ISSN: 1064-9735 Vol 34 No. 4 (2024)

Strongly Nowhere Dense set via Generalized Intuitionistic Topological Space

G. Helen Rajapushpam¹, P. Sivagami²

¹ Assistant Professor, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth - 17. Email ID: helenarul84@gmail.com

²Associate Professor, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Email ID: sivagamimuthu75@gmail.com.

Article History:

Received: 04-11-2024

Revised: 12-12-2024
Accepted: 24-12-2024

Abstract:

Our scope of this article is to create a different operators such as strongly μ_I g-nowhere dense set, strongly μ_I g-first category set, strongly μ_I g-second category set and strongly μ_I g-residual set on GITS. Also we discuss their natures of Strongly μ_I g-Baire space and explain how to correlate the above operators with the other Kuratowski operators in GITS with clear cut examples.

Keywords: μ_I g-SNWDS, μ_I g-SFCS, μ_I g-SSCS, μ_I g-SRS, μ_I g-SBS, E, O, Ú.

(2010)AMS classifications: 54A05, 03E72

1.Introduction: In 1899, Rene Louis Baire introduced the terms of first and second category sets. In classical Topology Baire space named in honor of Rene Louis Baire. The concept of Fuzzy Baire Space was derivated by G.Thangaraj&S.Anjalmose and also they were discuss the characterizations of strongly Fuzzy nowhere dense sets. In Intuitionistic set $A \cap A \neq \phi_{\infty}$, so we using that result and derived the definition of strongly μ_I g-nowhere dense set from that condition as well as talk about strongly μ_I g-baire space in GITS. In this paper we demonstrate their basic properties.

2.Primary Needs: On the whole paper, we discussed the non-void set X and mentioned GITS (X, μ_I) as X.

Definition:2.1[6]Let μ_I be the collection of intuitionistic subsets of X. Then X is said to be GITS if $\phi_{\sim} \in \mu_I$ and μ_I is closed under arbitrary unions. Then the elements of μ_I are called μ_I -open and their complements are named as μ_I -closed sets.

Definition:2.2[6] The μ_I -closure and μ_I -interior are defined as follows: $c_{\mu_I}(A) = \bigcap \{F: F \text{ is } \mu_I\text{-closed set and } A \subseteq F\}$ and $i_{\mu_I}(A) = \bigcup \{G: G \text{ is } \mu_I\text{-open set, } G \subseteq A\}.$

Definition:2.3[6]If $c_{\mu_I}(A) \subseteq U$ whenever $A \subseteq U$ where U is μ_I - open set in X then $A \subseteq X$ is called $\mu_I g$ -closed set ($\mu_I g$ -CSGITS). Also $c_{\mu_I}^*(A)$ and $i_{\mu_I}^*(A)$ are defined as follows, $c_{\mu_I}^*(A) = \bigcap \{F: F \text{ is } \mu_I g\text{-CSGITS and } A \subseteq F\}$ and $i_{\mu_I}^*(A) = \bigcup \{G: G \text{ is } \mu_I g\text{-open set } (\mu_I g\text{-OSGITS}), G \subseteq A\}$.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Definition:2.4[3] The $\mu_I g$ -Frontier, $\mu_I g$ -Exterior and $\mu_I g$ -border is defined as follows: $Fr_{\mu_I}^*(A) = c_{\mu_I}^*(A) - i_{\mu_I}^*(A)$, $E_{\mu_I}^*(A) = i_{\mu_I}^*(\bar{A})$ and $b_{\mu_I}^*(A) = A - i_{\mu_I}^*(A)$.

Definition:2.5[4] If $c_{\mu_I}^*(A) = X_{\sim}$ (resp. $c_{\mu_I}^*(\bar{A}) = X_{\sim}$) then A is named as μ_I g-DGITS (resp. μ_I g-CDGITS).

Definition:2.6[4] $A \subset X$ is said to be μ_I -nowhere dense set in GITS if $i_{\mu_I}(c_{\mu_I}(A)) = \phi_{\sim}$.

Definition:2.7[4] A subset A of X is said to be μ_I g-NDGITS if the μ_I g-closure of A contains no μ_I g- interior points or $i_{\mu_I}^*$ ($c_{\mu_I}^*(A)$) = ϕ_{\sim} .

Definition:2.8[4] An intuitionistic set (IS)A in X is called $\mu_I g$ -FCGITS if $A = \bigcup_{i=1}^{\infty} B_i$, where $B_i \in Nd^*(\mu_I)$. Remaining sets in X are said to be of $\mu_I g$ -SCGITS. The complement of $\mu_I g$ -FCGITS is called a $\mu_I g$ -residual set in X. The pair(X, μ_I) is said to be a $\mu_I g$ -Baire space if $i_{\mu_I}^*(\bigcup_{i=1}^{\infty} A_i) = \phi_{\sim}$, where $A_i \in Nd^*(\mu_I)$.

