ISSN: 1064-9735 Vol 34 No. 4 (2024)

Stability of Quadratic Functional Equation in Finite Variable Using Fuzzy Normed Space

Amrit¹, Manoj Kumar¹, Vinod Bhatia¹, Anil Kumar², Tarun Dangi^{1*}

¹Department of Mathematics, Baba Mastnath University,
Asthal Bohar, Rohtak-124021, Haryana, India
amritdighlia99973@gmail.com, manojantil18@gmail.com, bhatiavinod88@gmail.com,
jaattarundangi@gmail.com

²Department of Mathematics, A.I.J.H.M. College,
Rohtak-124001, Haryana, India
unique4140@gmail.com

(*Corresponding Author)

Article History: Received: 02-09-2024 Revised: 15 -10- 2024 Accepted: 24-10-2024 **Abstract:** This paper defines a new generalized quadratic functional equation and discusses its Ulam-Hyers stability in the context of fuzzy normed spaces using both direct and fixed-point approaches. An example is also given to show the unstability of the newly defined equation. These type of functionals play a fundamental role in various mathematical models and optimization problems.

2010 MSC: 39B82, 39B52, 39B72, 41A99

Keyword: Fixed point method, Fuzzy Normed Space, Hyers-Ulam stability, Quadratic functional equation.

1. Introduction:

Ulam [10] proposed the concept of FE(functional equation) stability in 1940, and Hyer [5] gave a answer for additive group in 1941 by considering a Cauchy FE. Hyers's theorem for additive mappings was expanded by Aoki [13] and Rassias [15] for linear mappings, respectively. Researchers analyzed the Hyers-Ulam-Rassias stability results for FE with several variables in ([7], [9]).

Zadeh proposed fuzzy set theory for the first time in 1965. A.K. Katsaras presents the fuzzy norm on a vector space in [1]. FE in FNS(fuzzy normed spaces) have been established recently by numerous scholars. ([2],[3],[4],[11],[14],[16]).

Our task involves presenting a QFE(quadratic functional equation) with a finite number of variables and determining its Hyer-Ulam stability.

$$\sum_{i=1}^{m} \Re(2x_i - \sum_{1 \le i \ne i}^{m} x_i) = (m-7) \sum_{1 \le i < j \le m} \Re(x_i + x_j) + \Re(\sum_{i=1}^{m} x_i) - (m^2 - 9m + 5) \sum_{i=1}^{m} \Re(x_i)$$

where $m \ge 5$ is finite natural number, in fuzzy normed space. The mapping which satisfies equation (1), is quadratic.

Definition 1.1 Let Ω be a real vector space. A generalized functional $\wp: \Omega \times R \to [0,1]$ is called a fuzzy norm if for arbitrary $\mu, x \in \Omega$, $\alpha, \beta \in R$ and \wp satisfies

(a)
$$\wp(\mu, \alpha) = 0$$
 for $\alpha \le 0$;

(b)
$$\mu = 0 \Leftrightarrow \wp(\mu, \beta) = 1$$
 for all $\beta > 0$;

(c)
$$\wp(\gamma\mu,\alpha) = \wp\left(\mu,\frac{\alpha}{|\gamma|}\right)$$
 if $\gamma \neq 0$;

(d)
$$\wp(\mu + x, \alpha + \beta) \ge \min\{\wp(\mu, \alpha), \wp(x, \beta)\};$$

ISSN: 1064-9735

Vol 34 No. 4 (2024)

- (e) $\mathcal{D}(\mu, .)$ is a non-decreasing function on R and $\lim_{\alpha \to \infty} \mathcal{D}(\mu, \alpha) = 1$;
- (f) for $\mu \neq 0$, $\wp(\mu, .)$ is continuous on R.

Then, (Ω, \wp) is called FNS.

Definition 1.2 If (Ω, \wp) is a FNS and the sequence $\{\mu_n\}$ in Ω then

- (i) $\mu_n \to \mu$ if $\mathcal{D}(\mu_n \mu, \alpha) \to 1$ as $n \to \infty (\alpha > 0)$.
- (ii) $\{\mu_n\}$ is known as fuzzy-Cauchy if $\wp(\mu_m \mu_n) \to 1$ as $m, n \to \infty$.
- (iii) If all fuzzy Cauchy sequences in subset $A \subseteq \Omega$ are convergent in A, then the subset A is considered as complete. Fuzzy Banach space is a complete FNS.

The following basic conclusion will be applied in a fixed point theory.

