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Abstract:  
This study introduces a new framework for analyzing complex hypersurfaces embedded in 

Kähler manifolds characterized by vanishing Bochner curvature tensors. Diverging from 

traditional approaches, we examine the intricate interplay between the second fundamental 

form and the shape operator under these specific curvature conditions. Our investigation 

reveals unique curvature identities and scalar invariants that emerge solely due to the 

vanishing Bochner curvature. Notably, we establish precise conditions under which such 

hypersurfaces become totally geodesic and constant holomorphic sectional curvature. The 

findings offer fresh insights into the intrinsic and extrinsic geometry of complex 

hypersurfaces, potentially influencing future research in complex differential geometry and 

theoretical physics. 

 

1. Introduction: 

1.1 Overview: 

The geometry of complex hypersurfaces within Kähler manifolds has long been a subject of 

profound interest in differential geometry [4]. These hypersurfaces inherit rich structural properties 

from their ambient spaces, leading to complex interactions between intrinsic and extrinsic 

geometric features. A particularly intriguing scenario arises when the Bochner curvature tensor 

vanishes, imposing stringent constraints on the curvature and topology of the hypersurface [1,5]. 

This paper seeks to delve into these constraints, uncovering new geometric identities and exploring 

their implications. 

 

1.2. Historical Background: 

The Bochner curvature tensor, introduced in the mid-20th century, serves as a pivotal tool in 

understanding the curvature properties of Kähler manifolds [3]. Historically, research has focused 

on the implications of Bochner flatness in various contexts, including its role in characterizing 

Einstein manifolds and its influence on the topology of complex manifolds [2,3]. However, the 

specific impact of vanishing Bochner curvature on complex hypersurfaces within Kähler manifolds 

remains underexplored. This gap presents an opportunity to investigate new geometric phenomena 

arising from this condition. 

 

1.3. Research Gap: 

While substantial progress has been made in understanding the curvature properties of Kähler 

manifolds and their submanifolds, the literature lacks a comprehensive study of complex 

hypersurfaces under the constraint of vanishing Bochner curvature. Existing studies often overlook 

the nuanced effects this condition has on the second fundamental form, shape operator, and 

associated curvature invariants. Moreover, the potential for such hypersurfaces to exhibit total 

geodesicity or constant holomorphic sectional curvature under these conditions has not been 

thoroughly examined. Addressing this gap is essential for a deeper comprehension of the geometric 

structures involved. 
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1.4 Research Objectives: 

This research aims to: 

• Derive new curvature identities specific to complex hypersurfaces in Kähler manifolds with 

vanishing Bochner curvature tensors. 

• Investigate the conditions under which these hypersurfaces become totally geodesic. 

• Explore the implications of these conditions on the holomorphic sectional curvature of the 

hypersurfaces. 

• Enhance the understanding of the relationship between the second fundamental form, shape 

operator, and curvature invariants in such contexts. 

• Provide a foundation for future studies in complex differential geometry and related fields. 

 

2. Geometric Structures on Complex Hypersurfaces: 

On the hypersurface V, there exists a well-defined tensor field fj
i, induced from the structure tensor 

Fμ
λ of the ambient space. This tensor field satisfies the following fundamental relations, analogous 

to those defining an almost complex structure on M*[4]: 

Fμ
λBj

μ
= fj

iBi
λ         (2.1) 

fj
lfl

i =  −δj,
i          (2.2) 

fk
j
fm

i  gji = gkm         (2.3) 

fji + fij = 0         (2.4) 

Fμ
λCμ = Dλ         (2.5) 

where  
𝜕𝑥𝜆

𝜕𝑣𝑖 = 𝐵𝑖
𝜆 

The Gauss and Weingarten equations for the hypersurface are given as follows [4]: 

∇jBi
λ =  hjiC

λ +  kjiD
λ       (2.6) 

Assuming that the second fundamental forms are proportional to the induced metric, we take: 

kji = kj
l gli,                    (2.7) 

Differentiating equation (2.1) covariantly along the hypersurface V and employing equations (2.5) 

and (2.6), we get: 

∇jfi
k = 0         (2.8) 

The following relations hold on the hypersurface V [3]: 

kj
i = fk

i hj
k         (2.9) 

fl
j
hi

l + hl
j
fi

l = 0        (2.10) 

In view of equations (2.6), (2.8) and (2.9), we observe that the complex hypersurface in a Kahlerian 

manifold M* is itself a Kahlerian manifold with the induced structure ( gji,fj
k). Then we have  

Kνλμ
∗  and   Kmkjk are the curvature tensor of  M* and V respectively. 

