Panamerican Mathematical Journal
ISSN: 1064-9735
Vol 34 No. 4 (2024)

Stability of Quadratic Functional Equation in Finite Variable
Using Fuzzy Normed Space

Amrit!, Manoj Kumar!, Vinod Bhatia', Anil Kumar?, Tarun Dangi'"

1Department of Mathematics, Baba Mastnath University,

Asthal Bohar, Rohtak-124021, Haryana, India
amritdighlia99973@gmail.com, manojantil1 8 @gmail.com, bhatiavinod88@gmail.com,
jaattarundangi@gmail.com
2Department of Mathematics, A.IJ.H.M. College,

Rohtak-124001, Haryana, India
unique4140@gmail.com

(*Corresponding Author)

Article History: Abstract: This paper defines a new generalized quadratic functional equation and
Received: 02-09-2024 discusses its Ulam-Hyers stability in the context of fuzzy normed spaces using
Revised: 15 -10- 2024 both direct and fixed-point approaches. An example is also given to show the
Accepted: 24-10-2024 unstability of the newly defined equation. These type of functionals play a

fundamental role in various mathematical models and optimization problems.
2010 MSC: 39B82, 39B52, 39B72, 41A99

Keyword: Fixed point method, Fuzzy Normed Space, Hyers-Ulam stability,
Quadratic functional equation.

1. Introduction:

Ulam [10] proposed the concept of FE(functional equation) stability in 1940, and Hyer [5] gave a answer for
additive group in 1941 by considering a Cauchy FE. Hyers’s theorem for additive mappings was expanded by
Aoki [13] and Rassias [15] for linear mappings, respectively. Researchers analyzed the Hyers-Ulam-Rassias
stability results for FE with several variables in ([7], [9]).

Zadeh proposed fuzzy set theory for the first time in 1965. A.K. Katsaras presents the fuzzy norm on a vector
space in [1]. FE in FNS(fuzzy normed spaces) have been established recently by numerous scholars.

((2LI3L[4],[11],[14L,[16]).

Our task involves presenting a QFE(quadratic functional equation) with a finite number of variables and
determining its Hyer-Ulam stability.

Ty RQ2x; — Xvizj %) = (M —7) Tisicjem (& +2;) + RED, 2;) — (m? —9Im +5) T, R(xy)

where m > 5 is finite natural number, in fuzzy normed space. The mapping which satisfies equation (1), is
quadratic.

Definition 1.1 Let Q be a real vector space. A generalized functional :Q X R — [0,1] is called a fuzzy norm
if for arbitrary u,x € Q, a,f € R and g satisfies

(a) p(u,a) =0 for a < 0;
) u=0s pWpL)=1 forall §>0;
© poma) = (1) ify = 0;

(d) o+ x a+ p) = min{p(u, ), o(x, f)};
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(e) #(u,.) is anon-decreasing function on R and lim,_ .y, a) = 1;
(f) for u # 0,4(w,.) is continuous on R.

Then, (Q, ) is called FNS.

Definition 1.2 If (Q, ) is a FNS and the sequence {u,} in Q then

() pn = pif oy —p, @) > 1 as n - co(a > 0).

(i1) {un} is known as fuzzy-Cauchy if @ (u,, — p,) = 1 as m,n - oo,

(iii) If all fuzzy Cauchy sequences in subset A € Q are convergent in A, then the subset A is considered as
complete. Fuzzy Banach space is a complete FNS.

The following basic conclusion will be applied in a fixed point theory.

Definition 1.3 A: Q — Q be a strictly contractive mapping with the Lipschitz constant n < 1, and let ( , d) be
a generalized complete metric space. Assume that there is an integer k that is non-negative and such that
d(A'*ta, A*a) < o for a given element a. Then

(i) the sequence {A"a};-; converges to a fixed point b € Q of A;
(ii) b is the unique fixed point of A intheset Y = {y € Q:d(A"a,y) < o;
(iii) d(y,b) < ﬁd(y, A) forall y €Y.

. Solution of FE (1)
The general solution of FE (1) is obtained here. In this instance, the real vector spaces are V and W.

Theorem 2.1 If a function X:V — W satisfies the FE (1) for all x4, x,, x5, ..., £, € V, then the function X is
quadratic.