Definition 1.3 $\Lambda: \Omega \to \Omega$ be a strictly contractive mapping with the Lipschitz constant $\eta < 1$, and let (Ω, d) be a generalized complete metric space. Assume that there is an integer k that is non-negative and such that $d(\Lambda^{l+1}a, \Lambda^k a) < \infty$ for a given element a. Then

- (i) the sequence $\{\Lambda^n a\}_{n=1}^{\infty}$ converges to a fixed point $b \in \Omega$ of Λ ;
- (ii) b is the unique fixed point of Λ in the set $Y = \{y \in \Omega : d(\Lambda^n a, y) < \infty;$
- (iii) $d(y, b) \le \frac{1}{1-\eta} d(y, \Lambda)$ for all $y \in Y$.

. Solution of FE (1)

The general solution of FE (1) is obtained here. In this instance, the real vector spaces are V and W.

Theorem 2.1 If a function $\aleph: V \to W$ satisfies the FE (1) for all $x_1, x_2, x_3, ..., x_n \in V$, then the function \aleph is quadratic.

Proof. Assume that the mapping $\aleph: V \to W$ satisfying the equation (1).

Substituting $(0,0,0,\ldots,0)$ for (x_1,x_2,x_3,\ldots,x_n) in equation (1), we get $\aleph(0)=0$.

Also, Replacing $(x_1, x_2, x_3, ..., x_n)$ by (x, 0, 0, ..., 0) in equation (1), we obtain

$$\Re(2x) = (n+3)\Re(x) - (n-1)\Re(-x). \tag{2}$$

Substituting (-x) for (x) in equation (2), we obtain

$$\Re(-2x) = (n+3)\Re(-x) - (n-1)\Re(x). \tag{3}$$

When we replace $(x_1, x_2, x_3, ..., x_n)$ by (x, x, 0, 0, 0, ..., 0) in equation (1), then we obtain

$$(n-2)\aleph(-2x) - (n-6)\aleph(2x) = 16\aleph(x). \tag{4}$$

Using equation (2) and equation (3) in equation (4), we get

$$\aleph(-x) = \aleph(x) \tag{5}$$

for all $x \in V$.

Therefore \aleph is an even function. Now from equation (4) using equation (5), we have

$$\Re(2x) = 2^2 \Re(x),\tag{6}$$

for each $x \in V$ and for every $n \in Z^+$.

Substituting (2x) for x, we obtain

$$\Re(2^2x) = 2^4\Re(x) \tag{7}$$

for each $x \in V$.

ISSN: 1064-9735

Vol 34 No. 4 (2024)

Substituting (2x) for x, we get

$$\Re(2^3 x) = 2^6 \Re(x) \tag{8}$$

for each $x \in V$.

Similarly, for all positive integer n, we can say

$$\Re(2^n x) = 2^{2n} \Re(x) \tag{9}$$

for each $x \in V$.

Again, when we replace $(x_1, x_2, x_3, ..., x_n)$ by (x, x, x, 0, 0, 0, ..., 0) in equation (1), then we obtain

$$(n-3)\aleph(-3x) - \aleph(3x) = 9(n-4)\aleph(x). \tag{10}$$

Replacing x by -x, we get

$$(n-3)\aleph(3x) - \aleph(-3x) = 9(n-4)\aleph(-x), \tag{11}$$

$$\Re(-3x) = (n-3)\Re(3x) - 9(n-4)\Re(-x). \tag{12}$$

Using equation (12) in equation (10), we get

$$(n-3)[(n-3)\aleph(3x) - 9(n-4)\aleph(-x)] - \aleph(3x) = 9(n-4)\aleph(x),$$

$$(n^2 - 6n + 9 - 1)\aleph(3x) - 9(n^2 - 7n + 12)\aleph(x) = 9(n-4)\aleph(x),$$

$$(n^2 - 6n + 8)\aleph(3x) = (9n^2 - 54n + 72)\aleph(x),$$

$$(n^2 - 6n + 8)\aleph(3v) = 9(n^2 - 6n + 8)\aleph(x),$$

$$\aleph(3x) = 3^2\aleph(x),$$
(13)

for each $x \in V$.

Substituting (3x) for x, we get

$$\Re(3^2 x) = 3^4 \Re(x) \tag{14}$$

for each $x \in V$.

Substituting (3x) for x, we get

$$\aleph(3^3 x) = 3^6 \aleph(x) \tag{15}$$

for each $x \in V$.

Similarly, for all positive integer n, we can say

$$\Re(3^n x) = 3^{2n} \Re(x) \tag{16}$$

for every $x \in V$. Hence \aleph is a quadratic function.

