
Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

704 https://internationalpubls.com

Developing Epilogue: A 2D Platformer Made on Godot

Sumer Singh1[], Mohsin Ali2[], Chhaya Moghe3[]

1 Sumer Singh is a research scholar in Department of Computer Application in Medi-Caps University
2 Mohsin Ali is an assistant professor in Department of Computer Application in Medi-Caps University

3Chhaya Moghe is an assistant professor in Department of Computer Application in Medi-Caps University

Article History:

Received: 15-01-2025

Revised: 22-03-2025

Accepted: 05-05-2025

Abstract: Since the inception of video games, two dimensional games have captured

the imaginations of players worldwide. From more cartoonish platformers like Super

Mario Bros. and Donkey Kong Country, to even more cinematic platformers like An-

other World and the Apple II Prince Of Persia games, brawlers like Splatterhouse and

Double Dragon, and shooters/run-and-gun games like Contra and Metal Slug have left

their mark on thousands of game developers around the world. Though at a layman's

glance it may seem that the world has moved onto more three dimensional endeavors

started as far back as the pseudo-3D effects of ID Software's seminal classics Wolfen-

stein 3D and Doom, the market and gaming interest in two dimensional space, especially

in independent game development cycles still remain fresh. With recent successes of

Cuphead and Hollow Knight providing a great template for modernization of said older

concepts, and more retro styled games such as Streets Of Rage 4 and Shovel Knight

(with a few modern tweaks for better player enhancements) shows that interest in retro

pixel art games still remain as fresh as their supposed market hay-days during 3rd and

4th console generations. In the meantime as the independent game development cycle

increases, engines and asset packs become more widely available and easy to use. No

longer do you need to create a framework from scratch or have to buy a licensed engine

from a proprietary retailer, and can instead use an existing framework of engine and its

features, and utilize it for your game. That is why using the templates of level and game

designs of older successful platformers and shooters – cinematic, cartoonish, brawlers,

and otherwise, and mixing them with modern enhancements and features, alongside the

framework and features provided by the Godot engine, we attempt to create a two di-

mensional game with the working title of Epilogue, and mix the concept of a melee

combat with the shooting, and mix them under one satisfying loop of gameplay – where

instead of one contradicting or being any alternative for each other, they both work in

tandem of each other and encourages the usage of one when the other's use has subsided.

Keywords: Game, 2D Platformer, Run & Gun, Godot Game Engine, C#

1 Introduction

While a lot of game development tools and engines are available for an aspiring game developer to

make their games on, in recent years, Godot has garnered acclaim and attention in recent years due to

its no-nonsense approach to availability on a greater user spectrum. For unlike unity that may require

a developer to log into the unity hub and remain constantly connected and approved to even properly

work on their projects, or the unreal engine that can prove taxing on the lower end pc, Godot engine

provides offline work environment and is comparatively less taxing on lower-end pc's, making devel-

opment easier for developers on lower-end spectrum of internet bandwidth and computer specs. That

is why choosing said engine for this game Epilogue felt like natural choice, especially in regards to the

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

705 https://internationalpubls.com

engine's strong and easy to understand 2D framework, that supports in-engine level creation and edit-

ing. [1]

Coming onto the development of the game itself (which is going to be the main crux of the rest of this

research paper), Epilogue, we try to understand the conception of this idea, and the implementation of

the sum of its components that may eventually lead to a playable application. While taking several

inspirations from classics such as Contra, Splatterhouse, and Ninja Gaiden, while also some modern

inspirations in its conceptual design such as Hollow Knight and Scorn, Epilogue's core design is based

on single principal – the circular repetition between melee and gunplay. Now, for the longest time in

game design, melee and gunplay have been two different conceptual beings. Sure there are plenty of

games where the player can shoot and the player can melee, but said two concepts always feel like

alternative pathways to achieving the same goal, instead of being on singular thread to an achievement.

In simple combat terms, a player can either punch the enemy or shoot the enemy, but both these con-

cepts don't tangentially lead to the other's conception outside of just being separate ways to hurt ene-

mies. With Epilogue, the idea is simple – if the player melee an enemy, then it can execute them and

take out the gun from their corpses, and once said gun has run out of bullets it cannot be reloaded, only

dropped, hence forcing back the player onto melee again.

