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Abstract: This paper investigates Finsler spaces with Hp-scalar curvature and explores their 

intrinsic geometric properties when modeled as R3-like structures. By analyzing the behavior 

of curvature tensors under projection and examining relationships between Hp-scalar curvature 

and p-scalar curvature, we derive new characterizations and a unified curvature identity. We 

propose a novel theorem combining the projection of curvature tensor, scalar function 

differentials, and structural identities, providing a new perspective on the geometric 

configuration of such spaces. These results enrich the understanding of curvature structures in 

higher-dimensional Finsler spaces and open avenues for application in modern geometric 

analysis and theoretical physics. 
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1. Introduction: 

Finsler geometry generalizes Riemannian geometry by allowing the metric to depend on both position 

and direction. While foundational work by Rund [11] laid the groundwork, later developments by 

Matsumoto [2] and Sakaguchi [4,5] introduced scalar curvature and special forms of curvature 

tensors. This paper focuses on a modern investigation of Finsler spaces with Hp-scalar curvature and 

R3-like structures, leading to new differential identities and structural results. Our goal is to analyze 

how the projection of curvature tensors onto the indicatrix governs scalar curvature behavior in such 

spaces. 

1.1 Historical Background: 

Matsumoto [1,2,3] pioneered the study of special curvature tensors in Finsler geometry, particularly 

concerning spaces with scalar curvature and their reducibility. Sakaguchi [4,5] extended this work, 

exploring Finsler spaces under Berwald connection. The concept of R3-like Finsler spaces, defined 

by curvature tensors analogous to those in three-dimensional Finsler spaces, plays a pivotal role in 

the study of tensorial symmetries and intrinsic geometric structures. 

1.2 Literature Review: 

Recent research focuses on Finsler spaces admitting Hp-scalar curvature, where projection of 

curvature tensors [18,19] fulfill specific symmetric forms. Several studies have analyzed the 

implications of such conditions for curvature behavior and particularly in the context of Berwald 

connections and R3-like formulations. However, a unified framework linking Hp-scalar curvature 

with p-scalar curvature and the R3-like condition remains underexplored. 

1.3 Research Objectives:  

This paper aims to: 
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•To characterize Finsler spaces with Hp-scalar curvature through tensorial projections. 

•To derive new curvature identities by combining conditions on R3-like structures and projection of 

curvature tensors. 

•To establish a novel theorem linking Hp-scalar curvature with p-scalar curvature. 

2. Geometric Preliminaries and Fundamental Equations in Finsler Geometry 

Let Fn = (Mn,F) be an n-dimensional Finsler space, where F(x,y) denotes the fundamental function 

defined on the tangent bundle TM. The associated Finsler metric tensor is given by [11]: 

gij = (
1

2
) ̇j̇iF

2         (2.1) 

The covariant derivative of a vector field vi is defined as [11]: 

∇kvi = dkvi +*Γjk
i vj        (2.2) 

where the Berwald connection coefficients are then defined as [16]: 

*Γjk
i = (

1

2
) gih(dkgjh + djgkh − dhgjk)     (2.3) 

and the differential operators are expressed as 

dk = ∂k − Gk
i ̇i        (2.4) 

∂k =
∂

∂xk − Gk
i ̇i,   ̇i = ∂/ ∂yi,      (2.5) 

and the coefficients  Gk 
i are defined by 

Gk
i = ̇kGi  and Gi = (

1

2
) γjk

i yjyk     (2.6) 

where γjk
i  are the formal Christoffel symbols of the second kind given by [16]: 

γjk
i = (

1

2
) gih(∂kgjh + ∂jgkh − ∂hgjk).     (2.7) 

The curvature tensor corresponding to this connection is expressed as [17]: 

Rijk
h = (dk

*Γij
h + *Γij

m*Γmk
h  - dj

*Γik
h  - *Γik

m*Γmj
h ) + Cim

h Hjk
m   (2.8) 

and the curvature tensor of Hijk
h  is defined by: 

Hijk
h = (dkGij

h + Gij
mGmk

h − djGik
h − Gik

mGmj
h )     (2.9) 

Here, the tensors Cijk, Hjk
i  and Gjk

i  are given by 

Cijk = (
1

2
) ̇kgij, Hjk

i = dkGj
i − djGk

i , Gjk
i = ̇kGj

i   (2.10) 

A fundamental identity connecting these tensors is given by 

Rhijk = (
1

2
) (Hhijk − Hihjk) − Qhijk      (2.11) 

where 

Qhijk = Phj
mPmik − Phk

mPmij,       (2.12) 

Associated scalar and contracted tensors constructed from the curvature tensor include: 

Hhj = Hhjm
m = hikHhijk,  Hj = Hjm

m     (2.13) 

Pj = Pjm
m ,    Cj = Cjm

m     (2.14) 

From [17], one of the key structural identities in Finsler geometry is given by: 

Hhijk + Hihjk = 2(∇kPhij − ∇jPhik) − 2ChimHjk
m    (2.15) 

The angular metric ha
i  is given by [11]: 

ha
i = δa

i − lila,    li = (
1

F
) yi    (2.16) 

satisfying the properties: 
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hikhik = (n − 1),  δj
ihik = hjk,  hijmij = (n − 1)m  

hhjRhijk = Rik,  hhjQhijk = Qik  hijQij = (n − 1)Q (2.17). 

 

3. Hp-Scalar Curvature in R³-like Finsler Spaces and Associated Curvature Properties: 

In Finsler geometry, the concept of scalar curvature offers profound insight into the global structure 

of the manifold. This section investigates Finsler spaces equipped with Hp-scalar curvature, 

particularly in relation to R3-like curvature structures [20]. The focus is on deriving identities for the 

curvature tensors and examining conditions under which the p-scalar curvature becomes constant. 

