ISSN: 1064-9735 Vol 34 No. 4 (2024)

A Total Chromatic Number of Comb Product of Bi-fan and Bi-Fish with Various Graphs

K. Thirusangu¹, M. Vimala Bai².

¹ Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai-600073, INDIA

Email id: kthirusangu@gmail.com

²Department of Mathematics, Bharathi Women's College (Autonomous), Chennai-600108, INDIA.

Email id: mvimalabai24@gmail.com

Article History:

Received: 17-06-2024

Revised: 03-08-2024

Accepted: 22-08-2024

Abstract:

In this paper, we investigate the total chromatic number of comb product involving various graph families. The comb product between G and H ,denoted by (G o H), is a graph obtained by taking one copy of G and |V(G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G .The total chromatic number of a graph G,denoted $\chi tc(G)$ is defined as the minimum number of colors needed to color the vertices and edges of a graph in such a way that different colors for two adjacent vertices, two adjacent edges and an incident vertex and edge. We explore the total chromatic number of comb product involving graphs namely, Bi-fan with cycle, Bi-fan with star, Bi-fan with fan, Bi-fish with path, Bi-fish with star, Bi-fish with cycle, Bi-fish with fan and Bi-fish with complete graph.

Keywords: Total chromatic number, Comb product, Bi-fan, Bi-fish, path, star, cycle, fan and complete.

1.INTRODUCTION

In this paper, we investigate the total chromatic number of comb products involving various graph families. The comb product between G and H ,denoted by (G \triangleright o H),is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G . The total chromatic number of a graph G,denoted $\chi_{IC}(G)$ is defined as the minimum number of colors needed to color the vertices and edges of a graph in such a way that different color for two adjacent vertices, two adjacent edges and an incident vertex and edge. $\Delta(G)+1 \le \chi tc(G) \le \Delta(G)+2$, where $\Delta(G)$ is the maximum degree of G and this is called as total coloring conjecture(Tcc). If it is total coloring with $\Delta(G)+1$ colors it is called type-I. If it is total coloring with $\Delta(G)+2$ colors it is called a type-II.

2. COMB PRODUCT OF BI-FAN WITH SIMPLE GRPHS

Definition 2.1: A Bi-Fan B(F_{1,m,m}) is obtained by joining the centre (apex) vertices of two copies of (F_{1,m})by an edge. The vertex set of B(F_{1,m,m}) is V[B(F_{1,m,m})] = {u, v, u_a , $v_a/1 \le a \le m$ }, where u, v are apex vertices and u_a , v_a are vertices.

The edge set of $(F_{1,m,m})$ is $E[B(F_{1,m,m})] = \{uv, uu_a, vv_a/1 \le a \le m, u_au_{a+1}/1 \le a \le m-1, u_au_{a+1}/1 \le a \le m-1$

$$v_a v_{a+1}/1 \le a \le m-1$$
 }

It is clear that $|V[B(F_{1,m,m})]| = 2m+2$ and $|E[B(F_{1,m,m})| = 4m-1$.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Example 2.1: Consider the Fan graph $(F_{1,n})$

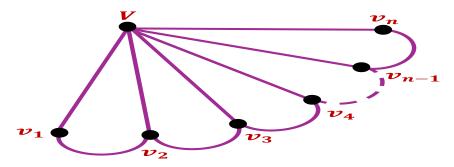


Figure:2.1

Theorem 2.1: The TCN of Bi-fan graph is m+2, for $m \ge 3$

Proof: Let BFG be a Bi-fan graph. The apex of G is denoted as u, v.

Let $V=\{u\}\cup\{v\}\cup\{u_a/1\leq a\leq m\}\cup\{v_a/1\leq a\leq m\}$ be the vertices and

$$E = \{uv\} \ \cup \{uu_a/\ 1 \leq a \leq m\} \cup \{vv_a/\ 1 \leq a \leq m\} \cup \{u_au_{a+1}/1 \leq a \leq m-1\} \cup \{v_av_{a+1}/1 \leq a \leq m-1\}$$

be the edges of bi-fan graph.

$$S = V\Big(B\big(\big[F_{1,m,m}\big]\big)\Big) \cup E\Big(B\big(\big[F_{1,m,m}\big]\big)\Big) \text{ and } C = \{1,2,3,\dots\}$$

We now define total coloring as a function $f:S \rightarrow C$.

First provide coloring for the vertices as follows:

$$f(u) = \{m+1\}, f(v) = \{1\}.$$

For
$$1 \le a \le m-1$$
, $f(u_a) = \{a+1\}$; $f(u_m) = \{1\}$.

For
$$1 \le a \le m$$
, $f(v_a) = \{a+2\}$.

Next provide coloring for the edges as follows:

$$f(uv) = \{m+2\}.$$

For
$$1 \le a \le m$$
, $f(uu_a) = \{a\}$, $f(vv_a) = \{a+1\}$

For
$$1 \le a \le m-1$$
, $f(u_a u_{a+1}) = \{a+3\}$; For $1 \le a \le m-1$, $f(v_a v_{a+1}) = \{a\}$

Hence, the coloring norm above, we get TCN of Bi-fan graph is m+2.

Example 2.2: Consider the Bi-fan graph $B([F_{1,4,4}])$

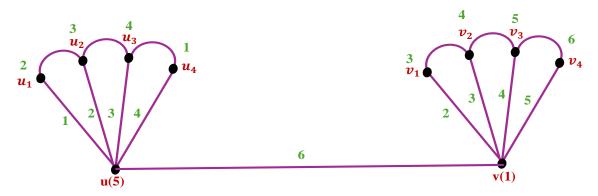


Figure: 2.2

The Total Chromatic Number of the above graph is 6.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Theorem 2.2: The TCNOCP of Bi-fan graph with path graph is m+3, for $m \ge 3$, $n \ge 2$ and $m \ne n$

Proof: Let B(F_{1,m,m}) be a Bi-fan graph. V= {u} \cup {v} \cup {u_a, 1 \leq a \leq m} \cup {v_a, 1 \leq a \leq m} be the vertices and E= {uv} \cup { uu_a , 1 \leq a \leq m} \cup { vv_a , 1 \leq a \leq m} \cup { u_au_{a+1} , 1 \leq a \leq m - 1} \cup

 $\{v_a v_{a+1}/1 \le a \le m-1\}$ be the edges of bi-fan graph of B(F_{1,m,m}).

Let H be Path graph. V={ $w_a/1 \le a \le n$ } be the vertices and { $w_a w_{a+1}/1 \le a \le n-1$ } be the edges of path graph. A path P_n is joined with each vertex of the bi-fan graph.

Here, $\Delta \left[(B(F_{1,m,m})) \triangleleft P_n \right] = \{m+2\}$

Let
$$S=V[(B(F_{1,m,m}) \triangleleft P_n] \cup E[(B(F_{1,m,m}) \triangleleft P_n] \text{ and } C=\{1,2,3,4,\ldots\}$$

We now define total coloring as a function $f:S \rightarrow C$.