The idea behind said concept is to force the player to adapt their approach to combat according to given

gameplay scenario they find themselves in – which in turn may mirror the scenario a character may

find themselves in. With melee combat the player will find themselves in a more reserved combat

approach, with slow response time to melee attacks and more risk of getting hit back by enemy, mean-

while, when a gun is received through successful melee in means, it may create a more liberal approach

to the combat, with the player now more willing to take combat risks due to the weapon at hand allow-

ing combat from a greater distance.

Mixing said combat with light platforming, a narrative to bind events and stages, and four control

schemes (with addition to player customization) approaches to adaptability for diverse sectors of play-

ers, this project aims to create and show its core concept while producing a final result that plays

smoothly and provides an enjoyable gaming experience – alongside pretty art style, atmospheric music,

and a binding narrative.

2 Research Method And Inspirations

2.1 Research Method

The waterfall model has been utilized in great many game development and analysis because of its

systematic and structured development process for any proposed system, yielding a greater under-

standing and framework for a game development lifecycle. [2]

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

706 https://internationalpubls.com

Fig.1. Representation of Waterfall Model

The analysis phase of the waterfall model was used in this game's development to analyze the scope

and rhythm of the game. The very conclusion reached for this project was to restrict it to a full scale

goal of twelve stages, with each stage book-ended in a boss fight to not only signal to the player that

the stage has ended, but also to, in player experience front, prove as the testing ground for the for the

player's learned skills and abilities throughout said particular stage. After said scope was analyzed,

other requirements such as the engine needed, the roles needed, and the main form of communications

between possible team members.

The next phase of waterfall model utilized was the design phase, where rough sketches and blueprints

of potential ideas were made. These included creation of level linings, creation of algorithms and

flowcharts for movements utilizing available open source assets, and concept art. Then in the imple-

mentation phase, the game's assets were made, the mechanics related to movements were implemented,

and a functional build was created. In testing phase is where we test said functional builds (whether in

relation to the working of the game as a whole or its individual features in separate builds) and detect

and fix any potential issues that were noticed. In deployment stages the final build of the game is to be

released to potential customer base, and after feedback from said customer base, in the maintenance

phase, the game is to be further fixed or re-structured depending on the appropriate feedback.

2.2 Inspirations

In its mechanics the game takes heavy inspirations from run and gun style of games like the Contra

series, with certain narrative elements taken from the Planet Of The Apes movies and art style having

varying inspirations ranging from the works of the artists H.R. Geiger and Zdzisław Beksiński to art

style of games such as Super Castlevania IV, Splatterhouse, and Darkseed.

Alongside serving another additional source of inspiration for the art style, the 2022 horror game Scorn

also serves a bit of inspiration for the game's one of the more unique mechanics, i.e., creating weapons

out of dead body parts. Whereas Scorn uses said mechanic for the purposes of exploration and basic

level combat, while our purpose of taking said concept is to attempt to bridge the gap between melee

combat and shooting combat, and tie both sectors of the gameplay into a complimentary loop of one

another that leads to one play style, instead of both attempts at gameplay being alternate forms of play

styles.

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

707 https://internationalpubls.com

3 Game In Concept

3.1 Narrative

The narrative of the game takes us through the journey of the main character simply named Hestmor,

as she attempts to find the mysterious source of a song she starts hearing. While simplistic in its nature,

other elements like the nature of other creatures around including their individualistic politics, survival

tactics, and the ruling tactics of the final boss of the game (named Zagara) will hopefully keep the

player engaged through a narrative satisfaction. As while the core gameplay may satisfy the player, an

engaging narrative that doesn't interfere too much into the flow of the gameplay but still provide addi-

tional context to the player's actions can enhance the player experience [3].

The approach we are taking here, is for the cutscenes to appear at a particular contextual point in the

player's journey, where the story element may feel like a reward of completing through a certain chal-

lenging obstacle than break from otherwise enjoyable loop.

All the narrative triggers are to be performed in-game in order to avoid artistic inconsistencies, and to

improve immersion.

