(Uﬂa)Qi;I(g) = U = € and hence we have &y € y;g-
SNWDS.

Figure:3.15

Fig:3.15, Represents the relations between p; g-SNWDS, ; g-NDGITS, p;2-OSGITS, p;g-DGITS
and py;-nowhere dense.

Theorem:3.16 If {xENd*(u,) after that ¢ ({x) is u;g-SNWDS.
Proof: Suppose §xENd*(u,) then ij; (c;,(€x)) = €. Now iy, (c;,(cp, (Ex)Ney, (€x))) =

by (G E) NG, (e, (G00D) = i3, (5, (EIN U = i, (¢, (8x)) = €. Therefore ¢y, (§x) € pg-

Theorem:3.17 Every subset of p;g-SNWDS is a pu;g-SNWDS.

Proof: Let &y is w;g-SNWDS then i;:](cﬁ](fxﬂa)) = €. Suppose §x S &y, we have
§xNEXCSENEy = i;,(c;1(§xﬂ§)) c i;l(cﬁl(fxﬂa)) = €. Therefore §x is ©;g-SNWDS.
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Theorem:3.18 An ISs &y is u,g-SNWDS iff ¢ (i, (§xNEx)) = U

Proof:  Suppose ¢éyESNd*(u;) then i;l(cﬁl(fxﬂg)) = €. Now ¢, (i;l(fxﬂg)) =
¢ (¢ (ExNE)) = 1, (¢ (ExNEx)))= U. Conversely assume that c;; (i, (§xNEx)) = 0.
After that ig, (i, (§xNéx)) = ¢, (6, (ExNED) = ¢, (1, (8xNEx)) = €.

Theorem:3.19 If & is 1, g-SNWDS then i;; (§xN&x) = G.

Proof: Suppose &y is w;g-SNWDS then i,’;l(c;l(fxﬂa)) =C. Now i;l(fxﬂa) c
it (62, (§xNEx)) = G.

Theorem:3.20 If ¢, (¢x) is p;g-CDGITS, for an ISs &y defined on yy, then &y is  p;g-
SNWDS.

Proof: Given that ¢y, ($x)is pg-CDGITS which implies c;jl(c!jl (¢ X)) =0 =
1, (i, ) = U= i (c;,¢x) = €. Now i (e (8xNEx)) €
i, (e, (Ex)) Nig, (e (Ex)) = € = &y isap;g-SNWDS.

4. Strongly u,g-First category set in GITS

Definition:4.1 An ISs §y is said to be Strongly p; g-First Category Set in GITS (y;g-SFCS) if
§8x = Ui2, §x, where §x.'s are ;g-SNWDS. Remaining sets are called strongly p;g-Second
Category Set (4;2-SSCS). The complement of p;g-SFCS is named as a strongly p;g-Residual
set (1;2-SRS).

Example:4.2 Let X = {¢cy,dy, o, ¥x} with yu; = {€(X,{cx, dx,x}, d).(X, b, {cx,3x}),
(X, {ex}, {dx, wx (X, {ex}, @)X, {dx, o5}, {wx DX, {dx, 2x}, @)X, {ex, dx, ¢}, {3x 1)}
Then Hig-
SFCS:{U,(X' @, {ex, dx, ax DX, {6x}, {dx, 2x AX, {ex }, {dx, ax, wx AX, {dx}, {6x, 2% ),
(X, {dx}, {ex, 2%, ¥x DAX, {oex ), {dx, ex DAX, {ox ), {dx, 6x, wx DAX, {3k} {dx, 2, 6x3),

(X, {dy, ex}, {ox AX, {dx, 6x}, {2x, wx DAX, {dy, ax ), {ex AX, {dx, 2%}, {6x, ¥x }),

(X, {xx, ox} {ex, Ax DAX, {x, ex ) {oox, dx DX, {ex, ax b {dx DX, {ex, ¢}, {dx, wx}),

(X, {dy,sx}, {ex, @x )X, {6x, dx, ax }, @) AX, {6, dx, o }, {¥x })AX, {dx, &%, ¥x}, {6x}),

(X, {ex, ox, wx L {dx AX, {ex, dx, ¥x }, {2x )} - 12-SSCS = { €} and

11g-SRS ={C,
(X, {ex, dx, ¢}, §)AX, {dy, ¢}, {ex AX, {dx, 2%, ¥x }, {ex (X, {ex, 2x ), {dx}),

(X, {ex, ox, wx L {dx DAX, {dx, 6x ), {2 (X, {dx, 6x, x ) {ox AX, {dy, 2, 6x ) {wx ),

(X, {orx 1 {dx, ex AX, {oex, wx ), {dy, 6x 1AX, {ex ) {dx, ax DX, {ex, wx }, {dx, o« }),

(X, {ex, dx}, {x, ¥x DAX, {ox, A}, {6x, wx DAX, {dx ) {ex, ax DAX, {dx, 3%} {6, 2% ),

(X, {ex, o}, {dy, x AX, @, {6x, dy, 25 I)AX, {wx}, {ex, dx, 2x )AX, {ex}, {dx, ax, ¥x}),

(X, {dx}, {ex, ax, wx AX, {ox ), {ex, dx, wx 1)) -

Theorem:4.3 If § is p;g-FCGITS then §y is p;g-SFCS.
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Proof: Let §x be w;g-FCGITS. Then §y = U2, §, where §,'s are w;g-NDGITS. By

theorem: 3.3, §x,'s are y;g-SNWDS and hence §y = U2, §x, where §y,'s are u;g-SNWDS.
Therefore §y is pu;g-SFCS.