Proof. Assume that the mapping X:V — W satisfying the equation (1).
Substituting (0,0,0,...,0) for (x4, x,,x3,...,%,) in equation (1), we get X(0) = 0.
Also, Replacing (x4, x5, %5,...,%4,) by (x,0,0,...,0) in equation (1), we obtain
R(2x) =+ 3)R(x) — (n — HR(—=x). )
Substituting (—x) for (x) in equation (2), we obtain
R(—2x) = (n+ 3)R(—x) — (n — DR(x). 3)
When we replace (x4, x,,%3,...,%,) by (#,%,0,0,0,...,0) in equation (1), then we obtain
(n—=2)R(—=2x) — (n — 6)XR(2x) = 16X (x). 4
Using equation (2) and equation (3) in equation (4), we get
R(—x) = R(x) (5)
forall x € V.
Therefore X is an even function. Now from equation (4) using equation (5), we have
R(2x) = 22R(x), (6)
for each x € V and for every n € Z™.
Substituting (2x) for x, we obtain
R(2%x) = 2*R(x) (7)

foreach x € V.
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Substituting (2x) for x, we get

R(23x) = 25K(x)
foreach x € V.
Similarly, for all positive integer n, we can say
R(2™"x) = 22"R(x)
foreach x € V.
Again, when we replace (x4, %5, %3,...,%,) by (x,2,%,0,0,0,...,0) in equation (1), then we obtain
(n—=3)R(=3x) — X(Bx) =9(n — 4)R(x).
Replacing x by —x, we get
(n—=3)X(Bx) —R(—3x) =9(n — 4)R(—x),
R(—=3x) = (n—3)R(Bx) —9(n — 4)X(—~x).
Using equation (12) in equation (10), we get
n=3)[(n—-3)RXBx) —9(n — 4R (—x)] — R(Bx) = 9(n — )R (x),
(n?—6n+9—1RBx) —9(n? — 7n + 12)X(x) = 9(n — 4)R(x),
(n? — 6n + 8)X(3x) = (9n? — 54n + 72)X(x),
(n? —6n + 8)X(3v) = 9(n? — 6n + 8)R(x),
R(3x) = 32R(x),
foreach x € V.
Substituting (3x) for x, we get
R(3%x) = 3*R(x)
foreach x € V.
Substituting (3x) for x, we get
R(33x) = 35R(x)
foreach x € V.
Similarly, for all positive integer n, we can say
R(3"x) = 32"KR(x)
for every x € V. Hence R is a quadratic function.
Result 2.2. The following conclusions apply if V,W is a linear space and a function X:V — W satisfies FE (1):
(1) R(gq's) = q**R(s) forall sEV,qEQtEZ
(2) R(s) =sX(1) forall s €V if X is continuous.
3 Stability of FE (1) Using FNS

In this section, we take €, (P,G) and (¥,§) to be linear, FNS, Fuzzy Banach space respectively. We are
presenting Hyer-Ulam Stability of the FE (1). Let us denote the mapping X: Q0 — ¥ such as:

m m
DR(x1, 25, v Xy) = Z N| 2x; — Z x |—(m—=7) Z R(x; + %))
i=1 1<i%j 1<i<j=m
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—RQEZ, x;) + (m* —9m + 5) XL, R(xy) (17)

for all x4, x,, ..., 2, € Q.
Theorem 3.1: Let ¢: Q,, » @ be a mapping such that

PW(2x,2x,0,..,0),a) = p(pY(x,«,0,..,0),a) (18)
including

T}liirgog(lp(mel, 2Mx,, ..., 2Mx,), 2%™a) = 1,

for all x4,%,,..2, €Q, 0 < p <4 and a > 0. If a function X:Q - ¥ with the condition X(0) = 0 and such
that

POR(xy, 25, , 20, B) 2 G (%1, X2, %3, .., %), B) 19)
for every x4, %,,+, 2, € Q and B > 0, thus, a unique quadratic mapping Q,:Q — W exists that satisfies
JO(N(%) - Qz(x): CZ) = g(lp(xlixb """ !xn)!4|22 - P|a) (20)

forall x €Q, 0<p <4 and a > 0.
Proof: Replace (x4, %5, ..., x,) by (x,%,0,...,0) in equation (19), we obtain
PAR(2x) — 16X(x), ) = G(W(x, x,...,0), 8)
o (8@ = 52.%) = 6@, %, .0, B). 1)

Substituting 2™x for x in equation (21), then we get

2m+1x) ﬁ

go(x(zmx)—“( - ,1—6)zg(w(zmx,zmx,...,O),ﬁ).

Using equation (18) and (c) part of definition (1), we get

XQ2Mx)  R(2Mt1x) B B
SO( J2m | p2(m+1) ’4__22(m+1)) = g (1/)(96, x,0, ""0)' p_m) (22)
Replace § by p™p in equation (22), then we get
N(Zm ) X 2m+1 mB
50( e _ 2(2(m+1:;),4‘2p2(m+1)) > p((x,%,0,...,0), B). (23)
Since,
R(2Mx) _q (x(21 x(2i+1
R(x) — szx = Zirgol ( (zzix) - 2(2(i+f;))(24)
forall x € Q.

Now, form equation (23) and equation (24), we have

m-1

. m—1 . . .
R(2"Mx) P'B . R@2'x) RE™"'2)\ p'B
o Rx) - 22m Z (22@“)) = min U [50 (( 221 20+1) |’ 22(+1)

i=0 i=0

=6, x,...,0),5) (25)
forall x in Q,8 > 0.