Kνλμ
∗ Bm

ν Bk
Bj

μ
Bi

λ =  Kmkjk − ( hmihkj −  hkihmj) − ( kmikkj + kkikmj) (2.11) 

The curvature tensor of M* along directions tangent to V is given by [4]: 

Kji
∗ =  Kji −  Ujkfi

k         (2.12) 

The Ricci tensors satisfy [3]: 

Sji
∗ =  Sji −  Uji        (2.13) 

where  Kji
∗ = Kμλ

∗ Bj
μ

Bi
λ        (2.14) 

Moreover, 

Sji
∗ = fj

kKki
∗           (2.15) 

The Bochner curvature tensor  Bνμλ of M* is defined by[1]: 

Bνμλ
∗ = Kνμλ

∗ +
1

2(n+3)
(Kνμ

∗ gλ − Kμ
∗ gνλ + gνμKλ

∗  - gμKνλ
∗   
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+ Sνμ
∗ fλ − Sμ

∗ fνλ + fνμSλ
∗ − fμSνλ

∗ + 2Sν
∗ fμλ + 2fνSμλ

∗ ) 

- 
K∗

4(n+2)(n+3)
(gνμgλ − gμgνλ + fνμ fλ − fμ fνλ + 2fν fμλ)      (2.16). 

 

3. Geometry of Complex Hypersurfaces with Vanishing Bochner Curvature Tensor: 

Let M* be a complex hypersurface embedded in a 2(n+1)-dimensional Kählerian manifold with 

constant holomorphic sectional curvature 𝐶̌. The geometry of such hypersurfaces is deeply 

influenced by the properties of the ambient curvature tensor and the induced structures. The 

vanishing of the Bochner curvature tensor on M* imposes significant geometric constraints and 

leads to remarkable curvature identities. 

In the ambient manifold M*, the Riemannian curvature tensor 𝐾𝜈𝜔𝜇𝜆
∗  is given by: 

Kνωμλ
∗ =

1

4
Č(GνλGωμ − GωλGνμ + FνλFωμ − FωλFνμ − 2FνωFμλ)  (3.1)  

From equations (2.29) and (3.1), the induced curvature tensor on the hypersurface M* can be written 

as: 

Kmkji =
1

4
Č(gmigkj − gkigmj + fmifkj − fkifmj − 2fmkfji)  

+ hmihkj − hkihmj + kmikkj − kkikmj     (3.2) 

Where hji denotes the second fundamental form of the hypersurface, and kji is the corresponding 

shape operator. 

As a consequence of the geometric conditions imposed by the vanishing of the Bochner curvature 

tensor, we obtain the identity: 

Kji =
1

2
(n + 1)Čgji − 2hj

khki       (3.3). 

 

3.1. Bochner Curvature Tensor of Complex Hypersurfaces in Kähler Manifolds: 

Consider a complex hypersurface V immersed in a 2(n+1)-dimensional Kähler manifold M* with 

constant holomorphic sectional curvature Č. In such a setting, the interplay between the ambient 

geometry and the intrinsic geometry of the hypersurface becomes particularly rich. 

From the geometric construction, we obtain the following identity involving the second 

fundamental form hji and the shape operator kji: 

Sji =
1

2
(n + 1)Čfji − 2hj

kkki        (3.4) 

and  Č = {
1

n(n+1)
}(2hsthst + K).       (3.5) 

Now, the Bochner curvature tensor Bmkji for the complex hypersurface V in M* of constant 

holomorphic sectional curvature Č is given by the following expression: 

Bmkji = − {
1

2(n+1)(n+2)
} hsthst(gmigkj − gkigmj + fmifkj − fkifmj − 2fmkfji)  

+ hmihkj − hkihmj + kmikkj − kkikmj −
1

(n+2)
(hm

s hsjgki − hk
s gsjgmi  

+ gmjhk
s hsi − gkjhj

shsi + hm
s ksjfci − hk

s ksjfmi + fmjhk
s ksi − fkjhm

s ksi  

+ 2hm
s kskfji + 2fmkhj

sksi)       (3.6) 

 