Theorem:2.9[6] If A is $\mu_I g$ -CSGITS (resp. $\mu_I g$ -OSGITS) then $c_{\mu_I}^*(A) = A$ (resp. $i_{\mu_I}^*(A) = A$).

Proposition:2.10[4] Every subset of a μ_I g-NDGITS is a μ_I g-NDGITS.

Proposition:2.11[6](a)
$$c_{\mu_I}^*(\bar{A}) = \overline{\iota_{\mu_I}^*(A)}$$
; (b) $\overline{c_{\mu_I}^*(A)} = i_{\mu_I}^*(\bar{A})$; (c) $\overline{c_{\mu_I}^*(\bar{A})} = i_{\mu_I}^*(A)$; (d) $c_{\mu_I}^*(A) = \overline{\iota_{\mu_I}^*(\bar{A})}$.

Proposition:2.12[4] Let A be an ISs of X. If $A \in Nd^*(\mu_I)$ in X, then $i_{\mu_I}^*(A) = \mathfrak{E}$.

Proposition:2.13[6] For $A_{GL}, B_{GL} \subset X$. Then

$$\begin{split} (\mathrm{i})i_{\mu_{I}}^{*}(A_{GI}) \cup i_{\mu_{I}}^{*}(B_{GI}) &\subseteq i_{\mu_{I}}^{*}(A_{GI} \cup B_{GI}), \\ (\mathrm{ii})c_{\mu_{I}}^{*}(A_{GI}) \cup c_{\mu_{I}}^{*}(B_{GI}) &\subseteq c_{\mu_{I}}^{*}(A_{GI} \cup B_{GI}), \\ (\mathrm{iii})c_{\mu_{I}}^{*}(A_{GI} \cap B_{GI}) &\subseteq c_{\mu_{I}}^{*}(A_{GI}) \cap c_{\mu_{I}}^{*}(B_{GI}), \\ (\mathrm{iv})i_{\mu_{I}}^{*}(A_{GI} \cap B_{GI}) &\subseteq i_{\mu_{I}}^{*}(A_{GI}) \cap i_{\mu_{I}}^{*}(B_{GI}). \end{split}$$

Corallary:2.14[4] Let $A \subseteq X$. If A is $\mu_I g$ -CSGITS with $i_{\mu_I}^*(A) = \mathfrak{E}$ then A is $\mu_I g$ -NDGITS.

Proposition:2.15[4] Let(X, μ_I) be a GITS. Then the following are equivalent

(i)(X, μ_I) is a $\mu_I g$ -Baire space.

$$(ii)i_{\mu_I}^*(A) = \mathfrak{E}, \forall A \in \mathcal{F}^*(\mu_I).$$

(iii) $c_{\mu_I}^*(B) = \acute{\mathbf{U}}$, for every $\mu_I g$ -residual set B in X.

Throughout this paper, we call (X, ϕ, X) as \mathfrak{E} , (X, ϕ, ϕ) as \mathcal{O} and (X, X, ϕ) as U.

3. $\mu_I g$ - Strongly Nowhere Dense Set in GITS

Definition:3.1 An ISs A is said to be μ_I g-Strongly Nowhere dense set (in short, μ_I g-SNWDS) if

 $i_{\mu_I}^*(c_{\mu_I}^*(A \cap \bar{A})) = \mathfrak{E}$. The collection of μ_I g-SNWDS is denoted by $SNd^*(\mu_I)$.

ISSN: 1064-9735

Vol 34 No. 4 (2024)

Example:3.2 Let $X = \{\vartheta_X, \hbar_X, \varpi_X\}$ with $\mu_I = \{\mathfrak{E}, \langle X, \{\vartheta_X\}, \{\hbar_X\} \rangle, \langle X, \phi, \{\hbar_X\} \rangle, \langle X, \{\vartheta_X, \hbar_X\}, \phi \rangle,$ $\langle X, \{h_X\}, \{\varpi_X, \vartheta_X\} \rangle, \langle X, \{h_X\}, \phi \rangle, \langle X, \{\vartheta_X\}, \{\varpi_X\} \rangle, \langle X, \{\vartheta_X\}, \phi \rangle, \langle X, \{\vartheta_X, h_X\}, \{\varpi_X\} \rangle, \langle X, \{\psi_X, \psi_X\}, \{\psi_X, \psi_X\}, \langle X, \{\psi_X, \psi_X\}, \langle X, \{\psi_X, \psi_X\}, \psi_X\}, \langle X, \{\psi_X, \psi_X\}, \langle X, \{\psi_X, \psi_X\}, \langle X, \{\psi_X, \psi_X\}, \langle X, \psi_X\}, \langle X, \{\psi_X, \psi_X\}, \langle X, \psi_X\}, \langle X, \psi_X\}, \langle X, \{\psi_X, \psi_X\}, \langle X, \psi_$ $SNd^*(\mu_I) =$ $\langle X, \{\hbar_X\}, \{\vartheta_X\} \rangle \}.$ $\{\mathfrak{E}, U, \langle X, \phi, \{\vartheta_X, \hbar_X\} \rangle, \langle X, \{\vartheta_X, \hbar_X\}, \phi \rangle, \langle X, \{\vartheta_X\}, \{\hbar_X\} \rangle, \langle X, \{\hbar_X\}, \{\vartheta_X\} \rangle,$ $\langle X, \{\vartheta_X\}, \{\hbar_X, \varpi_X\} \rangle, \langle X, \{\hbar_X\}, \{\vartheta_X, \varpi_X\} \rangle, \langle X, \{\varpi_X\}, \{\hbar_X, \vartheta_X\} \rangle, \langle X, \{\vartheta_X, \hbar_X\}, \{\varpi_X\} \rangle,$