Total number of vertices is 2m+2n and total number of edges is 2(mn + m + n)-3

First provide coloring for the vertices as follows:

$$f(u_{1,1})=\{m+2\}, f(v_{1,1})=\{m+3\}.$$

For
$$1 \le b \le \frac{n-1}{2}$$
, if n is odd $f(u_{1,2b}) = \{1\}$

For
$$1 \le b \le \frac{n-1}{2}$$
, if n is odd $f(u_{1,2b+1}) = \{2\}$

For
$$1 \le b \le \frac{n-1}{2}$$
, if n is odd $f(v_{1,2b}) = \{2\}$

For
$$1 \le b \le \frac{n-1}{2}$$
, if n is odd $f(v_{1,2b+1}) = \{1\}$

For
$$1 \le b \le \frac{n}{2}$$
, if n is even $f(u_{1,2b}) = \{1\}$

For
$$1 \le b \le \frac{n-2}{2}$$
, if n is even $f(u_{1,2b+1}) = \{2\}$

For
$$1 \le b \le \frac{n}{2}$$
, if n is even $f(v_{1,2b}) = \{2\}$

For
$$1 \le b \le \frac{n-2}{2}$$
, if n is even $f(v_{1,2b+1}) = \{1\}$

For
$$2 \le a \le m+1$$
 and $1 \le b \le n$ $f(u_{a,b}) = \begin{cases} 1 \text{ If a is even and b is odd; If a is odd and b is even} \\ 2 \text{ If a is even and b is even; If a is odd and b is odd} \end{cases}$

For $2 \le a \le m+1$ and $1 \le b \le n$ $f(v_{a,b}) = \begin{cases} 1 \text{ If a is even and b is odd; If a is odd and b is even} \\ 2 \text{ If a is even and b is even; If a is odd and b is odd} \end{cases}$ Next provide coloring for the edges as follows:

$$f(u_{1,1}v_{1,1}) = \{1\}$$

For
$$2 \le a \le m+1$$
, $f(u_{1,1}u_{a,1}) = \{a\}$.

For
$$2 \le a \le m+1$$
, $f(v_{1,1}v_{a,1}) = \{a\}$.

$$f(u_{2a,1}u_{2a+1,1}) = \{m+1\}.$$
 If m is even $1 \le a \le \frac{m}{2}$ and If m is odd $1 \le a \le \frac{m-1}{2}$

$$f(u_{2a+1,b}u_{2a+2,b}) = \{m+2\}.$$
 If m is even $1 \le a \le \frac{m-2}{2}$ and If m is odd $1 \le a \le \frac{m-1}{2}$

$$f(v_{2a,b}u_{2a+1,b}) = \{m+1\}. \qquad \text{If m is even } 1 \le a \le \frac{m}{2} \text{ and If m is odd } 1 \le a \le \frac{m-1}{2}$$

$$f(v_{2a+1,b}u_{2a+2,b}) = \{m+2\}.$$
 If m is even $1 \le a \le \frac{m-2}{2}$ and If m is odd $1 \le a \le \frac{m-1}{2}$

For
$$1 \le b \le n-1$$
, $f(u_{1,b}u_{1,b+1}) = \begin{cases} m+3 & \text{if b is odd} \\ m+2 & \text{if b is even} \end{cases}$

ISSN: 1064-9735 Vol 34 No. 4 (2024)

For $1 \le b \le n-1$, $f(v_{1,b}v_{1,b+1}) = \begin{cases} m+2 & \text{if b is odd} \\ m+3 & \text{if b is even} \end{cases}$

For $1 \le b \le n-1$, $f(u_{m+1,b}u_{m+1,b+1}) = \begin{cases} m & \text{if b is odd} \\ m-1 & \text{if b is even} \end{cases}$

For $1 \le b \le n-1$, $f(v_{m+1,b}u_{m+1,b+1}) = \begin{cases} m & \text{If b is odd} \\ m-1 & \text{If b is even} \end{cases}$

For $2 \le a \le m$, $1 \le b \le n-1$,

 $f(v_{a,b}v_{a,b+1}) = \begin{cases} m+1 \text{ If a is even and b is odd; If a is odd and b is odd} \\ m \text{ If a is even and b is even; If a is odd and b is even} \end{cases}$

For $2 \le a \le m$, $1 \le b \le n-1$

 $f(u_{a,b}u_{a,b+1}) = \begin{cases} m+1 & \text{if a is even and b is odd; If a is odd and b is odd} \\ m & \text{if a is even and b is even; If a is odd and b is even} \end{cases}$

Therefore, from the coloring norm above, the TCNOCP of Bi-fan with path graph is m+3.

Theorem 2.3: TCNOCP of Bi-fan graph with star graph is m+n+1, for m>3, $n\geq 2$ and $m\neq n$.

Proof: Let $B(F_{1,m,m})$ be a Bi-fan graph. $V=\{u\}\cup\{v\}\cup\{u_a/1\leq a\leq m\}\cup\{v_a/1\leq a\leq m\}$ be the vertices and $E=\{uv\}\cup\{uu_a/1\leq a\leq m\}\cup\{vv_a/1\leq a\leq m\}\cup\{vv_a/1\leq a\leq m\}\cup\{uu_{a+1}/1\leq a\leq m-1\}\cup\{vv_{a+1}/1\leq a\leq m-1\}$ be the edges of bi-fan graph of $B(F_{1,m,m})$.

Let S_n be star graph. V= $\{w_a / 1 \le a \le n-1\} \cup \{w\}$ be the vertices and $\{ww_a / 1 \le a \le n-1\}$ be an edges of star graph. A star S_n is joined with each vertex of the bi-fan graph.

Here $\Delta (B(F_{1,m,m} \triangleright S_n) = \{m+n\}.$

S=V
$$[(B(F_{1,m,m})) \triangleleft S_n] \cup E[(B(F_{1,m,m})) \triangleleft S_n]$$
 and C= $\{1,2,3,\dots\}$

We now define total coloring as a function $f:S \rightarrow C$.