Result 2.2. The following conclusions apply if V, W is a linear space and a function $\aleph: V \to W$ satisfies FE (1):

- (1) $\aleph(q^t s) = q^{2t} \aleph(s)$ for all $s \in V$, $q \in Q$, $t \in Z$
- (2) $\aleph(s) = s\aleph(1)$ for all $s \in V$ if \aleph is continuous.

3 Stability of FE (1) Using FNS

In this section, we take Ω , (Φ, \mathcal{G}) and (Ψ, \mathcal{G}) to be linear, FNS, Fuzzy Banach space respectively. We are presenting Hyer-Ulam Stability of the FE (1). Let us denote the mapping $\Re: \Omega \to \Psi$ such as:

$$D\aleph(x_1, x_2, \dots, x_n) = \sum_{i=1}^{m} \aleph\left(2x_i - \sum_{1 \le i \ne j}^{m} x_j\right) - (m-7) \sum_{1 \le i < j \le m} \aleph(x_i + x_j)$$

ISSN: 1064-9735

Vol 34 No. 4 (2024)

$$-\Re(\sum_{i=1}^{m} x_i) + (m^2 - 9m + 5) \sum_{i=1}^{m} \Re(x_i)$$
 (17)

for all $x_1, x_2, ..., x_n \in \Omega$.

Theorem 3.1: Let $\psi: \Omega_n \to \Phi$ be a mapping such that

$$\wp(\psi(2x, 2x, 0, ..., 0), \alpha) \ge \wp(\wp(x, x, 0, ..., 0), \alpha)$$
 (18)

including

$$\lim_{m \to \infty} \mathcal{G}(\psi(2^m x_1, 2^m x_2, \dots, 2^m x_n), 2^{2m} \alpha) = 1,$$

for all $x_1, x_2, ... x_n \in \Omega$, $0 < \rho < 4$ and $\alpha > 0$. If a function $\Re: \Omega \to \Psi$ with the condition $\Re(0) = 0$ and such that

$$\wp(\mathsf{D}\mathsf{X}(x_1, x_2, \cdots, x_n), \beta) \ge \mathcal{G}(\psi(x_1, x_2, x_3, \dots, x_n), \beta) \tag{19}$$

for every $x_1, x_2, \dots, x_n \in \Omega$ and $\beta > 0$, thus, a unique quadratic mapping $Q_2: \Omega \to \Psi$ exists that satisfies

$$\wp(\aleph(x) - Q_2(x), \alpha) \ge \mathcal{G}(\psi(x_1, x_2, \dots, x_n), 4|2^2 - \rho|\alpha) \tag{20}$$

for all $x \in \Omega$, $0 < \rho < 4$ and $\alpha > 0$.

Proof: Replace $(x_1, x_2, ..., x_n)$ by (x, x, 0, ..., 0) in equation (19), we obtain

$$\wp(4\aleph(2x) - 16\aleph(x), \beta) \ge \mathcal{G}(\psi(x, x, ..., 0), \beta)$$

$$\mathscr{D}\left(\aleph(x) - \frac{\aleph(2x)}{2^2}, \frac{\beta}{2^4}\right) \ge \mathcal{G}(\psi(x, x, \dots, 0), \beta). \tag{21}$$

Substituting $2^m x$ for x in equation (21), then we get

$$\mathcal{O}\left(\aleph(2^mx) - \frac{\aleph(2^{m+1}x)}{4}, \frac{\beta}{16}\right) \ge \mathcal{G}(\psi(2^mx, 2^mx, \dots, 0), \beta).$$

Using equation (18) and (c) part of definition (1), we get

$$\mathscr{O}\left(\frac{\aleph(2^{m}x)}{2^{2m}} - \frac{\aleph(2^{m+1}x)}{2^{2(m+1)}}, \frac{\beta}{4 \cdot 2^{2(m+1)}}\right) \ge \mathcal{G}\left(\psi(x, x, 0, \dots, 0), \frac{\beta}{\rho^{m}}\right). \tag{22}$$

Replace β by $\rho^m \beta$ in equation (22), then we get

$$\mathcal{O}\left(\frac{\aleph(2^{m}x)}{2^{2m}} - \frac{\aleph(2^{m+1}x)}{2^{2(m+1)}}, \frac{\rho^{m}\beta}{4 \cdot 2^{2(m+1)}}\right) \ge \mathcal{O}(\psi(x, x, 0, \dots, 0), \beta). \tag{23}$$

Since,

$$\aleph(x) - \frac{\aleph(2^{m}x)}{2^{2m}} = \sum_{i=0}^{m-1} \left(\frac{\aleph(2^{i}x)}{2^{2i}} - \frac{\aleph(2^{i+1}x)}{2^{2(i+1)}} \right) (24)$$

for all $x \in \Omega$.