3.2 Level Design

The level design of the game follows a simple 2-Dimensional traversal with ledges for the player char-

acter to grab, obstacles in between like spike and falling platforms, and spaces left for other enemies.

For starters we created simple outlines of the levels on a page to better mark out the plans we have for

the player progression, and later (while completely not adapting to the linings 1:1) we used them as a

context for the actual level creation on the Godot Engine.

The level creations in the Godot engine works on an instance of drag and dropping the assets into a

given framework. Said framework can be 2-dimensional or 3-dimensional in nature, and depending on

that the parameters and flexibility of said implementations may differ. For our game we chose a 2-

dimensional framework, therefore all assets are to be implemented to 2 dimensionally. The engine

therefore calculates their implementations in the x-y axis, and adjustment of sprite sizes in relation to

the framework is also done in said measurements. For our current implementation of background

sprites, we have assigned each tile from the tileset the size of 36 (x-axis) and 36 (y-axis).

Fig.2. A screenshot of blockings done for Stage 1

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

708 https://internationalpubls.com

Fig.3. A screenshot of blockings done for Stage 2

The basic level design structure works in terms of introducing obstacles like spikes and enemies one

at a time to ensure fair balancing and ease of understanding for the player in relation to workings of

individual obstacles. [4] There when we start implementing the level, they follow a rhythm something

similar to this:

Fig.4. Representation of the planned player progression design and philosophy

For level designing, the last thing to keep in mind would be to take programming implementations like

coyote time in context to designing and defining the distances of the platforms in which the player will

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

709 https://internationalpubls.com

traverse. [5] That way distancing in context to the player position may not create an uneven idea of

player movement and create misleading sense of early or late input from player end. [6] [7]

3.3 Objectives

Regular Objectives

The regular objectives of the game to kill the enemies you encounter, avoid/dodge obstacles and pit-

falls, and reach the end of a stage. Each stage would be bookended by a boss fight, each of whom

would have unique weakness that would need to be exploited by the player. Shooting and killing is the

name of the game. So, each enemy is killable until the narrative requires so.

Boss Fights

Certain boss in certain stages may appear before hand to scare the player into thinking that they have

no chance of defeating it, as no amount of bullets or swiping will hurt them, and so for brief periods

in those stages, it would become the gameplay of running away from the boss, while killing any ene-

mies who may pose a threat to the player in their path. Moments of relief would be provided in said

stages, where only regular enemies may arrives, and at the end of said significant stages, you may find

an environmental object to manipulate that would probably weaken the boss (like breaking their shell

to expose their damageable areas, kicking off the proper boss fight.) However, most bosses will have

their own arena and will be killable via any number of weaknesses that would be visually hinted at.

(An example of this can be a boss's lower body parts being covered in armor, but the head being

exposed indicates to the player that the head of the boss is damageable.) Every boss fight, to a certain

extent, bookmarks the end of a stage with utilization of an autosave or checkpoint.

Secret Rooms (New Game + Mode)

This exploration to certain parts of the stages will be saved for New Game+ that unlocks after the

player has beaten the main game on regular difficulty. Certain areas that were previously locked would

now be unlockable, and most of these areas will provide story related context and details of the events

of narratives through either collectibles like notes or through visual indication of the arrangements of

art assets themselves, for example, using the sprite of a dead body of one character in a particular spot

to indicate to the player the nature of said death and its significance to the area at hand.

The introduction of these secret rooms in a separate difficulty level is to challenge the idea of the

traditional perception regarding video game difficulties which may usually boil down to increasing of

values on enemy damage end or to provide additional enemy numbers. [8]

Bonus Stages (New Game+ Mode)

The Bonus stages will have the same loop and objectives as the main game but will provide additional

story events, areas to explore, and newer form of obstacles to overcome.

3.4 Mechanics

 Movement

Due to the 2-dimensional nature of the game, the player will be moving in either left or right directions.

In addition to movements such as walking left and right, the player will also be able to run, jump, grab,

and slide, to clear certain obstacles over a press of a button (usually in combination of already existing

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

710 https://internationalpubls.com

walking keys or in context to environment detections). The contextual movements of the slide and

jump may actually vary on the basis of the velocity of the speed executed before them. For example,

if the player is standing still before pressing the jump button then the player character will just simply

jump in a vertical motion upwards and come back. However if the player is already walk before the

press of the button then they may jump forwards with an actual trajectory. Similarly if the player is

running before pressing the jump button, the velocity will allow player to jump much farther away in

distance.