Total number of vertices is 2mn+2n and total number of edges is 2(mn+m+n)-3

First provide coloring for the vertices as follows:

$$f(u_{1,1}) = \{m+1\}, f(u_m) = \{1\}$$

$$f(v_{1,1}) = \{m+n\}, f(v_m) = \{1\}$$

For
$$2 \le a \le m+1$$
, $f(u_{a,1}) = \begin{cases} 2 \text{ If a is even} \\ 1 \text{ If a is odd} \end{cases}$

For
$$2 \le a \le m+1$$
, $f(v_{a,1}) = \begin{cases} 2 & \text{If a is even} \\ 1 & \text{If a is odd} \end{cases}$

For
$$2 \le a \le m+1$$
 and $2 \le b \le n$ $f(u_{a,b}) = \{a-1\}$

For
$$2 \le a \le m+1$$
 and $2 \le b \le n$ $f(v_{a,b}) = \{a-1\}$

Next provide coloring the edges as follows:

$$f(u_{1.1}v_{1.1}) = \{m+n+1\}$$

For
$$2 \le b \le n-1$$
, $f(u_{1,b}u_{1,b+1}) = \{m+n+1\}$

For
$$2 \le b \le n-1$$
, $f(v_{1,b}u_{1,b+1}) = \{m+n+1\}$

For
$$1 \le b \le n-1$$
, $f(u_{m+1,b}u_{m+1,b+1}) = \begin{cases} m & \text{If b is odd} \\ m-1 & \text{If b is even} \end{cases}$

For
$$1 \le b \le n-1$$
, $f(v_{m+1,b}v_{m+1,b+1}) = \begin{cases} m & \text{If b is odd} \\ m-1 & \text{If b is even} \end{cases}$

For
$$2 \le b \le n$$
, $f(u_{1,1}u_{1,b}) = \{m+n+1\}$

ISSN: 1064-9735

Vol 34 No. 4 (2024)

For $2 \le b \le n$, $f(v_{1,1}v_{1,b}) = \{m+n+1\}$

For $2 \le a \le m+1$, $f(u_1 u_{a_1}) = \{a-1\}$

For $2 \le a \le m$, $f(v_{1.1}v_{a.1}) = \{a-1\}$

For $2 \le a \le m+1$ and $2 \le b \le n$, $f(u_{a,1}u_{a,b}) = \{m+b-1\}$

For $2 \le a \le m+1$ and $2 \le b \le n$, $f(v_{a,1}v_{a,b}) = \{m+b-1\}$

For $2 \le a \le m$, $f(u_{a,1}u_{a+1,1}) = \begin{cases} m+n & \text{If a is even} \\ m+n+1 & \text{If a is odd} \end{cases}$

For $2 \le a \le m$, $f(v_{a,1}v_{a+1,1}) = \begin{cases} m+n & \text{If a is even} \\ m+n+1 & \text{If a is odd} \end{cases}$

Therefore, from the coloring norm above, the TCNOCP of Bi-fan with star graph is m+n+1.

Theorem 2.4: The TCNOCP of Bi-fan graph with cycle graph is m+4, for $m \ge 3$, $n \ge 2$ and $m \ne n$

Proof: Let $B(F_{1,m,m})$ be a Bi-fan graph. $V = \{u\} \cup \{v\} \cup \{u_a/l \le a \le m\} \cup \{v_a/l \le a \le m\}$ be the vertices and $E = \{uv\} \cup \{uu_a/l \le a \le m\} \cup \{vv_a/l \le a \le m\} \cup \{uu_{a+1}/l \le a \le m-1\} \cup \{vv_{a+1}/l \le a \le m-1\}$ be the edges of bi-fan graph of $B(F_{1,m,m})$.

Let C_n be Cycle graph. $V = \{w_a/1 \le a \le n\}$ be the vertices and $\{w_a w_{a+1}/1 \le a \le n\}$ be the edges of cycle graph.

A cycle C_n is joined with each vertex of the bi-fan graph.

Here Δ (B (F_{1,m,m}>C_n) ={m+3}

Let
$$S=V[(B(F_{1,m,m}) \triangleleft C_n] \cup E[(B(F_{1,m,m}) \triangleleft C_n] \text{ and } C=\{1,2,3,4,\dots\}$$

We now define total coloring as a function $f:S \rightarrow C$.

Total number of vertices is 2mn+2n and total number of edges is 2mn+4m+2n-1

First provide coloring for the vertices as follows:

Case 1: If m is odd

$$f(u_{1,1})=\{m+1\}, f(v_{1,1})=\{m+4\}.$$

For
$$2 \le b \le n-1$$
, $f(u_{1,b}) = \begin{cases} 1 & \text{If b is even} \\ 2 & \text{If b is odd} \end{cases}$

For
$$2 \le b \le n-1$$
, $f(v_{1,b}) = \begin{cases} 1 & \text{If b is even} \\ 2 & \text{If b is odd} \end{cases}$

For
$$2 \le a \le m+1$$
 and $1 \le b \le n-1$

$$f(u_{a,b}) = \begin{cases} 1 \text{ If a is odd and b is odd; If a is even and b is even} \\ 2 \text{ If a is even and b is odd; If a is odd and b is even} \end{cases}$$

For
$$2 \le a \le m+1$$
 and $1 \le b \le n-1$,

$$f(v_{a,b}) = \begin{cases} 1 \text{ If a is even and b is even; If a is odd and b is odd} \\ 2 \text{ If a is even and b is even; If a is odd and b is odd} \end{cases}$$

For
$$2 \le a \le m-1$$
, $f(u_{a,n}) = \{m+1\}$

For
$$2 \le a \le m-1$$
, $f(v_{a,n}) = \{m+1\}$

Next provide coloring for the edges as follows:

$$f(u_{1,1}v_{1,1}) = \{m+3\},$$

ISSN: 1064-9735 Vol 34 No. 4 (2024)

For
$$1 \le b \le n-1$$

$$f(u_{1,b}u_{1,b+1}) = \begin{cases} m+2 & \text{If b is odd} \\ m+3 & \text{If b is even} \end{cases}$$

For
$$1 \le b \le n-1$$
 $f(v_{1,b}v_{1,b+1}) = \begin{cases} m+2 & \text{If b is odd} \\ m+3 & \text{If b is even} \end{cases}$

For
$$2 \le a \le m+1$$
, $f(u_{1,1}u_{a,1}) = \{a-1\}$

For
$$2 \le a \le m+1$$
, $f(v_{1,1}v_{a,1}) = \{a-1\}$

For
$$2 \le a \le m+1$$
, $f(u_{a,n}u_{a,1}) = \{m+4\}$

For
$$2 \le a \le m+1$$
, $f(v_{a,n}v_{a,1}) = \{m+4\}$

For
$$2 \le a \le m$$
 $f(u_{a,1}u_{a+1,a}) = \begin{cases} m+2 & \text{if a is odd} \\ m+3 & \text{if a is even} \end{cases}$

For
$$2 \le a \le m$$
, $f(v_{a,1}v_{a+1,1}) = \begin{cases} m+2 & \text{if a is odd} \\ m+3 & \text{if a is even} \end{cases}$

For $2 \le a \le m+1$, $1 \le b \le n-1$,

 $f(u_{a,b}v_{a,b+1}) = \begin{cases} m+1 & \text{if a is even and b is odd; If a is odd and b is odd} \\ m+2 & \text{if a is even and b is even; If a is odd and b is even} \end{cases}$

For $2 \le a \le m+1$, $1 \le b \le n-1$,

 $f(v_{a,b}v_{a,b+1}) = \begin{cases} m+1 & \text{if a is even and b is odd; If a is odd and b is odd} \\ m+2 & \text{if a is even and b is even; If a is odd and b is even} \end{cases}$