Now, form equation (23) and equation (24), we have

$$\mathcal{D}\left(\aleph(x) - \frac{\aleph(2^{m}x)}{2^{2m}}, \sum_{i=0}^{m-1} \left(\frac{\rho^{i}\beta}{2^{2(i+1)}}\right)\right) \ge \min \bigcup_{i=0}^{m-1} \left\{ \mathcal{D}\left(\left(\frac{\aleph(2^{i}x)}{2^{2i}} - \frac{\aleph(2^{i+1}x)}{2^{2(i+1)}}\right), \frac{\rho^{i}\beta}{4 \cdot 2^{2(i+1)}}\right) \\ \ge \mathcal{G}(\psi(x, x, ..., 0), \beta)$$
(25)

for all x in $\Omega, \beta > 0$.

Replacing x with $(2^n x)$ in equation (25), we get

ISSN: 1064-9735

Vol 34 No. 4 (2024)

$$\mathscr{D}\left(\Re(2^{n}x) - \frac{\Re(2^{m+n}x)}{2^{2m}}, \sum_{i=0}^{m-1} \left(\frac{\rho^{i}\beta}{2^{2(i+1)}}\right)\right) \ge \mathcal{G}(\psi(2^{n}x, 2^{n}x, 0, ..., 0), \beta)$$

$$\ge \mathcal{G}\left(\psi(x, x, 0, ..., 0), \frac{\beta}{\sigma^{n}}\right). \tag{26}$$

Substituting β by $\rho^n \beta$ in equation (26), we get

$$\mathscr{D}\left(\frac{\aleph(2^{n}x)}{2^{2n}} - \frac{\aleph(2^{m+n}x)}{2^{2(m+n)}}, \sum_{i=n}^{m+n-1} \left(\frac{\rho^{i}\beta}{2^{2(i+1)}}\right)\right) \ge \mathcal{G}(\psi(x, x, ..., 0), \beta). \tag{27}$$

Replacing β by $\frac{\beta}{\sum_{i=n}^{m+n-1} \left(\frac{\rho^i}{4\cdot 2^{2(1+1)}}\right)}$ in (27), we observe

$$\mathscr{D}\left(\frac{\aleph(2^{n}x)}{2^{2n}} - \frac{\aleph(2^{m+n}x)}{2^{2(m+n)}}, \beta\right) \ge \mathcal{G}\left(\psi(x, x, ..., 0), \frac{\beta}{\sum_{i=n}^{m+n-1} \left(\frac{\rho^{i}}{4 \cdot 2^{2(i+1)}}\right)}\right)$$
(28)

for all $x \in \Omega$ and all non-negative integers $m, n \ge 0$. As $0 < \rho < 2^2$ and $\sum_{i=0}^{\infty} \left(\frac{\rho^i}{2^{2i}}\right) < \infty$. If $n \to \infty$ then R.H.S of equation (28) approaches to 1. Hence $\left\{\frac{\aleph(2^m x)}{2^{2m}}\right\}$ is a Cauchy sequence in Fuzzy Banach (Ψ, \mathcal{G}) , so there exists a function $Q_2: \Omega \to \Psi$ as

$$\lim_{m \to \infty} \frac{\kappa(2^m x)}{2^{2m}} = Q_2(x) \tag{29}$$

for all $x \in \Omega$.

Putting n = 0 and taking limit $m \to \infty$ in equation (28),

$$\wp(\aleph(x) - Q_2(x), \beta) \ge \mathcal{G}(\psi(x, x, ..., 0), 4. |2^2 - \rho|\beta). \tag{30}$$

Replacing (x_1, x_2, \dots, x_n) by $(2^m x_1, 2^m x_2, \dots, 2^m x_n)$ in equation (19), we get

$$\wp(\mathsf{D}\aleph(x_1, x_2, \cdots, x_n), \beta) \ge \wp(\psi(x_1, x_2, \dots, x_n), \beta) \tag{31}$$

$$\mathcal{O}\left(\frac{1}{2^{2m}}\mathsf{D\aleph}(2^{m}x_{1},2^{m}x_{2},\cdots,2^{m}x_{n}),\beta\right) \geq \mathcal{G}\left(\frac{1}{2^{2m}}\psi(2^{m}x_{1},2^{m}x_{2},\ldots\ldots,2^{m}x_{n}),\beta\right)$$

$$\geq \mathcal{G}(\psi(2^m x_1, 2^m x_2, ..., 2^m x_n), 2^{2m}\beta)$$

for all $x_1, x_2, \dots, x_n \in \Omega, \beta > 0$. Also

$$\lim_{m \to \infty} \mathcal{G}(\psi(2^m x_1, 2^m x_2, \dots, 2^n x_n), 2^{2m} \beta) = 1.$$
 (32)