Combat

The game utilizes the core concept of stringing together the melee combat and shooting combat in one

loop that makes to two core concepts reflective of each other rather than an alternation of one another.

In that the melee combat leads to shooting combat and vice versa. Due to the game having no mechan-

ics related to the gun reloads, the loop goes as follows:

Fig.5. Representation of Combat-Loop

To make sure the player is equipped with a gun and doesn't remain gun-less throughout the game or

feel like they haven't been educated regarding the mechanics of shooting, the primary button used to

execute the melee attack is also assigned to the one of the buttons used to extract the weapons from

the defeated enemies.

This works in the manner that the enemies don't automatically die upon reaching a 0 health-point,

instead they reach a temporary stun state from where the player can execute them to extract the gun

from them. In that temporary stun state, the players get the choice of a fast kill (that yields low ammo

but the extraction of weapon from the enemy is faster) or a slow kill (that yields more ammo but the

extraction of weapon from the enemy is slower, leaving the player vulnerable for longer). If the player

is unable to kill the enemy in said period of time, then the enemy will go in a state referred internally

as "kamikaze mode" where the enemy will start combating with the player again with added buffs to

the amount of damage and the speed of damage they may do to the player. The player will need to

execute the enemy in order to stop being attacked themselves, leading to said extraction of the gun and

allowing player to be in said combat loop without the need for overtly written instructions to do so.

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

711 https://internationalpubls.com

4 Result And Discussion

4.1 Controls

To test the game controls, a QWERTY keyboard was used in terms of PC control testing and a

PlayStation controller was used for the testing of Controller controls. However, with certain control

logic defined in the code, the game is also controllable through an Xbox controller, even if the control

mapping of said device is not used for the following tables shown below. For the retro control mapping

for controllers, a PS1 controller was taken into context for the buttons.

Table 1. Representation of Movement Controls

Actions Retro (PC) Modern

(PC)

Retro (Con-

troller)

Modern (Controller)

Walk Right
Right arrow

key

D D-pad Right Tilting Left Analog stick

to right

Walk Left
Left arrow

key

A D-pad Left Tilting Left Analog stick

to left

Run Shift Shift X L1

Jump F Space Bar Triangle X

Slide Space Bar F Circle Circle

Crouch (when

weapon is not

equipped)

Down Ar-

row Key

S

D-pad

Down

Titling Left Analog stick

down

Squat (when

weapon is

equipped)

Down Ar-

row Key

S

D-pad

Down

Tilting Left Analog stick

down

Crawl (when

weapon is not

equipped)

Down Ar-

row Key +

Directional

Key

S + Direc-

tional Key

D-pad

Down + Di-

rectional

Button

Tilting Left Analog stick

down and leaning on the

direction to go

Table 2. Representation of Combat Controls

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

712 https://internationalpubls.com

Actions Retro (PC) Modern

(PC)

Retro

(Control-

ler)

Modern (Controller)

Melee (Swipe

attack)
Left Ctrl

Mouse

Button 1

Square R1

Slow Glory

Kill

(when near an

enemy)

Left Ctrl

Mouse

Button 1

Square

R1

Fast Glory

Kill (when

near an en-

emy)

X

Mouse

Button 2

X

L1

Pick Up/Drop

Gun

X

Mouse

Click 2

D-pad Up

Triangle

Growling

(when no gun

is equipped)