 $\langle X, \{ \omega_X, \hbar_X \}, \{ \vartheta_X \} \rangle, \langle X, \{ \vartheta_X, \omega_X \}, \{ \hbar_X \} \rangle \}.$

Theorem:3.3 Every μ_I g-NDGITS is a μ_I g-SNWDS.

Proof: Suppose $\xi_X \in Nd^*(\mu_I)$ then $i_{u_I}^*(c_{u_I}^*(\xi_X)) = \mathfrak{E}$. Now $i_{u_I}^*(c_{u_I}^*(\xi_X \cap \overline{\xi_X})) \subseteq i_{u_I}^*(c_{u_I}^*(\xi_X)) \cap i_{u_I}^*$ $(c_{\mu_I}^*(\overline{\xi_X})) = \mathfrak{E} \Rightarrow \xi_X \in SNd^*(\mu_I).$

Remark:3.4 The μ_I g-SNWDS need not be a μ_I g-NDGITS. For example:3.2, Ú. $\langle X, \{\vartheta_X, \hbar_X\}, \phi \rangle, \langle X, \{\vartheta_X\}, \{\hbar_X\} \rangle, \langle X, \{\hbar_X\}, \{\vartheta_X\} \rangle, \langle X, \{\vartheta_X\}, \{\hbar_X, \varpi_X\} \rangle, \langle X, \{\hbar_X\}, \{\vartheta_X, \varpi_X\} \rangle, \langle X, \{\psi_X, \psi_X\} \rangle, \langle X, \{\psi_X$ $\langle X, \{\vartheta_X, \hbar_X\}, \{\varpi_X\} \rangle, \langle X, \{\varpi_X, \hbar_X\}, \{\vartheta_X\} \rangle$ and $\langle X, \{\vartheta_X, \varpi_X\}, \{\hbar_X\} \rangle$ are μ_I g-SNWDS but not a μ_I g-NDGITS.

Remark:3.5 The μ_I g-SNWDS and μ_I -nowhere dense set are not related to each other. In Example:3.2, μ_I -nowhere dense set = $\{\langle X, \phi, \{\vartheta_X\}\rangle, \langle X, \phi, \{\vartheta_X, \varpi_X\}\rangle, \mathfrak{E}, \langle X, \phi, \{\vartheta_X, \hbar_X\}\rangle,$ $\langle X, \{\varpi_X\}, \{\vartheta_X\} \rangle, \langle X, \{\varpi_X\}, \{\hbar_X, \vartheta_X\} \rangle \}$. So both are independent to each other.

Theorem:3.6 If $i_{\mu_I}^*(\xi_X)$ is a μ_I g-DGITS, for an ISs ξ_X defined on μ_I , then ξ_X is μ_I g-SNWDS.

Proof: Suppose that $i_{\mu_I}^*(\xi_X)$ is μ_I g-DGITS then $c_{\mu_I}^*(i_{\mu_I}^*(\xi_X)) = \acute{\mathrm{U}}$. Now $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) \subseteq i_{\mu_I}^*$ $(c_{\mu_I}^*(\xi_X)) \cap i_{\mu_I}^*(c_{\mu_I}^*(\overline{\xi_X})) \subseteq i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) \cap i_{\mu_I}^*(\overline{i_{\mu_I}^*(\xi_X)}) = i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) \cap \mathfrak{E} = \mathfrak{E} \Rightarrow \xi_X \quad \text{is} \quad \text{a} \quad \mu_I \text{g-}$ SNWDS.

Theorem:3.7 If $\overline{\xi_X}$ is μ_I g-NDGITS, then ξ_X is μ_I g-SNWDS but the converse need not be true.

Proof: Assume that $\overline{\xi_X}$ is μ_I g-NDGITS. Then $i_{\mu_I}^*(c_{\mu_I}^*(\overline{\xi_X})) = \mathfrak{E}$. Now $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) \subseteq i_{\mu_I}^*$ $(c_{\mu_I}^*(\xi_X)) \cap i_{\mu_I}^*(c_{\mu_I}^*(\overline{\xi_X})) \subseteq \mathfrak{E}$. But $\mathfrak{E} \subseteq i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X}))$ and hence we get ξ_X is a μ_I g-SNWDS.