Replacing x with (2"x) in equation (25), we get

https://internationalpubls.com 856



Panamerican Mathematical Journal
ISSN: 1064-9735
Vol 34 No. 4 (2024)

® (x(znx) S Yire (Zz‘iifl))) > G (@"x,2"%,0,..,0), §)

> g(w(x,x, 0, ...,0),pﬁn).

Substituting 8 by p™f in equation (26), we get

R(2M)  R(2MtNy) _ pip
o (M2 - ) mm () 2 6000 6).

Replacing S by in (27), we observe
)

m+n-1 Pi
i=n 222(1+1)

(N(Z"x) R(2m*y)

B
Sty B) 2 6 (‘P(x'x' °)m>

i=n 4.22(i+1)

for all x € Q and all non-negative integers m,n > 0. As 0 < p < 2% and %2, (

R(2Myx)
22m

R.H.S of equation (28) approaches to 1. Hence {
exists a function Q,: Q = ¥ as

X@2Mx)

lim J2m = Qz(%)

m—oo

for all x € Q.
Putting n = 0 and taking limit m — oo in equation (28),

PRE) — Q(x),f) = GW(x, %, ...,0),4.122 — p| B).
Replacing (x4, %5, ,%,) by (2™x4,2™x,, -+, 2™x,) in equation (19), we get

p(Dx(xl' Xt !xn)' B) = (@(lp(xlixb "'!xn)' B)
1

1
o (22_m DR(2™Mxq, 2™ x,, -+, 2™ x,), ,B) =G (22m Y(2Mxq,2Mx,, ... ...

> G (2Mxy, 2Mxy, ..., 2Mxy,), 22 B)

forall x4,2,,:-, 2, € Q, [ > 0. Also

lim G (2™xy, 2Mx,, ..., 2™2,), 22MB) = 1.
m—oo

Therefore, taking the limit m — oo, we get
D@, (x1; X2, xn) =0

for every x4, %5, , %, € Q

To demonstrate the uniqueness of Q,, consider another quadratic mapping that satisfies equation (20) in the

form of T,: O - W.

)<oo, If n > oo then

} is a Cauchy sequence in Fuzzy Banach (¥, §), so there

Q.(2™x) x(zmx)) B> ((x(zmm T,(2™x)

22m

$#(Q,(x) — T>(x), f) = min {,{0 << 22m 22m 2

2_ 2m
>g (w(zmx, 2M%,0, ... ... ,O),M)

2

> G (p(x2, ...,m,w).

2p™m

2_ 2m
4.]22-p|2 B):oo,

By taking m — oo, ( 2
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22—pl22mp

Hence go(z,b(x,x, 0, ...,0),4'| ) =1 as m— oo, we have Q, =T,

2p™Mm
Therefore, the function Q, is unique.

Theorem 3.2 Let 1p: Q2 - D be a function such that

® (1!) (2%0 "-'0)'“) 2 @(%w(x,x, 0, ...,0),a) (35)
and
Tim g ( (2,2, 2) L) =1 6

for all xq,2,, -, 2, € Q,a >0, p > 22. Ifa function X: Q — ¥ satisfies the condition X(0) = 0 such that

PDR(xy, 25, e oo 29), B) 2 G (204, 25, ..., ), B) (37)
for every x4, %5, ..., %2, € Q and B > 0, then, a unique quadratic mapping Q,: Q = W exists, such that
PERE) — Qa(x), @) = G (xy, %5, .., 23), 4.12% — pla) (38)

forall x € Q and a > 0.
Proof: The method of proof is same as in above theorem 3.1.
Corollary 3.3: If a mapping X: Q) —» ¥ with X(0) = 0 and such that
POR(xy, X2, oo ey 20), B) = G-y 2117, B) (39)
for all x4, x,,..., 2, € Q.
Then, there exists a unique quadratic mapping Q,:Q - ¥
PR — Q(x),8) = Gl x I, 4. (2% — 2P) ) (40)
forall x € Q.
4. Counter Example:
For the FE (1) in real normed space, we give a counterexample that demonstrates its non-stability as:

Example 4.1 Let a function X:R — R be defined as

N(x) = X2, 1422 (a1

22t

0x?, |x| <1

where g(x) = {9 else

then the function X: R — R satisfies the inequality

16(3n3-13n2+6n+6
DRy, %z, -, )| < 2 IR g | 2, (42)

for every x4, x,,+--, %, € R,n = 8, but there does not exist a quadratic function Q,:R — R satisfies
[R(x) — Q2 (%)] < e]x|® (43)

for all x € R.