X

Mouse

Click 2

D-pad Up

Triangle

Shoot Gun

Left Ctrl

Mouse

Button 1

Square

R1

Aim Upwards

W

Mouse

move-

ment up

L1

Tilting Right Analog

stick up

Aim Down-

wards

S

Mouse

move-

ment

down

R1

Tilting Right Analog

stick down

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

713 https://internationalpubls.com

Aim Left A

Mouse

move-

ment left

L2 Tilting Right Analog

stick left

Aim Right D

Mouse

move-

ment right

R2 Tilting Right Analog

stick right

Aim Diagonal

Up-Left
W+A

Mouse

move-

ment di-

agonal

up-left

L1+L2 Tilting Right Analog

stick diagonally up-left

Aim Diagonal

Up-Right
W+D

Mouse

move-

ment di-

agonal

up-right

L1+R2

Tilting Right Analog

stick diagonally up-right

Aim Diagonal

Down-Left
S+A

Mouse

move-

ment di-

agonal

down-left

R1+L2

Tilting Right Analog

stick diagonally down-

left

Aim Diagonal

Down Right
S+D

Mouse

move-

ment di-

agonal

down-

right

R1+R2

Tilting Right Analog

stick diagonally down-

right

The controls of the game were chosen after certain testing conducted to test their flow and ease of use

on the player end. The options between retro and modern were provided to appeal to both old school

style of playing games – that may appeal and be at-ease and familiarity for players who are familiar

with the style of game Epilogue is aiming to be – and to new and more modern audience in mind

(mainly those who maybe unfamiliar or uncomfortable with older control schemes).

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

714 https://internationalpubls.com

The reason we took our time in allowing said flexibility in control schematics was to test allow the

game to be accessible by a larger crowd of player. However, in order to reach said larger crowd, the

goal wasn't to eradicate the unique experience we wanted to convey artistically through the game, but

to allow said experience to reach the player through their own scenarios and conditions by providing

flexibilities that still leads to a unified experience among the players. [9]

The modern controls on the PC front also provide movements and aiming system utilizing joint mouse

and keyboard control schemes. While the game is 2-Dimensional, the mouse and keyboard control

scheme tries to somewhat simulate the working of how a player may be used to said shooting controls

in a 3-Dimensional game. [10]

Said application were then cross-checked in relation to the eye movement behavior in 2-Dimensional

games [11] , and then adjusted in regards to their smoothness and motion and the aiming of the player

character snapping to one of the core eight directional aiming sectors.

Fig.6. A screenshot of the player sprite holding a gun, with the eight diagonal lines indicating

the sectors where the player can aim

4.2 Coding And Testing

Godot has native support for C# and GDScript, a proprietary language heavily based on Python. We

chose C# due to its better performance, more features, and also the team's familiarity with it.

We make heavy use of inheritance on the game to avoid duplicate code and to create a better structure.

For example, both the player character Hestmor and the NPCs (Non-Playable Characters) inherit the

same base class, i.e., "Actor".

To be more specific, each NPC inherits the base class "NPC", which in turn inherits "Actor". This

means that any code present in the "Actor" class will affect any character, but we still have the ability

to write code just for Hestmor, the NPCs as a whole, and also individual NPCs.

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

715 https://internationalpubls.com

Perhaps the best feature to manage gameplay is the State Machines for each Actor. With them we can

precisely control what actions each Actor can or cannot perform, while also making sure there are no

unintended transitions like being able to crouch in midair while jumping or falling.

Fig.7. Representation of the player character's state machine

We used Github as the Version Control system, in that each mechanical aspect was individually first

tested on individual branches which were separate from the main (or develop) branch and only when

the particular mechanical aspect is achieved without any severe issues that they are merged onto the

main branch.

4.3 Enemy AI and Spawning

The enemies in the game don't just have strict spawning and attacking patterns, but employee a wide

variety of behaviors to increase the immersive experience of the player. At first glance, during the

gameplay the enemy behavior may seem typical of what we may presume to be a traditional NPC

behavior of simply spawning at the defined spot and attacking the player [12], however, despite said

initial presumptions, the NPCs are actually comparatively complex than what the initial behavior may

suggest.

The enemies will spawn way before they even appear under the player sight, and will display an ideal

behavior that can be observed by player if they are at a certain distance from which they do not trigger

the NPC's detection system. Said behaviors can range from them simply interacting with the environ-

mental assets – for example, drinking water or rolling in mud – to interacting with other NPCs – like

a primary example as shown below in the screenshots of the AI flowchart of the NPC Icarasia drinking

nectar from another enemy NPC named Terra Bischem, if one so happen to be nearby.