But the reverse yields to false. From Example:3.2, $\xi_X = \langle X, \{ \varpi_X \}, \{ \hbar_X, \vartheta_X \} \rangle$ is a μ_I g-SNWDS but $\overline{\xi_X} = \langle X, \{\vartheta_X, \hbar_X\}, \{\varpi_X\} \rangle$ is not a μ_I g-NDGITS.

Theorem:3.8 If $c_{u_I}^*(i_{u_I}^*(\overline{\xi_X})) = \acute{\mathbf{U}}$, for a μ_I g-OSGITS ξ_X , then ξ_X is μ_I g-SNWDS.

Proof: Given that $c_{\mu_I}^*(i_{\mu_I}^*(\overline{\xi_X})) = \acute{\mathbf{U}}$, for an ISs ξ_X defined on μ_I . Taking complements on both side, $\overline{c_{\mu_I}^*(\iota_{\mu_I}^*(\overline{\xi_X}))} = \mathfrak{E} \Longrightarrow \overline{c_{\mu_I}^*(\overline{c_{\mu_I}^*(\xi_X)})} = \mathfrak{E} \Longrightarrow i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) = \mathfrak{E} \Longrightarrow \xi_X \in Nd * (\mu_I)$ and using Theorem 3.3, we have, ξ_X is a μ_I g-SNWDS.

Theorem:3.9 If ξ_X is a μ_I g-SNWDS then $\overline{\xi_X}$ is also a μ_I g-SNWDS.

Proof: Let $\xi_X \in SNd^*(\mu_I)$. Then $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) = \mathfrak{E}$. Now $i_{\mu_I}^*(c_{\mu_I}^*(\overline{\xi_X} \cap \overline{\xi_X})) = i_{\mu_I}^*$ $(c_{u_I}^*(\overline{\xi_X} \cap \xi_X)) = \mathfrak{E}$. Hence $\overline{\xi_X}$ is also a μ_I g-SNWDS.

Theorem:3.10 If ξ_X is $\mu_I g$ -NDGITS then $\overline{\xi_X}$ is $\mu_I g$ -SNWDS but the \Leftarrow tends to fails.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Proof: Using Theorem 3.3 and 3.9 we get $\overline{\xi_X} \in SNd * (\mu_I)$ but the converse is not true. In Example 3.2, $\xi_X = \langle X, \{\vartheta_X, \varpi_X\}, \{\hbar_X\} \rangle \Longrightarrow \overline{\xi_X} = \langle X, \{\hbar_X\}, \{\vartheta_X, \varpi_X\} \rangle$ is a μ_I g-SNWDS but ξ_X is not a μ_I g-NDGITS.

Theorem:3.11 If ξ_X is μ_I g-SNWDS then $c_{\mu_I}^*(\xi_X \cup \overline{\xi_X}) = \acute{\mathbf{U}}$.

Proof: Suppose that $\xi_X \in \mu_I g$ -SNWDS then $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) = \mathfrak{E}$. Taking complements on both sides we have $c_{\mu_I}^*(\overline{c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})}) = \dot{U} \Rightarrow c_{\mu_I}^*(i_{\mu_I}^*(\overline{\xi_X \cap \overline{\xi_X}}) = \dot{U}$. But $c_{\mu_I}^*(i_{\mu_I}^*(\xi_X \cup \overline{\xi_X})) \subseteq c_{\mu_I}^*(\xi_X \cup \overline{\xi_X}) \Rightarrow \dot{U} \subseteq c_{\mu_I}^*(\xi_X \cup \overline{\xi_X})$. Therefore $c_{\mu_I}^*(\xi_X \cup \overline{\xi_X}) = \dot{U}$.

Theorem:3.12 If $i_{\mu_I}^*(Fr_{\mu_I}^*(\xi_X)) = \mathfrak{E}$, for a μ_I g-OSGITS ξ_X , then ξ_X is μ_I g-SNWDS.

Proof: Now $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) \subseteq i_{\mu_I}^*(Fr_{\mu_I}^*(\xi_X)) = \mathfrak{E}$. Therefore ξ_X is μ_I g-SNWDS.

Theorem:3.13 If ξ_X is μ_I g-CSGITS with $i_{\mu_I}^*(\xi_X) = \mathfrak{E}$, then $\xi_X \in \mu_I$ g-SNWDS.

Proof: $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) \subseteq i_{\mu_I}^*(\xi_X \cap \acute{\mathbf{U}}) = i_{\mu_I}^*(\xi_X) = \mathfrak{E}$. Therefore $\xi_X \in \mu_I$ g-SNWDS.

Theorem:3.14 If ξ_X is μ_I g- OSGITS and $\xi_X \in \mu_I$ g-DSGITS then $\xi_X \in \mu_I$ g-SNWDS.