Theorem:4.4 If §x = U2, §, where §y,'s are ;1;g-CSGITS with i;; (§x,) = € then § is a
u;g-SFCS.

Proof: Suppose §x = Uj2;§x, where §y's are u;g-CSGITS with i;l(§Xi) = €. By
theorem:3.14, p;g-CSGITS with i;‘;l(§xi) = € are w;g-SNWDS and then we have §y =
Uiz, §x, where §y,'s are u;g-SNWDS. Therefore §y is a p;g-SFCS.

Theorem:4.5 If §x = U{2, §x, where i, (F7; (8x,)) = €, then §y is 11;-SFCS.

Proof: Assume that §x = U2, §x, where i;I(FrJI(§Xi))= €. By theorem:3.12, we have §Xi’s
are (;2-SNWDS. Therefore §x = U7, §x,where §y,’sare y;g-SNWDS and hence § is u;g-
SFCS.

Theorem:4.6 If §x = U2, §y, where §xi'S are u;g-OSGITS and p;g-DSGITS, then §y is
u;g-SFCS.

Proof: Given that §y = UjZ; 8%, where §Xl.'s are p;g-OSGITS and p;g-DSGITS. By
theorem:3.12, §,’s are u;g-SNWDS and hence §x = U;Z; §x, where §y,’sare y;g-SNWDS.
Therefore §yis p;g-SFCS.

Theorem:4.7 Every subset of a u;g-SFCS is u;g-SFCS.

Proof: Let §xbe 11;g-SFCS. Then §x =U;2, §x;, where §x,’s are y;g-SNWDS. Suppose
{xS8x =U;j2; 8x, Therefore {yCU;2; 8x; = {x<8x,, for some p;g-SNWDS. By using
Theorem 3.17, {x is y; g-SFCS.

5. Strongly u;g-Baire Space in GITS

Definition:5.1 A GITS (X,y;) is called a Strongly p;g-Baire Space (y;2-SBS) if
¢, (Ug2, §Xz) = U, where §,’s are 11;g-SNWDS.

Example:5.2 In example:3.2, take A = (X, ¢, {Ix, hix}) and B = (X, {9, hx}, ¢). Then
¢, (AU B) = ¢;, (X, {Ux, iy}, ) = 0. Therefore (X,p;) is a Strongly u;g-Baire Space
(1;8-SBS).

Theorem:5.3 Let(X, ;) be GITS. Then the subsequent are equivalent
()X, up) is u;g-SBS.
(ii)c;;, (§x) = U, for every p;g-SFCS§y in X.
(iii) i, ($0x) = €, for every u;g-SRS oy in X.

Proof: (i) = (ii), Let §x be a ;g-SFCS in X. Then §x = (U2, 8§x) where §x’s are p;g-
SNWDS. Since (X, i) is u;9-SBS, c;;, (U524 §,) = U. Therefore c;;, (§x) = U.
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(i) = (iii) Let gx be p;g-SRS in X. Then oy is p;g-SFCSin X. From(ii), c,, ($x) =
U=, (x ) = U. Hence i, (x) =C.

(iii) = (i) Let §x be p;g-SFCS in X. Then §x = U2, §x,where §x,’s are ;1;,g-SNWDS. We
have, if §y is a u;g-SFCS in X then §y is a p;g-SRS. By (iii) we get L;I(g) = €, which
gives ¢, (8x) = €. Therefore ¢, (§x) = U and hence ¢, (Uz18x,) = U, where §x,’s are
u;g-SNWDS. Hence (X, y;) is u;g-SBS.

Theorem:5.4 If {§x .}, i = 1 to o, is ;g-OSGITS and p;g-DSGITS in X then X is u;g-SBS.

Proof: Using theorem:3.14, we have§y,; , i=1 to oou;g-SNWDS in X. Let § = (U2, 8x,)-
Then §y is p;g-SFCS. c;,(8x) = cﬁ,(Ufil §Xi) 2 U2, CZI(§Xi) = 7. Henceforth X is a u;g-
SBS.

Conclusion: In this paper, first we defined p;g-SNWDS and p;g- SFCS, then introduce p;g-
SBS. Some more properties are to be discussed. In future we discuss y;g o-Baire space and
u;g D-Baire space.
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