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

716 https://internationalpubls.com

Fig.7. An example taken from the larger AI Flowchart showcasing a sample of NPC behavior

The enemy behavior doesn't only stop to their idle state, but also extends to how they may act in a

combat state. Enemies will react according to player's action – like some of them coming closer or

going farther depending on if the player shoots them or not, or what distance the player is to them, and

other varying factors like the environment in which the combat is taking place in and if the player is

approaching them with a gun or not.

The aforementioned "kamikaze mode" in the combat section, also comes into play here. With different

enemies choosing different attack patterns depending on their individually assigned designs and some-

times other factors like the aforementioned parameters of distance, environment and player behavior.

4.4 Response Time And Velocity Values

While working on the game, certain aspects like movement velocity and response time of the inputs

were tested and re-iterated upon.

In terms of input detection, we tested the time taken between pressing of a button and animation that

was executed. In doing so we found that a lot of animation showcased an input delay on screen not

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

717 https://internationalpubls.com

because of any problems regarding coding or detection issues regarding the input devices that the

player was using, but in fact due to the length of frames of an animation. While not always the cause

for the input delay as on other moments the game required tweaking in terms of its input detection

system, the case was common enough that we ended up reducing the frames of certain animation which

resulted in faster response time for the player.

Table 3. Comparison of previous and current response time for inputs

Animation Previous

amount of

frames

Previous re-

sponse (in

milli-seconds)

Current

amount of

frames

Current re-

sponse time

(in milli-sec-

onds)

Player Walking

8

9

6

7.5

Melee attack

10

8.6

8

7

Slide

8

9

6

6.5

Jump

10

8

6

6.6

Another thing we recorded and tested heavily were the velocity utilized for player interactions regard-

ing jump and slide, as a way to measure the detection system of the game, and what velocity value is

required for certain player actions to help the character have the right amount of feel when being con-

trolled, i.e., neither being too heavy and nor too light.

An example of this could be that when we applied the trigger of the slide animation, no changes were

applied to the character's HitBox (i.e. collision detection of the character sprite in context to its envi-

ronment) but this may change in the future. When the slide ends, the character's horizontal speed is

reduced by 50% while the Standing Up animation plays. When the slide starts, the value of

the "FloorMaxAngle"(the variable assigned to the gravity response of the player) of the character will

be set to 0, meaning it cannot go up slopes, and will move faster when going down slopes. After the

slide ends, the value of "FloorMaxAngle" is set to 45, returning the slope interaction to its default state.

The speed of the slide is determined based on the player character's previous State, according to the

following table:

Table 4. Velocity utilized for Slide

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

718 https://internationalpubls.com

Previous State Slide Type Slide Speed (in

terms of pixel

per second)

Idle

Front Roll

100

Walk

Knee Slide

160

Run Long Slide 220

During testing these states, it was recorded that each transitional state took up-to 0.3 seconds to com-

plete, except for the Front Roll (executed via the Idle state) that took 0.5 seconds in its entire state to

execute, however, to course correct and provide an earlier exit from said animation, it was made so

that pressing the upper key during said transition would cancel out the animation and take back the

player to the idle state, cancelling out said velocity mid-way to provide an exit from wrongful player

input.

Same logics that were utilized for the slide animation were also utilized during the jump. When Trig-

gering the jump animation, the character's horizontal speed is set to 0 as the animation plays. When

the first part of the animation (the character crouching to gain height) ends, the second part of the

animation (the character leaving the ground) plays, and the character's horizontal speed will be set to

a value according to its facing position and jump type, according to the following table:

Table 5. Velocity utilized for Jump

Previous State Jump Type Horizontal Speed (in

terms of pixel per

second)

Idle

Vertical Jump

0

Walk

Low Jump

80

Run Long Jump 160

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

719 https://internationalpubls.com

Slide Long Jump 160

The type of jump determines the horizontal speed used. All 3 types use the same vertical speed. Can

transition to the following states:

• Fall: If the character's vertical speed increases above 0 (meaning the character is no longer

rising from the jump, but falling after reaching its peak)

• Idle: If the character hits the ground while ascending (for example, by jumping towards a slope)

• Grab Ledge: If the player touches a ledge that's between 0 and 30 pixels below Hestmor's head

• Vault: If the player touches a ledge that's more than 30 pixels below Hestmor's head

5 Limitations

Despite having native support for C#, Godot is still made for GDScript (the programming language

made exclusively for Godot) first and C# second. The vast majority of functionalities are available in

C#, but some more specific stuff simply cannot be ported. For example:

 One very common occurrence while writing the code is it needing to set a default value to a variable.