Proof: $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) \subseteq i_{\mu_I}^*(\dot{U} \cap \overline{\xi_X}) \subseteq i_{\mu_I}^*(\overline{\xi_X}) = \overline{\dot{U}} = \mathfrak{E}$ and hence we have $\xi_X \in \mu_I$ g-SNWDS.

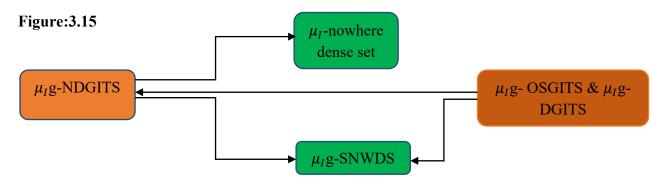


Fig:3.15, Represents the relations between μ_I g-SNWDS, μ_I g-NDGITS, μ_I g-OSGITS, μ_I g-DGITS and μ_I -nowhere dense.

Theorem:3.16 If $\xi_X \in Nd^*(\mu_I)$ after that $c_{\mu_I}^*(\xi_X)$ is μ_I g-SNWDS.

Proof: Suppose $\xi_X \in Nd^*(\mu_I)$ then $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) = \mathfrak{E}$. Now $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X) \cap \overline{c_{\mu_I}^*(\xi_X)}) = i_{\mu_I}^*(c_{\mu_I}^*(\xi_X) \cap \overline{i_{\mu_I}^*(c_{\mu_I}^*(\xi_X))}) = i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) \cap \dot{U} = i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) = \mathfrak{E}$. Therefore $c_{\mu_I}^*(\xi_X) \in \mu_I$ g-

Theorem:3.17 Every subset of μ_I g-SNWDS is a μ_I g-SNWDS.

Proof: Let ξ_X is μ_I g-SNWDS then $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) = \mathfrak{E}$. Suppose $\S_X \subseteq \xi_X$, we have $\S_X \cap \overline{\xi_X} \subseteq \xi_X \cap \overline{\xi_X} \implies i_{\mu_I}^*(c_{\mu_I}^*(\S_X \cap \overline{\xi_X})) \subseteq i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) = \mathfrak{E}$. Therefore \S_X is μ_I g-SNWDS.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Theorem:3.18 An ISs ξ_X is μ_I g-SNWDS iff $c_{\mu_I}^*(i_{\mu_I}^*(\overline{\xi_X \cap \overline{\xi_X}})) = \acute{\mathbf{U}}$.

Proof: Suppose $\xi_X \in SNd^*(\mu_I)$ then $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) = \mathfrak{C}$. Now $c_{\mu_I}^*(i_{\mu_I}^*(\overline{\xi_X} \cap \overline{\xi_X})) = c_{\mu_I}^*(\overline{c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})}) = \overline{i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X}))} = \overline{i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X}))} = \overline{i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X}))} = \overline{c_{\mu_I}^*(i_{\mu_I}^*(\xi_X \cap \overline{\xi_X}))} = \mathfrak{C}$.

Theorem:3.19 If ξ_X is μ_I g-SNWDS then $i_{\mu_I}^*(\xi_X \cap \overline{\xi_X}) = \mathfrak{C}$.

Proof: Suppose ξ_X is μ_I g-SNWDS then $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) = \mathfrak{E}$. Now $i_{\mu_I}^*(\xi_X \cap \overline{\xi_X}) \subseteq i_{\mu_I}^*(c_{\mu_I}^*(\xi_X \cap \overline{\xi_X})) = \mathfrak{E}$.

Theorem:3.20 If $c_{\mu_I}^*(\xi_X)$ is μ_I g-CDGITS, for an ISs ξ_X defined on μ_I , then ξ_X is μ_I g-SNWDS.

Proof: Given that $c_{\mu_I}^*(\xi_X)$ is μ_I g-CDGITS which implies $c_{\mu_I}^*(\overline{c_{\mu_I}^*(\xi_X)}) = U \Rightarrow \overline{\iota_{\mu_I}^*(c_{\mu_I}^*(\xi_X))} = U \Rightarrow i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) = U$. Now $i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) \subseteq U \Rightarrow i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) \cap i_{\mu_I}^*(c_{\mu_I}^*(\xi_X)) = U \Rightarrow \xi_X \text{ isa} \mu_I g\text{-SNWDS}.$