Case ii. If m is even

$$f(u_{1,1}) = \{m+1\}, f(v_{1,1}) = \{m+4\}.$$

For
$$1 \le b \le n-1$$
 $f(u_{1,b}) = \begin{cases} 1 & \text{if b is even} \\ 2 & \text{if b is odd} \end{cases}$

For
$$1 \le b \le n-1$$
 $f(v_{1,b}) = \begin{cases} 1 & \text{if b is even} \\ 2 & \text{if b is odd} \end{cases}$

For
$$2 \le a \le m + 1$$
 and $1 \le b \le n$.

$$f(u_{a,b}) = \begin{cases} 1 \text{ If a is odd and b is odd; If a is even and b is even} \\ 2 \text{ If a is even and b is odd; If a is odd and b is even} \end{cases}$$

For
$$2 \le a \le m+1$$
 and $1 \le b \le n$.

$$f(v_{a,b}) = \begin{cases} 1 \text{ If a is even and b is even; If a is odd and b is odd} \\ 2 \text{ If a is even and b is even; If a is odd and b is odd} \end{cases}$$

Next provide the coloring for the edges as follows

$$f(u_{1,1}v_{1,1}) = \{m+3\},$$

For
$$1 \le b \le n-1$$

$$f(u_{1,b}u_{1,b+1}) = \begin{cases} m+3 & \text{If b is odd} \\ m+2 & \text{If b is even} \end{cases}$$
 For $1 \le b \le n-1$
$$f(v_{1,b}v_{1,b+1}) = \begin{cases} m+2 & \text{If b is odd} \\ m+3 & \text{If b is even} \end{cases}$$

For
$$1 \le b \le n-1$$
 $f(v_{1,b}v_{1,b+1}) = \begin{cases} m+2 & \text{if b is odd} \\ m+3 & \text{if b is even} \end{cases}$

For
$$2 \le a \le m+1$$
, $f(u_1, u_{a,1}) = \{a-1\}$

For
$$2 \le a \le m+1$$
 $f(v_1, v_{a,1}) = \{a-1\}$

For
$$2 \le a \le m+1$$
 $f(u_{a,n}u_{a,1}) = \{m+4\}$

For
$$2 \le a \le m+1$$
 $f(v_{a,n}v_{a,1}) = \{m+4\}$

For
$$2 \le a \le m$$
 $f(u_{a,1}u_{a+1,a}) = \begin{cases} m+2 & \text{if a is odd} \\ m+3 & \text{if a is even} \end{cases}$

ISSN: 1064-9735 Vol 34 No. 4 (2024)

For $2 \le a \le m$ $f(v_{a,1}v_{a+1,1}) = \begin{cases} m+2 & \text{If a is odd} \\ m+3 & \text{If a is even} \end{cases}$

For $2 \le a \le m+1$, $1 \le b \le n-1$,

 $f(u_{a,b}v_{a,b+1}) = \begin{cases} m+1 & \text{if a is even and b is odd; If a is odd and b is odd} \\ m+2 & \text{if a is even and b is even; If a is odd and b is even} \end{cases}$

For $2 \le a \le m+1$, $1 \le b \le n-1$,

 $f(v_{a,b}v_{a,b+1}) = \begin{cases} m+1 & \text{if a is even and b is odd; If a is odd and b is odd} \\ m+2 & \text{if a is even and b is even; If a is odd and b is even} \end{cases}$

Therefore, from the coloring norm above, the TCNOCP of Bi-fan with cycle graph is m+4.

Theorem 2.5: The TCNOCP of Bi-fan graph with fan graph is m+n+2, for $m \ge 3$, $n \ge 2$ and $m \ne n$

Proof: Let $B(F_{1,m,m})$ be a Bi-fan graph. $V=\{u\}\cup\{v\}\cup\{u_a/1\leq a\leq m\}\cup\{v_a/1\leq a\leq m\}$ be the vertices and $\{uv\}\cup\{uu_a/1\leq a\leq m\}\cup\{vv_a/1\leq a\leq m\}\cup\{uu_{a+1}/1\leq a\leq m-1\}\cup\{vv_{a+1}/1\leq a\leq m-1\}$ be the edges of Bi-fan graph of $B(F_{1,m,m})$.

Let $F_{1,n}$ be a Fan graph. $V = \{w_a/1 \le a \le n\} \cup \{w\}$ be the vertices and $\cup \{w_aw_{a+1}/1 \le a \le n-1\} \cup \{w\}$

 $\{ww_a/1 \le a \le n\}$ be the edges of fan graph.

A fan $F_{1,n}$ is joined with each vertex of the bi-fan graph

Here, $\Delta[B(F_{1,m,m}) \triangleright (F_{1,n})] = m + n + 1$

$$S = V\Big(B\big(\big[F_{1,m,m} n \triangleright F_{1,n}\big]\big)\Big) \cup E\Big(B\big(\big[F_{1,m,m} n \triangleright F_{1,n}\big]\big)\Big) \text{ and } C = \{1, 2, 3, 4, \ldots\}$$

We now define total coloring as a function $f:S \rightarrow C$.

Total number of vertices is 2mn+2n+2m+2 and total number of edges is 4mn+2m+4n-3

First provide coloring for the vertices as follows:

$$f(u_{1,1}) = \{m+1\}, f(v_{1,1}) = \{m+n+1\}.$$

For
$$2 \le a \le m+1$$
, $f(u_{a,1}) = \begin{cases} 2 & \text{If a is even} \\ 1 & \text{If a is odd} \end{cases}$

For
$$2 \le a \le m+1$$
, $f(v_{a,1}) = \begin{cases} 2 & \text{If a is even} \\ 1 & \text{If a is odd} \end{cases}$

For
$$2 \le b \le m+1$$
, $f(u_{1,b}) = \begin{cases} 1 & \text{if b is even} \\ 2 & \text{if b is odd} \end{cases}$

For
$$2 \le b \le n+1$$
, $f(v_{1,b}) = \begin{cases} 1 & \text{If b is even} \\ 2 & \text{If b is odd} \end{cases}$

For
$$2 \le a \le m + 1$$
, $1 \le b \le n - 1$

$$f(u_{a,b}) = \begin{cases} m+n+1 & \text{if a is odd and b is even; If a is even and b is even} \\ m+n+2 & \text{if a is even and b is odd; If a is odd and b is odd} \end{cases}$$

For
$$2 \le a \le m+1$$
, $1 \le b \le n-1$,

$$f(v_{a,b}) = \begin{cases} m+n+1 \text{ If a is even and b is even; If a is odd and b is even} \\ m+n+2 \text{ If a is even and b is odd; If a is odd and b is odd} \end{cases}$$

$$f(u_{a,n}) = \{m+1\}, \text{ For } 2 \le a \le m-1,$$

Next provide coloring for the edges as follows;

$$f(u_{1,1}v_{1,1}) = \{m+n+2\},$$

For
$$2 \le b \le n-2$$
, $f(u_{1,b}u_{1,b+1}) = \{b+1\}$

ISSN: 1064-9735 Vol 34 No. 4 (2024)