Therefore, taking the limit $m \to \infty$, we get

$$DQ_2(x_1, x_2, \dots, x_n) = 0 (33)$$

for every $x_1, x_2, \dots, x_n \in \Omega$

To demonstrate the uniqueness of Q_2 , consider another quadratic mapping that satisfies equation (20) in the form of $T_2: \Omega \to \Psi$.

$$\mathcal{O}(Q_{2}(x) - T_{2}(x), \beta) \geq \min \left\{ \mathcal{O}\left(\left(\frac{Q_{2}(2^{m}x)}{2^{2m}} - \frac{\aleph(2^{m}x)}{2^{2m}}\right), \frac{\beta}{2}\right), \mathcal{O}\left(\left(\frac{\aleph(2^{m}x)}{2^{2m}} - \frac{T_{2}(2^{m}x)}{2^{2m}}\right), \frac{\beta}{2}\right) \right\}$$

$$\geq \mathcal{G}\left(\psi(2^{m}x, 2^{m}x, 0, \dots, 0), \frac{4 \cdot |2^{2} - \rho| 2^{2m}\beta}{2}\right)$$

$$\geq \mathcal{G}\left(\psi(x, x, \dots, 0), \frac{4 \cdot |2^{2} - \rho| 2^{2m}\beta}{2\rho^{m}}\right). \tag{34}$$

By taking $m \to \infty$, $\left(\frac{4 \cdot |2^2 - \rho| 2^{2m} \beta}{2\rho^m}\right) = \infty$,

ISSN: 1064-9735

Vol 34 No. 4 (2024)

Hence
$$\wp\left(\psi(x, x, 0, ..., 0), \frac{4 \cdot |2^2 - \rho| 2^{2m}\beta}{2\rho^m}\right) = 1$$
 as $m \to \infty$, we have $Q_2 = T_2$

Therefore, the function Q_2 is unique.

Theorem 3.2 Let $\psi: \Omega^2 \to D$ be a function such that

$$\mathcal{O}\left(\psi\left(\frac{x}{2},\frac{x}{2},0,\dots,0\right),\alpha\right) \ge \mathcal{O}\left(\frac{1}{\rho}\psi(x,x,0,\dots,0),\alpha\right) \tag{35}$$

and

$$\lim_{m \to \infty} \mathcal{O}\left(\psi\left(\frac{x_1}{2^m}, \frac{x_2}{2^m}, \dots, \frac{x_n}{2^m}\right), \frac{\alpha}{2^{2m}}\right) = 1$$
(36)

for all $x_1, x_2, \dots, x_n \in \Omega, \alpha > 0, \rho > 2^2$. If a function $\Re: \Omega \to \Psi$ satisfies the condition $\Re(0) = 0$ such that

$$\mathcal{D}(\mathsf{DN}(x_1, x_2, \dots, x_n), \beta) \ge \mathcal{G}(\psi(x_1, x_2, \dots, x_n), \beta) \tag{37}$$

for every $x_1, x_2, ..., x_n \in \Omega$ and $\beta > 0$, then, a unique quadratic mapping $Q_2: \Omega \to \Psi$ exists, such that

$$\wp(\aleph(x) - Q_2(x), \alpha) \ge \mathcal{G}(\psi(x_1, x_2, ..., x_n), 4. | 2^2 - \rho | \alpha)$$
(38)

for all $x \in \Omega$ and $\alpha > 0$.

Proof: The method of proof is same as in above theorem 3.1.

Corollary 3.3: If a mapping $\aleph: \Omega \to \Psi$ with $\aleph(0) = 0$ and such that

$$\mathcal{D}(\mathsf{DN}(x_1, x_2, \dots, x_n), \beta) \ge \mathcal{G}(\sum_{i=1}^n \|x_i\|^p, \beta) \tag{39}$$

for all $x_1, x_2, ..., x_n \in \Omega$.

Then, there exists a unique quadratic mapping $Q_2: \Omega \to \Psi$

$$\wp(\aleph(x) - Q_2(x), \beta) \ge \mathcal{G}(\|x\|^p, 4.(2^2 - 2^p)\beta) \tag{40}$$

for all $x \in \Omega$.