4. Strongly μ_I g-First category set in GITS

Definition:4.1 An ISs \S_X is said to be Strongly μ_I g-First Category Set in GITS (μ_I g-SFCS) if $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-SNWDS. Remaining sets are called strongly μ_I g-Second Category Set (μ_I g-SSCS). The complement of μ_I g-SFCS is named as a strongly μ_I g-Residual set (μ_I g-SRS).

```
Example:4.2 Let X = \{c_X, d_X, \sigma_X, \tau_X\} with \mu_I = \{\mathfrak{C}, \langle X, \{c_X, d_X, \sigma_X\}, \phi \rangle, \langle X, \phi, \{c_X, \sigma_X\} \rangle,
\langle X, \{c_X\}, \{d_X, \sigma_X\} \rangle, \langle X, \{c_X\}, \phi \rangle, \langle X, \{d_X, \sigma_X\}, \{\sigma_X\} \rangle, \langle X, \{d_X, \sigma_X\}, \phi \rangle, \langle X, \{c_X, d_X, \sigma_X\}, \{\sigma_X\} \rangle \}.
Then
SFCS = \{ U, \langle X, \phi, \{\varepsilon_X, d_X, \sigma_X\} \rangle, \langle X, \{\varepsilon_X\}, \{d_X, \sigma_X\} \rangle, \langle X, \{\varepsilon_X\}, \{d_X, \sigma_X, \sigma_X\} \rangle, \langle X, \{d_X\}, \{\varepsilon_X, \sigma_X\} \rangle, \langle X, \{\sigma_X\}, \{\sigma_X, \sigma_X\} \rangle, \langle X, \{\sigma_X\}, \{\sigma_X, \sigma_X\} \rangle, \langle X, \{\sigma_X\}, \{\sigma_X\}, \{\sigma_X, \sigma_X\} \rangle, \langle X, \{\sigma_X\}, \{\sigma_X\}
  \langle X, \{d_X\}, \{c_X, \sigma_X, \tau_X\} \rangle, \langle X, \{\sigma_X\}, \{d_X, c_X\} \rangle, \langle X, \{\sigma_X\}, \{d_X, c_X, \tau_X\} \rangle, \langle X, \{\tau_X\}, \{d_X, \sigma_X, c_X\} \rangle,
\langle X, \{d_X, c_X\}, \{a_X\} \rangle, \langle X, \{d_X, c_X\}, \{a_X, a_X\} \rangle, \langle X, \{d_X, a_X\}, \{a_X\} \rangle, \langle X, \{d_X, a_X\}, \{a_X, a_X\} \rangle, \langle X, \{a_X, 
\langle X, \{\Upsilon_X, \Im_X\}, \{\varsigma_X, \mathsf{d}_X\} \rangle, \langle X, \{\Upsilon_X, \varsigma_X\}, \{\Im_X, \mathsf{d}_X\} \rangle, \langle X, \{\varsigma_X, \Im_X\}, \{\mathsf{d}_X\} \rangle, \langle X, \{\varsigma_X, \Im_X\}, \{\mathsf{d}_X, \Upsilon_X\} \rangle,
\langle X, \{d_X, \Upsilon_X\}, \{\varepsilon_X, \varepsilon_X\} \rangle, \langle X, \{\varepsilon_X, d_X, \varepsilon_X\}, \phi \rangle, \langle X, \{\varepsilon_X, d_X, \varepsilon_X\}, \{\Upsilon_X\} \rangle, \langle X, \{d_X, \varepsilon_X, \Upsilon_X\}, \{\varepsilon_X\} \rangle,
\langle X, \{\varepsilon_X, \varepsilon_X, \tau_X\}, \{d_X\} \rangle, \langle X, \{\varepsilon_X, d_X, \tau_X\}, \{\varepsilon_X\} \rangle \}. \mu_I g-SSCS = \{ \mathfrak{E} \} and
\mu_Ig-SRS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   =\{\mathfrak{E},
\langle X, \{\varsigma_X, \mathsf{d}_X, \mathsf{a}_X\}, \phi \rangle, \langle X, \{\mathsf{d}_X, \mathsf{a}_X\}, \{\varsigma_X\} \rangle, \langle X, \{\mathsf{d}_X, \mathsf{a}_X, \mathsf{x}_X\}, \{\varsigma_X\} \rangle, \langle X, \{\varsigma_X, \mathsf{a}_X\}, \{\mathsf{d}_X\} \rangle,
\langle X, \{\varepsilon_X, \varepsilon_X, \tau_X\}, \{d_X\} \rangle, \langle X, \{d_X, \varepsilon_X\}, \{\varepsilon_X\} \rangle, \langle X, \{d_X, \varepsilon_X, \tau_X\}, \{\varepsilon_X\} \rangle, \langle X, \{d_X, \varepsilon_X, \varepsilon_X\}, \{\tau_X\} \rangle,
\langle X, \{ \mathfrak{D}_X \}, \{ \mathfrak{d}_X, \mathfrak{c}_X \} \rangle, \langle X, \{ \mathfrak{D}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{c}_X \} \rangle, \langle X, \{ \mathfrak{c}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \} \rangle, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \} \rangle, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \} \rangle, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \} \rangle, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{c}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{c}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{r}_X \}, \{ \mathfrak{c}_X, \mathfrak{c}_X \}, \langle X, \{ \mathfrak{c}_X, \mathfrak{c}_X \}
\langle X, \{\varepsilon_X, \mathsf{d}_X\}, \{\mathfrak{d}_X, \mathfrak{r}_X\} \rangle, \langle X, \{\mathfrak{d}_X, \mathsf{d}_X\}, \{\varepsilon_X, \mathfrak{r}_X\} \rangle, \langle X, \{\mathsf{d}_X\}, \{\varepsilon_X, \mathfrak{d}_X\} \rangle, \langle X, \{\mathsf{d}_X, \mathfrak{r}_X\}, \{\varepsilon_X, \mathfrak{d}_X\} \rangle, \langle X, \{\mathsf{d}_X, \mathfrak{r}_X\} \rangle, \langle X, \{\mathsf{d}_X, \mathfrak{r
\langle X, \{\varepsilon_X, \varepsilon_X\}, \{d_X, \gamma_X\} \rangle, \langle X, \phi, \{\varepsilon_X, d_X, \varepsilon_X\} \rangle, \langle X, \{\gamma_X\}, \{\varepsilon_X, d_X, \varepsilon_X\} \rangle, \langle X, \{\varepsilon_X\}, \{d_X, \varepsilon_X, \gamma_X\} \rangle,
\langle X, \{d_X\}, \{c_X, \sigma_X, \tau_X\} \rangle, \langle X, \{\sigma_X\}, \{c_X, d_X, \tau_X\} \rangle \}.
```