For $2 \le b \le n-2$, $f(v_{1,b}v_{1,b+1}) = \{b+1\}$

For $2 \le a \le m+1$, $f(u_{1,1}u_{a,1}) = \{a-1\}$

For $2 \le a \le m+1$, $f(v_{1,1}v_{a,1}) = \{a-1\}$

For $2 \le b \le n+1$, $f(u_{1,1}u_{1,b}) = \{m+b-1\}$

For $2 \le b \le n+1$, $f(v_{1.1}v_{1.b}) = \{m+b-1\}$

For $2 \le a \le m+1$ and $2 \le b \le n+1$, $f(u_{a,1}u_{a,b}) = \{m+b-1\}$

For $2 \le a \le m+1$ and $2 \le b \le n+1$, $f(v_{a_1}v_{a_b}) = \{m+b-1\}$

For $2 \le a \le m+1$ and $2 \le b \le n+1$, $f(u_{a,b}v_{a,b+1}) = \begin{cases} 1 & \text{if b is even} \\ 2 & \text{if b is odd} \end{cases}$

For $2 \le a \le m+1$ $2 \le b \le n-2$, $f(v_{a,b}v_{a,b+1}) = \begin{cases} 1 & \text{If b is even} \\ 2 & \text{If b is odd} \end{cases}$

Therefore, from the coloring norm above, the TCNOCP of Bi-fan with fan graph is m+n+2.

3. COMB PRODUCT OF BI-FISH WITH SIMPLE GRAPHS

Definition 3.1: A Bi-Fish graph obtained by joining the vertices u_1 , v_1 of two copies of fish graph by an edge u_1v_1 . The vertex set of Bi-Fish $\{u_a, v_a/1 \le a \le 6\}$, the edge set of Bi-Fish is $\{u_1v_1\} \cup \{u_2u_4\} \cup \{u_3u_4\} \cup \{u_1u_2\} \cup \{u_1u_3\}\{u_4u_5\} \cup \{u_4u_6\} \cup \{u_5u_6\} \cup \{v_1v_3\} \cup \{v_2v_4\} \cup \{v_3v_4\} \cup \{v_1v_2\} \cup \{v_4v_5\} \cup \{v_4v_6\} \cup \{v_5v_6\}$.

Total number of vertices is 12 and total number of edges is 15

Theorem 3.1: The TCN of Bi-fish graph is 5.

Proof: Let BFG be a Bi-fish graph. The apex of BFG is denoted as u_1 and v_1 . Bi-fish graph has 12 vertices and 15 edges. The vertices of BFG are denoted as $V = \{u_2, u_3, u_4, u_5, u_6\} \cup \{v_2, v_3, v_4, v_5, v_6\}$. The edges in the graph BFG are denoted as $E = \{u_1v_1\} \cup \{u_2u_4\} \cup \{u_3u_4\} \cup \{u_1u_2\} \cup \{u_1u_3\} \{u_4u_5\} \cup \{u_4u_6\} \cup \{u_5u_6\} \cup \{v_1v_3\} \cup \{v_2v_4\} \cup \{v_3v_4\} \cup \{v_1v_2\} \cup \{v_4v_5\} \cup \{v_4v_6\} \cup \{v_5v_6\}$.

Let $S = V(BFG) \cup E(BFG)$ and $C = \{1, 2, 3, ...\}$

We now define total coloring as a function $f:S \rightarrow C$.

Provide coloring for the vertices and edges as follows:

Coloring	Vertices count	Number of edges	Verified vertices	Verified edges
1	u_2, u_3, u_6, v_1, v_4 .	$\{u_4u_5\}.$	5	1
2	u_1, u_4, v_2, v_3, v_6 .	$\{v_4v_5\}.$	5	1
3	u_5, v_5 .	$\{u_1u_2\},\{u_3u_4\},\{v_3v_4\},\{v_1v_2\}.$	2	4
4		$\{u_1u_3\},\{u_2u_4\},\{u_5u_6\},\{v_1v_3\},$		6
		$\{v_5v_6\},\{v_2v_4\}.$		
5		$\{u_1v_1\},\{u_4u_6\},\{v_4v_6\}.$		3
	TOTAL		12	15

Hence, the coloring norm shows that the TCN of Bi-fish graph is 5.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Example 3.1: Consider the Bi-fish graph

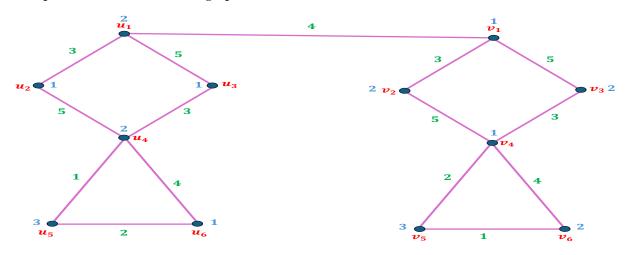


Figure:3.1

The Total Chromatic Number of the above graph is 5.

Theorem 3.2: The TCNOCP of Bi-fish with path graph is 6, for $n \ge 3$.

Proof: Let BFG be a Bi-fish graph. V= $\{u_a, v_a/1 \le a \le 6\}$, be the vertices and E= $\{u_1v_1\} \cup \{u_2u_4\} \cup \{u_3u_4\} \cup \{u_1u_2\} \cup \{u_1u_3\} \cup \{u_4u_5\} \cup \{u_4u_6\} \cup \{u_5u_6\} \cup \{v_1v_3\} \cup \{v_2v_4\} \cup \{v_3v_4\} \cup \{v_1v_2\} \cup \{v_4v_5\} \cup \{v_4v_6\} \cup \{v_5v_6\}$

Let P_n be Path graph. $V = \{w_a/1 \le a \le n\}$ be the vertices and $\{w_a w_{a+1}/1 \le a \le n-1\}$ be the edges of path graph. This path P_n is joined with each vertex of the bi-fish graph.

Let
$$S = V(BFG) \triangleright P_n \cup E(BFG) \triangleright P_n$$
 and $C = \{1, 2, 3, 4, ...\}$

We now define total coloring as a function $f:S \rightarrow C$.