4. Counter Example:

For the FE (1) in real normed space, we give a counterexample that demonstrates its non-stability as:

Example 4.1 Let a function \aleph : $R \to R$ be defined as

$$\aleph(x) = \sum_{t=0}^{\infty} \frac{g(2^t x)}{2^{2t}}$$
 (41)

where $g(x) = \begin{cases} \theta x^2, & |x| < 1 \\ \theta, & \text{else} \end{cases}$

then the function $\aleph: R \to R$ satisfies the inequality

$$|\mathsf{D}\aleph(x_1, x_2, \dots, x_n)| \le \frac{16(3n^3 - 13n^2 + 6n + 6)}{3} \theta \sum_{i=1}^n |x_i|^2. \tag{42}$$

for every $x_1, x_2, \dots, x_n \in \mathbb{R}$, $n \ge 8$, but there does not exist a quadratic function $\mathbb{Q}_2: \mathbb{R} \to \mathbb{R}$ satisfies

$$|\aleph(x) - Q_2(x)| \le \varepsilon |x|^2 \tag{43}$$

for all $x \in \mathbb{R}$.

5. Stability of FE (1) using Fixed Point Method

Radu suggested a new approach to research the issue of FE's stability based on fixed point alternative. Many authors have recently employed this method. Here fixed-point technique is used to examine the Ulam-Hyers stability of generalized FE. Firstly, we define a constant $\xi_{\overline{\omega}}$ such that

ISSN: 1064-9735

Vol 34 No. 4 (2024)

$$\xi_{\varpi} = \begin{cases} 2 & \text{if } \varpi = 0\\ \frac{1}{2} & \text{if } \varpi = 1 \end{cases}$$

and we assume that \sqcup .

Theorem 5.1 Let $\varphi: \hat{X} \to \hat{Y}$ be an even function with condition $\varphi(0) = 0$ for which there exists a mapping $\zeta: \hat{X}^m \to Z$ with condition

$$\lim_{m \to \infty} M(\zeta(\xi_{\overline{\omega}}^n r_1, \xi_{\overline{\omega}}^n r_2, \dots, \xi_{\overline{\omega}}^n r_n), \xi_{\overline{\omega}}^{2n} \delta) = 1$$
(44)

for $r_1, r_2, ..., r_m \in \hat{X}, \delta > 0$, and satisfying the inequality

$$N(D\varphi(r_1, r_2, r_3, ..., r_m), \delta) \ge M(\zeta(r_1, r_2, r_3, ..., r_m), \delta),$$
 (45)

for $r_1, r_2, \dots, r_m \in \hat{X}$, $\delta > 0$,

Let $\Re(r) = \zeta(r, r, 0, ..., 0)$ for all $r \in \widehat{X}$. If there exists $\eta = \eta_{\varpi} \in (0,1)$ such that

$$M\left(\frac{1}{\xi_{r1}^{2}}\aleph(\xi r),\delta\right) \ge M(\eta\aleph(r),\delta) \tag{46}$$

for $r \in \hat{X}$ and $\delta > 0$, then there exists a unique quadratic mapping $Q: \hat{X} \to \hat{Y}$ fulfilling

$$N(\varphi(r) - Q(r), \delta) \ge M\left(\frac{\eta^{1-\varpi}}{1-\eta}\aleph(r), \delta\right),\tag{47}$$

for $r \in \hat{X}$ and $\delta > 0$.

Proof: Let γ be a generalized metric space on \sqcup :

$$\gamma(\hat{g}, h) = \inf\{w \in (0, \infty: N(\hat{g}(r) - h(r), \delta) \ge M(w\Re(r), \delta), \quad r \in \hat{X}, \delta > 0\},\$$

and we use, $\inf \aleph = +\infty$ as usual. It is demonstrated that (\coprod is complete generalized metric space using a similar justification in ([8], Lemma 2.1). Describe $\psi_{\varpi}: \coprod$ by $\psi_{\varpi} \hat{g}(r) = \frac{1}{\xi^2} \hat{g}(\xi_{\varpi} r)$ for all $r \in \hat{X}$.

Suppose that $\hat{g}, h \in \coprod$ be given such that $\gamma(\hat{g}, h) \leq \epsilon$. Then

$$N(\hat{g}(r) - h(r), \delta) \ge M(\epsilon \aleph(r), s) \tag{48}$$

for each $r \in \hat{X}$ and, $\delta > 0$, When

$$N(\psi_{\varpi}\hat{g}(r) - \psi_{\varpi}h(r), \delta) \ge M\left(\frac{\epsilon}{\xi_{\varpi}^2}\aleph(\xi_{\varpi}r), \delta\right)$$
(49)

for each $r \in \hat{X}$ and $\delta > 0$.