3.2. Implications of Vanishing Bochner Curvature in Complex Hypersurfaces: 

Assuming the Bochner curvature tensor vanishes, i.e., 

Bmkji = 0         (3.7) 

Continuing from the expression of the Bochner curvature tensor Bmkji in equation (3.6), we now 

investigate the consequences of its vanishing by transvecting equation (3.6) with  hkjhmi which 

leads to: 

(n2 + 3n + 4)(hsthst)2 = 8(n + 1)hm
k hk

j
hj

ihi
m.    (3.8) 
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Let N1, N2, N3, … … … … , N2n denote the principal curvatures of the complex hypersurface V, with 

respect to the second fundamental form hji. Under this consideration, it follows that: 

hsthst = ∑ Ni
22n

i=1          (3.9) 

hm
k hk

j
hj

ihi
m = ∑ Ni

42n
i=1         (3.10) 

In view of equations (3.9) and (3.10), and using identities for symmetric bilinear forms, we derive: 

hm
k hk

j
hj

ihi
m − (hsthst)2 = ∑ Ni

42n
i=1 − (∑ Ni

22n
i=1 )2 ≤ 0    (3.11) 

By incorporating the relation given in equation (3.5), the expression (3.11) transforms into the 

following inequality: 

(n2 − 5n − 4)(hsthst)2 ≤ 0, 

i.e.  {n −
5+√41

2
}{n −

5−√41

2
}(hsthst)2 ≤ 0. 

Now, under the assumption that n ≥ 6, the coefficients in the inequality above compel the 

vanishing of both the second fundamental form and the shape operator, i.e., hst = 0, kst = 0. 
This result implies that for complex hypersurfaces of V, to be totally geodesic in the ambient Kähler 

manifold of constant holomorphic sectional curvature. 

 

Remark 3.1: 

It is to be noted that if we denote the constant holomorphic sectional curvature of V by C, then  

Kmkji =
1

4
(gmigkj − gkigmj + fmifkj − fkifmj − 2fmkfji)    (3.12) 

The equations (3.2) and (3.6) assume the form 
1

4
(Č − C)(gmigkj − gkigmj + fmifkj − fkifmj − 2fmkfji) + hmihkj  

- hkihmj + kmikkj − kkikmj = 0      (3.13) 

By transvecting equation (3.13) with hkjhmi, we obtain: 

(Č − C)hsthst + (hsthst)2 = 0.        (3.14) 

 

Theorem 3.1: 

Let V be a complex hypersurface smoothly embedded in a Kählerian manifold M*. If V is totally 

geodesic with respect to the ambient connection of M*, then V necessarily admits constant 

holomorphic sectional curvature. In this case, the induced geometry on V reflects a uniform 

holomorphic curvature structure, invariant across all tangent directions. 

Proof: 

From equations (3.2) and (3.12), we obtain the expression for the holomorphic sectional curvature 

of the hypersurface V as: 

Č =
1

n(n+1)
(K + hsthst)       (3.15) 

Consequently, the scalar curvature C of V satisfies: 

C = K/n(n + 1)        (3.16) 

From equation (3.14), it follows that: 

(n + 1)(n + 2)(hsthst)2 = 0       (3.17) 

This identity immediately implies: 

hst = 0         (3.18) 

which shows that the second fundamental form vanishes identically. The vanishing of the second 

fundamental form characterizes V as a totally geodesic submanifold of M*. 

Since hst = 0, it follows that the associated tensor kst also vanishes, i.e., kst = 0.  

Substituting above into equation (3.15), we obtain: 

C = K/n(n + 1), 

which is clearly constant. 
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Therefore, the complex hypersurface V is totally geodesic, and consequently, it is a Kählerian 

manifold of constant holomorphic sectional curvature. 