Total number of vertices is 12n and total number of edges is 12n+3

First provide coloring for the vertices as follows:

$$f(u_{a,b}) = \begin{cases} 1 \text{ If b is odd} \\ 2 \text{ If b is even} \end{cases} \qquad \text{If } a = 1,4 \quad \text{for } 1 \leq b \leq n \\ f(u_{a,b}) = \begin{cases} 2 \text{ If a is odd} \\ 1 \text{ If a is even} \end{cases} \qquad \text{If } a = 2,3,5 \quad \text{for } 1 \leq b \leq n \\ f(v_{a,b}) = \begin{cases} 2 \text{ If b is odd} \\ 1 \text{ If b is even} \end{cases} \qquad \text{If } a = 1,4 \quad \text{for } 1 \leq b \leq n \\ f(v_{a,b}) = \begin{cases} 1 \text{ If a is odd} \\ 2 \text{ If a is even} \end{cases} \qquad \text{If } a = 2,3,5 \quad \text{for } 1 \leq b \leq n \\ f(u_{a,b}) = \begin{cases} 1 \text{ If b is even} \\ 2 \text{ If b is odd} \end{cases} \qquad \text{for } 2 \leq b \leq n, f(u_{a,b}) = \{3\} \\ f(v_{a,b}) = \begin{cases} 1 \text{ If a is odd} \\ 2 \text{ If a is even} \end{cases} \qquad \text{for } 2 \leq b \leq n, f(v_{a,b}) = \{3\}$$

Next provide coloring for the edges as follows:

$$f(u_{1,1}v_{1,1}) = \{6\}, f(u_{1,1}u_{2,1}) = \{3\}, f(u_{1,1}u_{3,1}) = \{4\}, f(u_{2,1}u_{4,1}) = \{4\}, f(u_{3,1}u_{4,1}) = \{3\},$$

$$f(u_{4,1}u_{5,1}) = \{6\}, f(u_{4,1}u_{6,1}) = \{2\}, f(u_{5,1}u_{6,1}) = \{4\}, f(v_{1,1}v_{2,1}) = \{4\}, f(v_{1,1}v_{3,1}) = \{3\},$$

ISSN: 1064-9735

Vol 34 No. 4 (2024)

$$f(v_{2.1}v_{4.1})=\{3\}, f(v_{3.1}v_{4.1})=\{4\}, f(v_{4.1}v_{5.1})=\{6\}, f(v_{4.1}v_{6.1})=\{1\}, f(v_{5.1}v_{6.1})=\{4\},$$

For $1 \le a \le 6$, $1 \le b \le n-1$,

 $f(u_{a,b}u_{a,b+1}) = \begin{cases} 5 \text{ If a is odd and b is odd; If a is even and b is odd} \\ 6 \text{ If a is odd and b is even; If a is even and b is even} \end{cases}$

For $1 \le a \le 6$, $1 \le b \le n-1$,

$$f(v_{a,b}v_{a,b+1}) =$$

$$\begin{cases}
5 \text{ If a is odd and b is odd; If a is even and b is odd} \\
6 \text{ If a is odd and b is even; If a is even and b is even}
\end{cases}$$

Therefore, from the coloring norm above, the TCNOCP of Bi-fish with path graph is 6.

Theorem 3.3: The TCNOCP of Bi-fish with star graph is n+4, for $n \ge 3$.

Proof: Let BGG be a Bi-fish graph. V= $\{u_a, v_a/1 \le a \le 6\}$, be the vertices and E= $\{u_1v_1\} \cup \{u_2u_4\} \cup \{u_3u_4\} \cup \{u_1u_2\} \cup \{u_1u_3\} \cup \{u_4u_5\} \cup \{u_4u_6\} \cup \{u_5u_6\} \cup \{v_1v_3\} \cup \{v_2v_4\} \cup \{v_3v_4\} \cup \{v_1v_2\} \cup \{v_4v_5\} \cup \{v_4v_6\} \cup \{v_5v_6\}$ be the edges.

Let S_n be star graph. $V = \{w_a / 1 \le a \le n-1\} \cup \{w\}$ be the vertices and $\{ww_a / 1 \le a \le n-1\}$ be an edges of star graph. This star S_n is joined with each vertex of the bi-fish graph.

Let
$$S = V(BFG) \triangleright S_n \cup E(BFG) \triangleright S_n$$
 and $C = \{1, 2, 3, 4, ...\}$

We now define total coloring as a function $f:S \to C$.

Total number of vertices is 12n and total number of edges is 12n+3. First provide coloring for the vertices as follows:

$$f(u_{1,1}) = \{n+3\}, f(u_{4,1}) = \{n+3\}, f(u_{6,1}) = \{n+3\},$$

$$f(v_{1.1}) = \{n+4\}, f(v_{4.1}) = \{n+4\}, f(v_{6.1}) = \{n+4\},$$

$$f(u_{2,1}) = \{n+4\}, f(u_{3,1}) = \{n+4\}, f(u_{5,1}) = \{n+4\},$$

$$f(v_{2,1}) = \{n+3\}, f(v_{3,1}) = \{n+3\}, f(v_{5,1}) = \{n+3\},$$

$$f(u_{a,b}) = \{n+4\}$$
 If $a = 1,4$ and 6, for $2 \le b \le n$

$$f(u_{a,b}) = \{n+3\}$$
 If $a = 2,3$ and 5, for $2 \le b \le n$

$$f(v_{a,b}) = \{n+3\}$$
 If $a = 1,4$ and 6, for $2 \le b \le n$

$$f(v_{a,b}) = \{n+4\}$$
 If $a = 2,3$ and 5, for $2 \le b \le n$

Next provide coloring for the edges as follows:

$$f(u_{1,1}v_{1,1}) = \{n+2\}, f(u_{1,1}u_{2,1}) = \{n+1\}, f(u_{1,1}u_{3,1}) = \{n\}, f(u_{2,1}u_{4,1}) = \{n\}, f(u_{2,1}u_{4,1$$

$$f(u_{3,1}u_{4,1}) = \{n+1\}, f(u_{4,1}u_{5,1}) = \{n+2\}, f(u_{4,1}u_{6,1}) = \{n+4\}, f(u_{5,1}u_{6,1}) = \{n+1\},$$

$$f(v_{1,1}v_{2,1}) = \{n+1\}, \ f(v_{1,1}v_{3,1}) = \{n\}, \ f(v_{2,1}v_{4,1}) = \{n\}, \ f(v_{3,1}v_{4,1}) = \{n+1\}, \ f(v_{4,1}v_{5,1}) = \{n+2\}, \\ f(v_{4,1}v_{6,1}) = \{n+3\}, \ f(v_{5,1}v_{6,1}) = \{n+1\},$$

For
$$1 \le a \le 6$$
, $1 \le b \le n-1$, $f(v_{a,1}v_{a,b}) = \{b-1\}$.

For
$$1 \le a \le 6$$
, $1 \le b \le n-1$, $f(u_{a,1}u_{a,b}) = \{b-1\}$.

Therefore, from the coloring norm above, the TCNOCP of Bi-fish with star graph is n+4.

Theorem 3.4: The TCNOCP of Bi-fish with cycle graph is 7, for $n \ge 3$.