It follows from equation (46) that

$$N(\psi_{\varpi}\hat{g}(r) - \psi_{\varpi}h(r), \delta) \ge M(\epsilon \eta \aleph(r), \delta)$$
(50)

for $r \in \hat{X}$, $\delta > 0$. So, we get $\gamma(\psi_{\varpi}\hat{g}, \psi_{\varpi}h) \leq \epsilon \eta$. This shows that $\gamma(\psi_{\varpi}\hat{g}, \psi_{\varpi}h) \leq \eta \gamma(\hat{g}, h)$, that is, ψ_{ϖ} is strictly contractive mapping on \coprod with Lipschitz constant η .

Replacing $(r_1, r_2, r_3, ..., r_m)$ by (r, r, ..., 0) in (45) and using result (c) of definition (1.1), we obtain

$$N\left(\frac{\varphi(2r)}{2^2} - \varphi(r), \delta\right) \ge M\left(\frac{\xi(r, r, \dots, 0)}{16}, \delta\right) \tag{51}$$

for $r \in \hat{X}$ and $\delta > 0$. Using (46) when $\varpi = 0$, it follows from (51) that

$$N\left(\frac{\varphi(2r)}{2^2} - \varphi(r), \delta\right) \ge M(\eta \aleph(r), \delta) \tag{52}$$

where $r \in \hat{X}$ and $\delta > 0$. Therefore

$$\gamma(\psi_0 \varphi, \varphi) \le \eta = l^{1-\varpi}. \tag{53}$$

ISSN: 1064-9735

Vol 34 No. 4 (2024)

Replacing r by $\frac{r}{2}$ in (51), we get,

$$N\left(\varphi(r) - 4\varphi\left(\frac{r}{2}\right), 16\delta\right) \ge M\left(\zeta\left(\frac{r}{2}, \frac{r}{2}, 0, \dots, 0\right), 16\delta\right),$$

$$= M(\aleph(r), 16\delta) \tag{54}$$

for $r \in \hat{X}$ and $\delta > 0$. Therefore

$$\gamma(\psi_1 \varphi, \varphi) \le 1 = l^{1-\overline{\omega}}.\tag{55}$$

Then from (51) and (55), we obtain

$$\gamma(\psi_{\varpi}\varphi,\varphi) \leq l^{1-\varpi} < \infty.$$

Now, It follows from the fixed point alternative theorem that a fixed point Q of $\psi_{\overline{w}}$ in \coprod such that

- (i) $\psi_{\varpi}Q = Q$ and $\lim_{n\to\infty}\gamma(\psi_{\varpi}^n\varphi,Q) = 1$;
- (ii) In the set $\varepsilon = \{\hat{g} \in \square \text{ is the unique fixed point of } \psi;$
- (iii) $\gamma(\varphi, Q) \leq \frac{1}{1-\eta} \gamma(\varphi, \psi_{\varpi} \varphi)$.

Assume $\gamma(\psi_{\overline{m}}^n \varphi, Q) = \epsilon_n$, we obtain

$$N(\psi_{\overline{\omega}}^{n}\varphi(r) - Q(r), \delta) \ge M(\epsilon_{n}\aleph(r), \delta) \tag{56}$$

for each $\delta > 0$.

Since $\lim_{n\to\infty} \epsilon_n = 0$, we obtain

$$Q(r) = N - \lim_{n \to \infty} \frac{\varphi(\xi_{\overline{w}}^n r)}{\xi_{\overline{w}}^{2n}}, r \in \hat{X}.$$

Replacing $(r_1, r_2, r_3, ..., r_m)$ by $(\xi_{\overline{w}}^n r_1, \xi_{\overline{w}}^n r_2, \xi_{\overline{w}}^n r_3, ..., \xi_{\overline{w}}^n r_m)$ in (45), we get

$$N\left(\frac{1}{\xi^{2n}}D\varphi(\xi^n_\varpi r_1,\xi^n_\varpi r_2,\xi^n_\varpi r_3,\dots,\xi^n_\varpi r_m),\delta\right)\geq M(\zeta(\xi^n_\varpi r_1,\xi^n_\varpi r_2,\xi^n_\varpi r_3,\dots,\xi^n_\varpi r_m),\xi^{2n}_\varpi\delta)$$

for each $\delta > 0$ and each $r_1, r_2, r_3, ..., r_m \in \hat{X}$.