If the value is a base type (int, float, string, etc.), this can be done as soon as the variable is declared

(for example, int x = 10). However, if you're using the variable to store a complex type (say, for in-

stance, a reference to a Node), then you cannot assign a value while declaring it, you need to use the

"_Ready()" method, which runs as soon as the Node the script is attached to finishes loading. This is a

such a common scenario that Godot allows you to use a special command to declare a variable and

assign a value to it in the "_Ready()" method in a single line: "@onready var x = get_node("exam-

ple")." The "@onready" annotation will tell the engine to only run this line of code when the script's

"_Ready()" method is called. C# has no support for this type of behavior, so we're forced to declare a

variable in one line, then override the "_Ready()" method just so we can assign a value to it. While not

a major challenge, it would be more ideal to be done in a single line for it'd make the code way cleaner.

Another limitation arrives in form of Signals. The way you're meant to work with them with GDScript

is to use the "Connect()" method to connect a signal to a method that will be executed when said signal

is detected. In C# it's also possible to use the "Connect()" method, but the official documentation rec-

ommends using the "+=" operator from C#. This results in exactly the same behavior most of the time,

but one huge issue we found is that the "Connect()" method support parameters, while the operator

does not, and one of those parameters is a flag telling how the reaction to the signal will occur. For

example, one very useful feature is to use the "ConnectFlags.CONNECT_ONE_SHOT" flag to exe-

cute a method only once when the signal is detected, then automatically break the connection. But

when using the "+=" operator, you cannot define these flags, so you must:

- Create a proper method that will be executed (instead of an anonymous method)

- Connect the signal to this method using the "+=" operator

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

720 https://internationalpubls.com

- After the execution is complete, break the connection using the "-=" operator

If we try to connect a signal to the same method more than once, or break a connection that doesn't

exist, Godot prints a bunch of errors to the console, and the game will start working improperly since

the execution flow got interrupted.

A non-programming issue comes in form of playtesting. While the game by its nature is of smaller

scale when compared to more commercial projects done by corporations and its creation engine is

readily available without any cost, the need for playtesting and its scope is almost similar to that of a

big commercial project. [13] [14] While gathering playtesting resources by reaching out to public fo-

rums and sharing an open build does help alleviate some tension in regards to design flaws and the

shortcomings of the executions of mechanics, said public feedback can often be unreliable, for a lot of

feedback may miss the point of the core execution and a feedback might be the complete opposite in

its suggestions to what we wish to achieve. In other cases, the knowledge or experience of the play-

tester might be in question especially if they haven't experienced similar games before, or in case of

more technical requirements, does not possess the same knowledge. Finding more expert feedback and

playtesters in relation to the core demographic of the game's aim might alleviate some worries regard-

ing the final product, but doing that itself may take a longer time and resource for a developer on a

lower scale of the game development spectrum.

6 Future Work And Conclusion

The current scope of this game for the sake of presentation is only three levels that are more decidedly

planned out with some open source assets utilized to better showcase the core functionalities of the

project, and with that base now established on how the core combat and environments of the game

works, we can move forward with establishing actual artistic assets and more defined contextual trig-

gers to story and level events. Some hopeful plans indicate for a twelve level complete structure with

two bonus stages, with each stage representing its own specific look to distinguish itself artistically,

but also introducing certain elements and changes into environmental obstacles and enemies to keep

the gameplay fresh and the player on its toes.

With the current build made, we hope to see what improvements could be brought upon the game

during the testing and feedback phases, and what aspects of the game can be retooled or reworked to

make it more smoothly flowing, and to tweak timings and values of the mechanical response time that

may help make the game much snappier but still in relation to its core function loop of a risky but

reward melee-shooting loop. All these planned additions, feedbacks, and tweaking can hopefully make

the game a much appealing prospect to a potential player, and make the game better overall.