Theorem:4.3 If \S_X is μ_I g-FCGITS then \S_X is μ_I g-SFCS.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Proof: Let \S_X be μ_I g-FCGITS. Then $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-NDGITS. By theorem: 3.3, \S_{X_i} 's are μ_I g-SNWDS and hence $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-SNWDS. Therefore \S_X is μ_I g-SFCS.

Theorem:4.4 If $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-CSGITS with $i_{\mu_I}^*(\S_{X_i}) = \mathfrak{E}$ then \S_X is a μ_I g-SFCS.

Proof: Suppose $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-CSGITS with $i_{\mu_I}^*(\S_{X_i}) = \mathfrak{E}$. By theorem:3.14, μ_I g-CSGITS with $i_{\mu_I}^*(\S_{X_i}) = \mathfrak{E}$ are μ_I g-SNWDS and then we have $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-SNWDS. Therefore \S_X is a μ_I g-SFCS.

Theorem:4.5 If $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where $i_{\mu_I}^*(Fr_{\mu_I}^*(\S_{X_i})) = \mathfrak{E}$, then \S_X is μ_I g-SFCS.

Proof: Assume that $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where $i_{\mu_I}^*(Fr_{\mu_I}^*(\S_{X_i})) = \mathfrak{E}$. By theorem:3.12, we have \S_{X_i} 's are μ_I g-SNWDS. Therefore $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-SNWDS and hence \S_X is μ_I g-SFCS.

Theorem:4.6 If $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-OSGITS and μ_I g-DSGITS, then \S_X is μ_I g-SFCS.

Proof: Given that $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are μ_I g-OSGITS and μ_I g-DSGITS. By theorem:3.12, \S_{X_i} 's are μ_I g-SNWDS and hence $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_X is are μ_I g-SNWDS. Therefore \S_X is μ_I g-SFCS.

Theorem:4.7 Every subset of a μ_I g-SFCS is μ_I g-SFCS.

Proof: Let \S_X be $\mu_I g$ -SFCS. Then $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$, where \S_{X_i} 's are $\mu_I g$ -SNWDS. Suppose $\zeta_X \subseteq \S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$. Therefore $\zeta_X \subseteq \bigcup_{i=1}^{\infty} \S_{X_i} \Rightarrow \zeta_X \subseteq \S_{X_i}$, for some $\mu_I g$ -SNWDS. By using Theorem 3.17, ζ_X is $\mu_I g$ -SFCS.

5. Strongly μ_I g-Baire Space in GITS

Definition:5.1 A GITS (X, μ_I) is called a Strongly μ_I g-Baire Space $(\mu_I$ g-SBS) if $c_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i}) = \acute{\mathbf{U}}$, where \S_{X_i} 's are μ_I g-SNWDS.

Example:5.2 In example:3.2, take $A = \langle X, \phi, \{\vartheta_X, \hbar_X\} \rangle$ and $B = \langle X, \{\vartheta_X, \hbar_X\}, \phi \rangle$. Then $c_{\mu_I}^*(A \cup B) = c_{\mu_I}^*(\langle X, \{\vartheta_X, \hbar_X\}, \phi \rangle) = \acute{\text{U}}$. Therefore (X, μ_I) is a Strongly μ_I g-Baire Space $(\mu_I$ g-SBS).

Theorem:5.3 Let(X, μ_I) be GITS. Then the subsequent are equivalent

- (i)(X, μ_I) is $\mu_I g$ -SBS.
- (ii) $c_{\mu_I}^*(\S_X) = \acute{\mathbf{U}}$, for every μ_I g-SFCS \S_X in X.
- (iii) $i_{\mu_I}^*(\wp_X) = \mathfrak{E}$, for every $\mu_I g$ -SRS \wp_X in X.