Proof: Let BFG be a Bi-fish graph. V= $\{u_a, v_a/1 \le a \le 6\}$, be the vertices and E= $\{u_1v_1\} \cup \{u_2u_4\} \cup \{u_3u_4\} \cup \{u_1u_2\} \cup \{u_1u_3\} \cup \{u_4u_5\} \cup \{u_4u_6\} \cup \{u_5u_6\} \cup \{v_1v_3\} \cup \{v_2v_4\} \cup \{v_3v_4\} \cup \{v_1v_2\} \cup \{v_4v_5\} \cup \{v_4v_6\} \cup \{v_5v_6\}$ be the edges.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Let C_n be Cycle graph. $V = \{w_a/1 \le a \le n\}$ be the vertices and $\{w_a w_{a+1}/1 \le a \le n\}$ be the edges of cycle graph. A cycle C_n is joined with each vertex of the bi-fish graph.

Total number of vertices is 12n and total number of edges is 12n+15

Let
$$S = V(BFG) \triangleright C_n \cup E(BFG) \triangleright C_n$$
 and $C = \{1, 2, 3, 4, ...\}$

We now define total coloring as a function $f:S \to C$.

We provide colors when n is even.

Coloring	Vertices count	Number of edges	Vertices	Number of
	, , , , , , , , , , , , , , , , , , ,		count	edges
1	$f(u_{a,2b-1})$ for $1 \le b \le \frac{n}{2}$,	$f(v_{4,1}v_{6,1})$	6n	1
	If a=1 & 4.			
	$f(u_{a,2b})$ for $1 \le b \le \frac{n}{2}$,			
	If a=2, 3 & 5.			
	$f(v_{a,2b-1})$ for $1 \le b \le \frac{n}{2}$,			
	If a=2, 3 & 5.			
	$f(v_{a,2b})$ for $1 \le b \le \frac{n}{2}$,			
	If a=1 & 4.			
	$f(u_{6,2b})$ for $1 \le b \le \frac{n}{2}$.			
	$f(v_{6,2b})$ for $1 \le b \le \frac{n}{2}$.			
2	$f(u_{a,2b})$ for $1 \le b \le \frac{n}{2}$,	$f(u_{4,1}u_{6,1})$	5n	1
	If a=1 & 4.			
	$f(u_{a,2b-1})$ for $1 \le b \le \frac{n}{2}$,			
	If a=2,3 & 5.			
	$f(v_{a,2b})$ for $1 \le b \le \frac{n}{2}$,			
	If a=2,3 & 5.			
	$f(v_{a,2b-1}) \text{ for } 1 \le b \le \frac{n}{2}$			
	If a=1 &4.			
3		$f(u_{1,1}u_{3,1})$, $f(u_{2,1}u_{4,1})$		6
		$f(u_{5,1}u_{6,1})f(v_{11}v_{3,1})$		
		$f(v_{2,1}v_{4,1}), f(v_{5,1}v_{6,1})$		
4	$f(u_{6,2b-1})$ for $1 \le b \le \frac{n}{2}$	$f(u_{1,1}u_{2,1}) f(u_{3,1}u_{4,1})$	n	4
	$f(v_{6,2b-1})$ for $1 \le b \le \frac{n}{2}$	$f(v_{1,1}v_{2,1}), f(v_{3,1}v_{4,1})$		
5		$f(u_{a,2b-1}u_{a,2b})$		бп
		for $1 \le a \le 6$,		

ISSN: 1064-9735 Vol 34 No. 4 (2024)

		$1 \le b \le \frac{n}{2} f(v_{a,2b-1} v_{a,2b})$		
		for $1 \le a \le 6$,		
		$1 \le b \le \frac{n}{2}$		
6		$f(u_{a,2b}u_{a,2b+1})$		6n
		for $1 \le a \le 6$, $1 \le b \le \frac{n-2}{2}$		
		$f(v_{a,2b}v_{a,2b+1})$		
		for $1 \le a \le 6$, $1 \le b \le \frac{n-2}{2}$		
		$f(u_{a,n}u_{a,1})$		
		for $1 \le a \le 6$,		
		$f(v_{a,n}v_{a,1})$		
		for $1 \le a \le 6$,		
7		$f(u_{1,1}v_{1,1})f(u_{4,1}u_{5,1})$		3
		$f(v_{4,1}v_{5,1})$		
	TOTAL		12n	15

Therefore, from the coloring norm above, the TCNOCP of Bi-fish with cycle graph is m+n+2.

Theorem 3.5: The TCNOCP of Bi-fish with fan graph is n+5, for $n \ge 3$.

Proof: Let BFG be a Bi-fish graph. V= $\{u_a, v_a/1 \le a \le 6\}$, be the vertices and E= $\{u_1v_1\} \cup \{u_2u_4\} \cup \{u_3u_4\} \cup \{u_1u_2\} \cup \{u_1u_3\} \cup \{u_4u_5\} \cup \{u_4u_6\} \cup \{u_5u_6\} \cup \{v_1v_3\} \cup \{v_2v_4\} \cup \{v_3v_4\} \cup \{v_1v_2\} \cup \{v_4v_5\} \cup \{v_4v_6\} \cup \{v_5v_6\}$ be the edges.

Let $F_{1,n}$ be a Fan graph. $V = \{\{w_a/1 \le a \le n\} \cup \{w\}$ be the vertices and $\cup \{w_aw_a + 1/1 \le a \le n-1\} \cup \{\{ww_a/1 \le a \le n\}$ be the edges of fan graph..

A fan $F_{1,n}$ is joined with each vertex of the bi-fish graph.

Let
$$S = V(BFG) \triangleright F_{1,n} \cup E(BFG) \triangleright F_{1,n}$$
 where $C = \{1,2,3,4,\ldots\}$

We now define total coloring as a function $f:S \to C$.

Total number of vertices is 12n+12 and total number of edges is 24n+3

First provide coloring for the vertices as follows:

For
$$1 \le a \le 6$$
, $1 \le b \le n$, $f(u_{a,b}) = \{b+1\}$,

For
$$1 \le a \le 6$$
, $1 \le b \le n$, $f(v_{a,b}) = \{b+1\}$

$$f(u_1) = \{n+5\}, f(u_2 = \{n+4\}, f(u_3) = \{n+4\}, f(u_4) = \{n+5\}, f(u_5) = \{n+4\}, f(u_6) = \{n+4\}$$

$$f(v_1) = \{n+4\}, f(v_2) = \{n+5\}, f(v_3) = \{n+5\}, f(v_4) = \{n+4\}, f(v_5) = \{n+5\}, f(v_6) = \{n+3\}$$

Next provide coloring for the edges as follows;

$$f(u_1v_1) = \{n+1\}, f(u_1u_2) = \{n+2\}, f(u_1u_3) = \{n+3\}, f(u_2u_4) = \{n+3\},$$

$$f(u_3u_4) = \{n+2\}, f(u_4u_5) = \{n+1\}, f(u_4u_6) = \{n+4\},$$

ISSN: 1064-9735

Vol 34 No. 4 (2024)

 $f(u_5u_6) = \{n+2\}, f(v_1v_2) = \{n+2\}, f(v_1v_3) = \{n+3\}, f(v_2v_4) = \{n+3\}, f(v_3v_4) = \{n+2\}, f(v_4v_5) = \{n+1\}, f(v_4v_6) = \{n+5\}, f(v_5v_6) = \{n+2\}, f(v_1v_3) = \{n+2\}, f(v_1v_3) = \{n+3\}, f(v_2v_4) = \{n+3\}, f(v_3v_4) = \{n+2\}, f(v_4v_5) = \{n+4\}, f(v_4v_5) =$

For $1 \le a \le 6$ and $1 \le b \le n$, $f(v_a v_{a,b}) = \{b\}$.