References

[1] Dhule, Maithili. (2022). Beginning Game Development with Godot: Learn to Create and Publish

Your First 2D Platform Game. 10.1007/978-1-4842-7455-2.

[2] Akbar, Yuma & Ammaar, Mohammad. (2024). 2D Platformer Game Prototype on Indonesian

History Using Scratch. International Journal Software Engineering and Computer Science

(IJSECS). 4. 1066-1076. 10.35870/ijsecs.v4i3.3070.

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

721 https://internationalpubls.com

[3] Fanfarelli, Joseph. (2014). The Effects of Narrative and Achievements on Learning in a 2D Plat-

former Video Game.

[4] BYRNE, E. 2005. Game Level Design. Charles River Media.

[5] McDonald, Peter. (2024). Run and Jump: The Meaning of the 2D Platformer. 10.7551/mit-

press/14478.001.0001.

[6] Killick, Michael. (2022). 2D Platformer Tutorial. 10.1007/978-1-4842-8789-7_8.

[7] Smith, Gillian & Whitehead, Jim. (2008). A framework for analysis of 2D platformer levels.

10.1145/1401843.1401858.

[8] B., Henry & Mikami, Koji & Kondo, Kunio. (2018). Perception of Difficulty in 2D Platformers

Using Graph Grammars. 22. 38-46. 10.20668/adada.22.2_38.

[9] Anderson, Sky. (2024). The Ground Floor Approach to Video Game Accessibility: Identifying

Design Features Prioritized by Accessibility Reviews. Games and Culture.

10.1177/15554120231222580.

[10] Warburton, Matthew & Campagnoli, Carlo & Mon-Williams, Mark & Mushtaq, Faisal & More-

head, John. (2023). Kinematic markers of skill in first-person shooter video games.

10.1101/2023.02.27.530169.

[11] Lin, Na & Feng, Lei & Kang, Tian & Fan, Shiyu & Zhang, Yunhong. (2017). An Eye Movement

Research on 2D Interactive Game Design. 10.1007/978-3-319-41691-5_17.

[12] Zhou, Jiansong. (2024). Intelligent Agent and NPC Behavior Modeling: From Traditional Meth-

ods to AI Driven Interactive Game Design. Applied and Computational Engineering. 112. 85-

91. 10.54254/2755-2721/2024.17913.

[13] Denisova, Alena & Bromley, Steve & Mekler, Elisa & Mirza-Babaei, Pejman. (2024). Towards

Democratisation of Games User Research: Exploring Playtesting Challenges of Indie Video

Game Developers. Proceedings of the ACM on Human-Computer Interaction. 8.

10.1145/3677108.

[14] Linåker, Johan & Bjarnason, Elizabeth & Fagerholm, Fabian. (2024). Pre-Release Experimen-

tation in Indie Game Development: An Interview Survey. 10.48550/arXiv.2411.17183.

Games Cited

[1] Super Mario Bros. Nintendo (NES), 1985

[2] Donkey Kong Country. Nintendo (SNES), 1994

[3] Another World. Delphine Software (Amiga), 1991

[4] Prince Of Persia. Broderbund (Apple II), 1989

[5] Splatterhouse. Namco (Arcade), 1988

[6] Double Dragon. Taito (Arcade), 1987

[7] Contra. Konami (Arcade), 1987

Panamerican Mathematical Journal

ISSN: 1064-9735

Vol 35 No. 4s (2025)

722 https://internationalpubls.com

[8] Metal Slug. SNK (Arcade), 1996

[9] Wolfenstein 3D. Apogee Software (MS-DOS), 1992

[10] Doom. id Software (MS-DOS), 1993

[11] Cuphead. Studio MDHR (Windows), 2017

[12] Hollow Knight. Team Cherry (Windows), 2017

[13] Streets Of Rage 4. Dotemu (Windows), 2020

[14] Shovel Knight. Yatch Club Games (Windows), 2014

[15] Ninja Gaiden. Tecmo (NES), 1988

[16] Scorn. Kepler Interactive (Xbox Series X/S), 2022

[17] Super Castlevania IV. Konami (SNES), 1991

[18] Darkseed. Cyberdream (MS-DOS), 1992