From the curvature relations expressed in equations (2.12) and (3.3), we derive the following 

identity: 

Kji
∗ =

(n+1)

2
Čgji − 2hj

khki − Ujkfi
k      (3.20)  

Now, substituting equation (2.14) into (3.20), we obtain: 

Kμλ
∗ Bj

μ
Bi

λ =
(n+1)

2
Čgji − 2hj

khki − Ujkfi
k      (3.21) 

Multiplying both sides of equation (3.20) by the inverse tensor fm
j

, we arrive at: 

Kji
∗ fm

j
=

(n+1)

2
Čgjifm

j
− 2hj

khkifm
j

− Ujkfi
kfm

j
     (3.22) 

Utilizing equation (2.15) together with (3.22), we finally deduce: 

Smi
∗ =

(n+1)

2
Čfmi − 2hj

kfm
j

hki − Ujkfi
kfm

j
     (3.23) 

From equations (2.10) and (3.23), we deduce the following expression: 

Smi
∗ =

(n+1)

2
Čfmi + 2hm

j
fj

khki − Ujkfi
kfm

j
     (3.24) 

In view of equations (2.9) and (3.24), we obtain: 

Smi
∗ =

(n+1)

2
Čfmi + 2km

k hki − Ujkfi
kfm

j
     (3.25) 

Now, multiplying both sides by gkj, the equation becomes: 

Smi
∗ gkj =

(n+1)

2
Čfmigkj + 2km

k hkigkj − Ujkfi
kfm

j
gkj    (3.26) 

As a consequence of equations (2.3) and (3.26), we further get: 

Smi
∗ gkj =

(n+1)

2
Čfmigkj + 2km

k hkigkj − Ujkgim    (3.27) 

Inserting equation (2.7) in equation (3.27), we now derive: 

Smi
∗ gkj =

(n+1)

2
Čfmigkj + 2kmjhki − Ujkgim     (3.28) 

Utilizing the geometric relations expressed in equations (2.11), (2.12), and (2.16), the Bochner 

curvature tensor Bmkji may be written in the following compact form: 

Bmkji =
1

2(n+2)(n+3)
(Kmjgki − Kkjgmi + gmjKki − gkjKmi + Smjfki − Skjfmi)  

+ fmjSki − fkjSmi + 2Smkfji + 2fmkSji) + [
{(n+1)K∗−(n+3)K}

4(n+1)(n+2)(n+3)
] (gmjgki − gkjgmj  

+ fmjfki − fkjfmi + 2fmkfji) +
1

2(n+3)
(Umefj

egki − Ukefj
egmi + gmjUkefi

e  

- gkjUmefa
e + Umjfki − Ukjfmi + fmjUki − fkjUmi + 2Umkfji + 2fmkUji)  

+ hmihkj − hkihmj + kmikkj − kkikmj      (3.29) 

Since the Bochner curvature tensor satisfies the identity Bmkjig
mi = 0. 

We proceed by contracting equation (3.29) with gmi, yielding the expression: 

2Kkj − Kgkj +
1

(n+1)(n+2)
K∗gkj + 2(n + 2)Ukefj

e +gkjUmef me 

+4(n + 3)hk
ehej = 0        (3.30) 

Further contraction of equation (3.30) with gkj gives: 

Ustf st =
(n−1)

2(n+1)
K −

n

2(n+2)
K∗ −

(n+3)

(n+1)
hsthst      (3.31) 

In view of equations (3.31), equation (3.30) follows: 

(n + 2)Ukefj
e = −Kkj +

(n+3)

4(n+1)
Kgkj −

1

4
K∗gkj +

(n+3)

2(n+1)
hsthstgkj  

−2(n + 3)hk
ehej         (3.32) 

and  (n + 2)Ukj = −Skj +
(n+3)

4(n+1)
Kfkj −

1

4
K∗fkj +

(n+3)

2(n+1)
hsthstfkj  

−2(n + 3)hk
ekej        (3.33). 
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Theorem 3.2: 

Let Mn be an n-dimensional smooth semi-Riemannian manifold equipped with a Bochner curvature 

tensor B satisfying the condition Bmkjig
mi = 0, Then the associated scalar curvature invariants 

satisfy the following identity: 

4(n + 1)(n + 2)U = (n + 3)[K + 2hsthst − 8(n + 1)hejkej] − 4(n + 1)S − (n + 2)K∗,  

where U, K, K*, S, hst, and kej are scalar quantities derived from the curvature tensor and its 

contractions. 

Proof: 

Contracting equation (3.33) by gkjyields  

Ukjg
kj = −

1

(n+2)
Skjg

kj +
(n+3)

4(n+1)(n+2)
Kfkjg

kj −
1

4(n+1)
K∗fkjg

kj  

+
(n+3)

2(n+1)(n+2)
}(hsthst)fkjg

kj −
2(n+3)

(n+2)
 hk

ekejg
kj    (3.34) 

Consequently yields 

U =
(n+3)

4(n+1)(n+2)
[K + 2hsthst − 8(n + 1)hejkej] −

S

(n+2)
−

K∗

4(n+1)
  

Multiplying through by 4(n+1)(n+2) leads directly to the theorem statement. 