We may demonstrate that function $Q: \hat{X} \to \hat{Y}$ is quadratic using the same justification as in the proof of theorem (3.1).

Given that $\gamma(\psi_{\overline{\omega}}^n \varphi, \varphi) \leq l^{1-\overline{\omega}}$, it follows from (iii) $\gamma(\varphi, Q) \leq \frac{l^{1-\overline{\omega}}}{1-\eta}$ which means (47).

Let T be another quadratic mapping that satisfies (47) in order to demonstrate Q's uniqueness.

We have $Q(2^n r) = 4^n Q(r)$ and $T(2^n r) = 4^n T(r)$ for all $r \in P$ and all $n \in N$, we have

$$N(Q(r) - T(r), \delta) = N\left(\frac{Q(2^n r)}{4^n} - \frac{T(2^n r)}{4^n}, \delta\right)$$

$$\geq \min\left\{N\left(\frac{Q(2^n r)}{4^n} - \frac{\varphi(2^n r)}{4^n}, \frac{\delta}{2}\right), N\left(\frac{\varphi(2^n r)}{4^n} - \frac{T(2^n r)}{4^n}, \frac{\delta}{2}\right)\right\}$$

$$\geq M\left(\frac{\eta^{1-\varpi}}{1-\eta} \aleph(2^n r), \frac{4^n \delta}{2}\right) \tag{57}$$

From (44), we have

$$\lim_{n\to\infty} M\left(\frac{\eta^{1-\overline{w}}}{1-n}\Re(2^n r), \frac{4^n \delta}{2}\right) = 1.$$

Consequently, $N(Q(r) - T(r), \delta) = 1$ for all $r \in \hat{X}$ and each $\delta > 0$. So Q(r) = T(r) for each $r \in \hat{X}$. This complete the proof.

6 Conclusions

ISSN: 1064-9735 Vol 34 No. 4 (2024)

We have demonstrated the Hyers-Ulam stability of the following generalized QFE:

$$\sum_{i=1}^{m} \wp\left(2x_{i} - \sum_{1 \le i \ne j}^{m} x_{j}\right) = (m-7) \sum_{1 \le i < j \le m} \wp(x_{i} + x_{j}) + \wp\left(\sum_{i=1}^{m} x_{i}\right) - (m^{2} - 9m + 5) \sum_{i=1}^{m} \wp(x_{i})$$

using direct and fixed-point methods in FNS. Also provide an example for non-stability of given QFE of m variable.

References:

- [1] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy sets syst., 12(1992),143-154.
- [2] A.K.Mirmostafaee and M.S.Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy sets syst., 159(2008),720-729.
- [3] A.K.Mirmostafaee, M.Mirzavaziri and M.S.Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy sets syst., 159(2008),730-738.
- [4] C.Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy sets syst., 48(1992),239-248, 1992.
- [5] D.H.Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27(4)(1941),222–224.
- [7] K.Tamilvanan, J.R.Lee and C.Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi- Banach spaces, AIMS Math, 5(2020), 5593-6005.
- [7] K.Tamilvanan, J.R.Lee and C.Park, Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces, AIMS Math., 6 (2020), 908—924.
- [8] Mihet, D; Radu, V. On the stability of the additive cauchy functional equation in random normed spaces. J.Math. Anal. Appl. 2008, 343, 567-572.
- [9] N.Alessa, K.Tamilvanan, G.Balasubramanian and K.Loganathan, Stability results of the functional equation deriving from quadratic function in random normed spaces, AIMS Mathemtics, 6(3)(2021), 2385-2397.
- [10] S.M. Ulam, Problems in modern mathematics, Science Editions, John Wiley Sons, Inc., New York, (1964).
- [11] S.O.Kim and J.M.Rassias, Stability of the Apollonius type additive functional equation in modular spaces and fuzzy Banach spaces Mathematics, 7(2019), 1125.
- [12] S.O.Kim and K.Tamilvanan, Fuzzy stability results of generalized quartic functional equations, Mathematics, 9(2021),120.
- [13] T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society of Japan, 2(1-2)(1950),64–66.
- [14] T.Bag and S.K.Samanta, Finite dimensional fuzzy normed linear spaces, J.Fuzzy Math., 11(2003),687-705.
- [15] T.M.Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72(2)(1978), 297–300.
- [16] Z.Gajda, On stability of additive mappings, Intern. J. Math. Math. Sci., 14(1991), 431–434