5. Stability of FE (1) using Fixed Point Method

Radu suggested a new approach to research the issue of FE’s stability based on fixed point alternative. Many
authors have recently employed this method. Here fixed-point technique is used to examine the Ulam-Hyers
stability of generalized FE. Firstly, we define a constant &, such that
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2 if w=0
{w = Lif w=1

and we assume that L.

Theorem 5.1 Let ¢: X — ¥ be an even function with condition ¢(0) = 0 for which there exists a mapping
¢:X™ — Z with condition

lim M (&g, $aT2 0 o), §570) = 1 (44)

for ry,715, ..., Ty € X,6 >0, and satisfying the inequality

ND@(ry, 15,73, 0, 1), 6) = M({(ry, 15,73, ..., 1), ), (45)
for 14,7, ..,T;p €X, 8§ >0,
Let X(r) = {(r,1,0,...,0) forall r € X.If there exists n = 1, € (0,1) such that

M (8@, 8) = M(X(), 6) (46)
for r € X and § > 0, then there exists a unique quadratic mapping Q: X — ¥ fulfilling

N(p@) = 0(),8) = M (L=R(1),6), (47)
for r € X and § > 0.
Proof: Let y be a generalized metric space on LI :

y(g,h) = inf{w € (0,00: N(g(r) — h(r),8) = M(WR(r),8), r€X,§> 0},

and we use, infX = 400 as usual. It is demonstrated that (LI is complete generalized metric space using a
similar justification in ([8], Lemma 2.1). Describe :Ll by Y5g(r) = %g(fwr) forall r € X.
Suppose that g, h €L1 be given such that y(g, h) < €. Then

N(G(r) —h(r),8) = M(eR(r),s) (48)
foreach r € X and, § > 0, When

NWod(r) = Yoh(r), 6) 2 M (5 X(Er), ) (49)
for each r € X and § > 0.
It follows from equation (46) that

NWzgd(r) = Ygh(r),8) = M(enX(r), ) (50)

for r € X, § > 0. So, we get y(Y G, Pzh) < en. This shows that y (Y, g, Ph) < ny(g,h), that is, P is
strictly contractive mapping on LI with Lipschitz constant 7.

Replacing (1,715,713, ..., 1) by (r,7,...,0) in (45) and using result (c) of definition (1.1), we obtain
2 yee0
N (P20~ p(r),8) = M (2022 5) (51)

for r € X and & > 0. Using (46) when @ = 0, it follows from (51) that

2
N (22— o(r),6) = MOIR(), 8) (52)
where r € X and § > 0. Therefore

YWop, @) <n =17, (53)
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Replacing r by % in (51), we get,

N(p@) —49(3),166) = M(¢(%,2,0,..,0),165),
= M(R(r),165) (54)
for r € X and 6 > 0. Therefore
YW1, 0) <1 =117 (55)

Then from (51) and (55), we obtain
YW@, ) < 1177 < oo,

Now, It follows from the fixed point alternative theorem that a fixed point Q of 1 in LI such that
() YuQ = Q and limycoy (Y0, Q) = 1;
(i1) In the set € = {g €Ll is the unique fixed point of ;
(i) 7(9,Q) < V(0. Yop).
Assume y (Yo, Q) = €,, we obtain

N@Wze(r) —Q(r),8) = M(e,R(r), ) (56)
for each 6 > 0.
Since lim,,_,€, = 0, we obtain

n P
Q) =N —gijgowézr),r € X.

Replacing (ry, 15,73, ..., Tip) by (E21y, ERTy, ER T3, ..., ERTy,) in (45), we get

1
N (o DO (ERTY, €572, €573, s E072), 6 ) 2 M (G0, €8T €75, o) S ), 6576)

w

for each § > 0 and each 7,7,,73, ...,7;, € X.

We may demonstrate that function Q:X — ¥ is quadratic using the same justification as in the proof of theorem

3.1).
1-@w
Given that y (Y2 ¢, @) < 7@, it follows from (iii) y (¢, Q) < llj which means (47).

Let T be another quadratic mapping that satisfies (47) in order to demonstrate Q's uniqueness.

We have Q(2"r) = 4"Q(r) and T(2™r) = 4™"T(r) forall r € P and all n € N, we have

NQE) ~T(),8) = N (2B T )

o
> M ("1;: @), 25 (57)

From (44), we have

1-@w n
lim M ("17 x(znr),“z—s) =1.

n—oo

Consequently, N(Q(r) — T(r),8) =1 for all r € X and each § > 0. So Q(r) = T(r) for each r € X. This
complete the proof.

6 Conclusions
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We have demonstrated the Hyers-Ulam stability of the following generalized QFE:

i&" in—i x| =(m—7) Z Jo(xi+xj)+80<ixi>_(m2_9m+5)iKo(xi)
i=1

i=1 1<i#j 1gi<j=m i=1

using direct and fixed-point methods in FNS. Also provide an example for non-stability of given QFE of m
variable.
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