This yields three significant cases: 

Case 1: For n = -1, the identity simplifies to: 

K∗ = 2(K + 2hsthst). 

Case 2: For n = -2, the relation reduces to: 

K = 2(hsthst + 4hejkej + 2S). 

Case 3: For n = -3, we get: 

K∗ = 8(U − S). 

 

3.3. Geometric Validity of Scalar Invariant U in Non-Standard Dimensions: 

To assess the robustness of scalar invariants in Sasakian geometry, it becomes essential to evaluate 

their behavior under variations in manifold dimension. In this context, we focus on a particular 

scalar quantity U, defined via sectional curvature and specific contractions of the curvature and 

structure tensors. This invariant plays a crucial role in capturing geometric information in odd-

dimensional Sasakian manifolds. However, its mathematical validity and geometric interpretability 

strongly depend on the dimensional parameter n. The following theorem provides a rigorous 

characterization of the dimensional constraints under which U remains a meaningful geometric 

entity. 

 

Theorem 3.3:  

Let U be a scalar curvature invariant defined on a 2(n+1)-dimensional Sasakian manifold as: 

U =
(n+3)

4(n+1)(n+2)
[K + 2hsthst − 8(n + 1)hejkej] −

S

(n+2)
−

K∗

4(n+1)
  

where K* denotes a scalar associated with the sectional curvature, and the terms hsthst, hejkej 

represent contractions of structure and curvature tensors. Then, the scalar quantity U is algebraically 

meaningful and geometrically interpretable if and only if n ∈ N. For non-positive integers n, the 

invariant becomes either undefined or lacks a coherent geometric interpretation. 

Proof: 

We examine three hypothetical cases to determine the behavior of the scalar invariant U under non-

standard values of n: 

Case I: n = -1: Substituting n = -1, the denominator 4(n+1)(n+2) becomes zero, leading to division 

by zero. This renders U mathematically ill-defined. Moreover, since the dimension 2n+1 = -1 does 

not support a differential manifold structure, this case reveals both algebraic and geometric 

breakdown. 
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Case II: n = -2: Here, (n+2) = 0, and the entire expression becomes undefined due to another zero 

denominator. Even though some tensorial components might appear algebraically computable, the 

singularity prevents U from being a valid scalar. Additionally, a manifold of real dimension 2n+1 = 

-3 contradicts the foundational principles of differentiable geometry. 

Case III: n = -3: This case avoids direct singularities in the denominator. However, it implies a 

manifold of real dimension 2n + 1 = -5, which is not permissible under standard manifold theory, 

where dimensions are assumed to be non-negative. Therefore, even though U may be formally 

computed, it lacks any geometrical interpretation or theoretical support. 

Therefore, we conclude within this analysis that the scalar invariant U is mathematically well-

defined and geometrically interpretable only when 𝑛 ∈ N, thereby establishing the restriction 

necessary for the validity of the curvature identity. 

 

4. Conclusion: 

This study presents a comprehensive geometric analysis of complex hypersurfaces embedded in 

Kählerian manifolds with constant holomorphic sectional curvature and vanishing Bochner 

curvature tensor. By examining the curvature characteristics and the associated tensorial structures, 

we have established significant conditions under which these hypersurfaces exhibit geometric 

rigidity. In particular, we have shown that the vanishing of the Bochner curvature tensor imposes 

strong constraints on the second fundamental form and the shape operator, leading to the conclusion 

that such hypersurfaces are necessarily totally geodesic under certain curvature conditions. 

Moreover, it is demonstrated that a totally geodesic complex hypersurface inherits the constant 

holomorphic sectional curvature of the ambient manifold, preserving its intrinsic curvature 

properties. The interplay between the ambient curvature tensor, the second fundamental form, and 

Bochner-flatness yields critical insight into the intrinsic and extrinsic geometry of these 

hypersurfaces. 

We have also introduced and analyzed scalar curvature invariants, particularly focusing on the 

invariant U, and assessed its validity within both standard and degenerate dimensional contexts. It is 

observed that while such invariants offer deep geometric interpretations in higher dimensions, their 

definition becomes non-trivial or inadmissible in non-positive dimensions. 
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