Proof: (i) \Rightarrow (ii), Let \S_X be a $\mu_I g$ -SFCS in X. Then $\S_X = (\bigcup_{i=1}^{\infty} \S_X)$ where \S_X 's are $\mu_I g$ -SNWDS. Since (X, μ_I) is $\mu_I g$ -SBS, $c_{\mu_I}^* (\bigcup_{i=1}^{\infty} \S_{X_i}) = \acute{\mathbf{U}}$. Therefore $c_{\mu_I}^* (\S_X) = \acute{\mathbf{U}}$.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

- (ii) \Rightarrow (iii) Let \mathscr{D}_X be $\mu_I g$ -SRS in X. Then $\overline{\mathscr{D}_X}$ is $\mu_I g$ -SFCSin X. From(ii), $c_{\mu_I}^*(\overline{\mathscr{D}_X}) = \mathring{U} \Rightarrow \overline{\iota_{\mu_I}^*(\mathscr{D}_X)} = \mathring{U}$. Hence $i_{\mu_I}^*(\mathscr{D}_X) = \mathfrak{E}$.
- (iii) \Longrightarrow (i) Let \S_X be $\mu_I g$ -SFCS in X. Then $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are $\mu_I g$ -SNWDS. We have, if \S_X is a $\mu_I g$ -SFCS in X then $\overline{\S_X}$ is a $\mu_I g$ -SRS. By (iii) we get $i_{\mu_I}^*(\overline{\S_X}) = \mathfrak{E}$, which gives $\overline{c_{\mu_I}^*(\S_X)} = \mathfrak{E}$. Therefore $c_{\mu_I}^*(\S_X) = U$ and hence $c_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i}) = U$, where \S_{X_i} 's are $\mu_I g$ -SNWDS. Hence (X, μ_I) is $\mu_I g$ -SBS.

Theorem:5.4 If $\{\S_{X_i}\}$, i = 1 to ∞ , is μ_I g-OSGITS and μ_I g-DSGITS in X then X is μ_I g-SBS.

Proof: Using theorem:3.14, we have \S_{X_i} , i=1 to $\infty \mu_I g$ -SNWDS in X. Let $\S_X = (\bigcup_{i=1}^{\infty} \S_{X_i})$. Then \S_X is $\mu_I g$ -SFCS. $c_{\mu_I}^*(\S_X) = c_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i}) \supseteq \bigcup_{i=1}^{\infty} c_{\mu_I}^*(\S_{X_i}) = \acute{U}$. Henceforth X is a $\mu_I g$ -SBS.

Conclusion: In this paper, first we defined μ_I g-SNWDS and μ_I g- SFCS, then introduce μ_I g-SBS. Some more properties are to be discussed. In future we discuss μ_I g σ -Baire space and μ_I g D-Baire space.

References:

- [1] S.Anjalmose, V.Jamales Martin Chitra, Fuzzy *g* -Baire spaces, Global Journal of Pure and Applied Mathematics, Vol-13, No-8(2017). ISSN:0973-1768, pp:4111-4118. https://www.ripublication.com/gjpam.htm.
- [2] G.Gruenhage and D.Lutzer, Baire and Volterra Spaces, Proc. Amer.Soc. 128(2000) 3115-3124.
- [3] G.Helen Rajapushpam, P.Sivagami and G. Hari Siva Annam, Some new operators on μIg -closed sets in GITS, J.Math.Comput.Sci.11(2021), No:2,1868-1887,ISSN:1927-5307.
- [4] G.Helen Rajapushpam, P.Sivagami and G. Hari Siva Annam, μIg-Dense sets and μIg-Baire Spaces in GITS, Asia Mathematica, Vol:5, Issue:1,(2021) Pages:158-167.
- [5] E.Poongothai, S.Divyapriya, On Fuzzy Soft Strongly Baire Spaces, International Journal of Creative Research Thoughts. ISSN:2320-2882,www,ijcrt.org.
- [6] P.Sivagami, G.Helen Rajapushpam, and G. Hari Siva Annam, Intuitionistic Generalized closed sets in Generalized intuitionistic topological space, Malaya Journal Of Mathematik, vol.8, No3, 1142-1147. E ISSN:2251-5666, P ISSN:2319-3786.
- [7] G.Thangaraj and R.Anjalmose, A Note On fuzzy Baire spaces, International Journal of Fuzzy Mathematics and Systems, Vol:3, No.4,(2013), pp.269-274, ISSN:2248-9940. http://www.ripublication.com.
- [8] Zdenek Frolik, Baire Spaces and some generalizations of Complete metric spaces, Czech,Math. J. Vol.11 (86) (1961) No.2, 237-247.
- [9] Zdenek Frolik, Remarks concerning the invariance of Baire Spaces under mappings, Czech,Math. J. Vol.11(1961) No.3 381-385.