A Finsler space Fn (n > 3) is said to possess p-scalar curvature if it satisfies the identity [17,18]: 

p∗Rhijk = R(hhjhik − hhkhij)       (3.1) 

where R is the p-scalar curvature and p∗ denotes the projection on the indicatrix. 

From this, we obtain the cyclic identity 

p∗Rhijk + p∗Rhjki + p∗Rhkij = 0      (3.2) 

Applying Bianchi identity 

Rijk 
h + Rjki

h + Rkij
h − Cim

h Hjk
m − Cjm

h Hki
m − Ckm

h Hij
m = 0   (3.3) 

we deduce: 

CihmZjk
m + CjhmZki

m − CkhmHij
m = 0.      (3.4) 

Definition 3.1: Finsler Space of Hp-Scalar Curvature 

Let Fn = (Mn, F) be an n-dimensional Finsler space with n > 3. If the curvature tensor Hijk
h  satisfies 

[18,19]: 

p∗Hhijk = k(hhjhik − hhkhij)       (3.5) 

for some scalar function k = k(x, y), then Fn is said to be a Finsler space of Hp-scalar curvature. 

Definition3.2: Finsler Space of Hp-Constant Curvature 

If the scalar function k in definition 3.1 is constant throughout the space, then the space is called a 

Finsler space of Hp-constant curvature. 

Operating the projection p∗ to the equation (2.11) and using equation (3.5), we obtain 

p∗Rhijk = k(hhjhik − hhkhij) − p∗Qhijk     (3.6) 

In a Finsler space Fn admitting both Hp-scalar curvature k and p-scalar curvature R, the curvature 

tensor Qhijk is given by 

p∗Qhijk = (k − R)(hhjhik − hhkhij)      (3.7) 

Contracting equation (3.7) with hhj and applying identities (2.17), we obtain 

hhj(p∗Qhijk) = (n − 2)(k − R)hik      (3.8) 

Further contraction above with hik, using equation (2.17) and related identities, gives 

hikhhj(p∗Qhijk) = (n − 1)(n − 2)(k − R).     (3.9) 

We now state the following theorem: 

Theorem 3.1: 

In a Finsler space Fn(n > 3), if the projection of Qhijk vanishes then the Hp-scalar curvature k and the 

p-scalar curvature R are identical equal. 

Proof: 

If the projection of Qhijk vanishes then equation (3.9) becomes 

(n − 1)(n − 2) (k − R)  =  0       (3.10) 
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Since n > 3, it follows that 

R = k          (3.11) 

Hence, the Hp-scalar curvature k and the p-scalar curvature R are identical equal. 

An R3-like Finsler space Fn(n > 3) is defined by the condition that the Riemannian curvature tensor 

of second kind can be expressed as [20]: 

Rhijk = ghjLik + gikLhj − ghkLij − gijLhk     (3.12)   

where the tensor Lik is defined by 

Lik = mik + ailk + bkli + clilk.      (3.13) 

Applying the projection p∗ to equation (3.12), we obtain 

p∗Rhijk = hhjmik + hikmhj − hhkmij − hijmhk    (3.14) 

Substituting equation (3.6) into equation (3.14) and contracting with hhj, we obtain 

hhj(p∗Qhijk) = {(n − 2)k − (n − 1)m}hik − (n − 3)mik   (3.15) 

A further contraction above with hik and applying the known identities, leads to 

hikhhj(p∗Qhijk) = (n − 1)(n − 2)(k − 2m)     (3.16)   

Combining equations (3.9) and (3.16), we find the relation: 

R =  2m.         (3.17) 

Thus, we conclude: 

Theorem 3.2: 

Let Fn(n > 3) be a Finsler space simultaneously exhibiting Hp-scalar curvature k, p-scalar curvature 

R, and R3-like structure governed by a symmetric tensor Lij, if p
∗Qhijk = 0, then R = k = 2m. 

Proof: 

Combining equations (3.9) and (3.16) immediately yields the relation k = R = 2m. Which completes 

the proof. 

Theorem 3.3: 

Let Fn be a Finsler space of dimension (n > 3) admitting p-scalar curvature R and Hp- scalar curvature 

k. Then the following statements are equivalent: 

1. p∗Qhijk =  0, 

2. R =  k, 

3. p∗Hhijk = p∗Rhijk,  

4. Fn is R3-like with R =  2m and k =  2m. 

Proof: 

As a consequence of equations (3.9) and (3.16), we observe that 

hikhhj(p∗Qhijk) = (n − 1)(n −  2)(k −  R) = (n − 1)(n −  2)(k −  2m), 

Thus p∗Qhijk = 0 implies k =  2m =  R, establishing the equality of Hp-scalar and p-scalar 

curvatures. 

Substituting this into the equations (3.1) and (3.5), we find that p∗Hhijk = p∗Rhijk. Showing their 

identity. This condition characterizes an R3-like Finsler spaces with p-scalar curvature R =  2m. 

Hence, all four statements are equivalent. 
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4. Applications:  

The derived identities and theorem have implications in differential geometry, gravitational field 

modeling in Finsler spaces, and the study of anisotropic structures in modern physics. Communication 

of such geometric structures helps describe the fundamental geometry. 

 

5. Conclusion: 

This study presents a unified tensorial framework connecting Hp-scalar curvature and R3-like 

conditions in Finsler geometry. Through projection techniques and curvature analysis, we establish 

equivalence conditions and formulate a new theorem linking structural curvature forms. These results 

contribute to the deeper geometric understanding of high-dimensional Finsler spaces. 
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