For $1 \le a \le 6$ and $1 \le b \le n$, $f(u_a u_{a,b}) = \{b\}$.

For $1 \le a \le 6$, $1 \le b \le n-1$, $f(v_{a,b}v_{a,b+1}) = \begin{cases} n+2 & \text{If b is odd} \\ n+3 & \text{If b is even} \end{cases}$

For $1 \le a \le 6$, $1 \le b \le n-1$, $f(u_{a,b}u_{a,b+1}) = \begin{cases} n+4 & \text{if b is odd} \\ n+5 & \text{if b is even} \end{cases}$

Therefore, from the coloring norm above, the TCNOCP of Bi-fish with fan graph is n+5.

Theorem 3.6: The TCNOCP of Bi-fish with complete graph is n+4, for $n \ge 4$.

Proof: Let BFG be a Bi-fish graph. V= $\{u_a, v_a/1 \le a \le 6\}$, be the vertices and E= $\{u_1v_1\} \cup \{u_2u_4\} \cup \{u_3u_4\} \cup \{u_1u_2\} \cup \{u_1u_3\} \cup \{u_4u_5\} \cup \{u_4u_6\} \cup \{u_5u_6\} \cup \{v_1v_3\} \cup \{v_2v_4\} \cup \{v_3v_4\} \cup \{v_1v_2\} \cup \{v_4v_5\} \cup \{v_4v_6\} \cup \{v_5v_6\}$ be the edges.

Let K_n be complete graph. V= $\{w_a / 1 \le a \le n\}$ be the vertices and $\{w_a w_{a+1} / 1 \le a \le \frac{n(n-1)}{2}\}$ be an edges of star graph. A Complete graph K_n is joined with each vertex of the bi-fish graph.

Let
$$S = V(BFG) \triangleright K_n \cup E(BFG) \triangleright K_n$$
 where $C = \{1, 2, 3, 4, ...\}$

We now define total coloring as a function $f:S \to C$.

Total number of vertices is 12n and total number of edges is $6n^2$ -6n+15

First provide coloring for the vertices as follows:

$$V = \{u_{a,b}\}: 1 \le a \le 6, 1 \le b \le n\} \cup \{v_{ab}: 1 \le a \le 6, 1 \le b \le n\}$$

For If a = 1 & 4. $\{1 \le b \le n\}$, $f(u_{a,b}) = \{b\}$.

For If a =2,3 & 6. $\{2 \le b \le n\}$, $f(u_{a,b}) = \{b-1\}$.

For $2 \le b \le n$, $f(u_{5,b}) = \{b-1\}$.

$$f(u_{2,1}) = f(u_{3,1}) = f(u_{6,1}) = \{n+4\}, f(u_{5,1}) = \{n+2\}$$

For If a = 1 & 4. $\{1 \le b \le n\}$, $f(v_{a,b}) = \{b-1\}$.

For If a =2,3 & 5. $\{1 \le b \le n\}$, $f(v_{a,b}) = \{n+3\}$.

For $\{2 \le b \le n\}$, $f(v_{6,b}) = \{b-1\}$.

$$f(v_{1,1}) = \{n+3\}, f(u_{4,1}) = \{n+4\}, f(v_{6,1}) = \{n+3\}.$$

Next provide coloring for the edges as follows:

$$f(u_{11}v_{11}) = \{2\}, f(u_{11}u_{21}) = \{n+2\}, f(u_{11}u_{31}) = \{n+3\}, f(u_{21}u_{41}) = \{n+3\},$$

$$f(u_{3,1}u_{4,1}) = \{n+2\}, f(u_{4,1}u_{5,1}) = \{n+4\}, f(u_{4,1}u_{6,1}) = \{2\},$$

$$f(u_{5,1}u_{6,1}) = \{n+3\}, \ f(v_{1,1}v_{2,1}) = \{n+2\}, \ f(v_{1,1}v_{3,1}) = \{n+3\}, \ f(v_{2,1}v_{4,1}) = \{n+3\}, \ f(v_{3,1}v_{4,1}) = \{n+2\}, \\ f(v_{4,1}v_{5,1}) = \{2\}, \ f(v_{4,1}v_{6,1}) = \{1\}, \ f(v_{5,1}v_{6,1}) = \{n+4\},$$

For
$$1 \le a \le 6$$
 and $1 \le b \le \frac{n(n-1)}{2}$, $f(v_{a,b}v_{a,c}) = \{b+c\}$.

For
$$1 \le a \le 6$$
 and $1 \le b \le \frac{n(n-1)}{2}$, $f(u_{a,b}u_{a,c}) = \{b+c\}$.

Therefore, from the coloring norm above, the TCNOCP of Bi-fish with complete graph is n+4.

ISSN: 1064-9735 Vol 34 No. 4 (2024)

Conclusion:

We found the total chromatic number of comb product involving graphs namely, Bi-fan with cycle, Bi-fan with star, Bi-fan with fan, Bi-fish with path, Bi-fish with star, Bi-fish with cycle, Bi-fish with fan and Bi-fish with complete graph.

REFRENCES:

- [1]. Behzad M., (1965). Graphs and their chromatic numbers, Doctoral Thesis, Michigan State University
- [2]. Behzad M., Chartrand G., Cooper J.K. (1967), The color numbers of complete graphs, Journal London Math. Soc. 42, pp.226-228.
- [3] Bondy, J.A and Murty, U.S.R (2008) Graph Theory, Springer international edition.
- [4]. Borodin O.V. (1989), On the total coloring planar graphs, Journal fur die Reine und ngewandte Mathematik, 394, pp. 180-185.
- [5]. Jonathan Jordan, (2009) Comb Graphs and Spectral Decimation, Glasgow Mathematical Journal, 51, pp. 71–81.
- [6]. Muthuramakrishnan Jayaraman(2018). Total Chromatic Number of Middle and Total Graph of Path and Sunlet Graph. Volume 6, Issue 4, pp.1-9.
- [7]. Rohmatulloh M.Y, Slamin Kristiana Dafik ,A.I., and Alfarisi, R(2021), On metric chromatic number of comb product of ladder graph, ICCGANT IOP Publishing
- [8]. Rosenfeld. M.(1971). On the total colouring of certain graphs, Israel J. Math., 9(3) pp.396-402.
- [9]. Suhadi Wido Saputro, Novi Mardiana and Ira Apni Purwasih (2017), The Metric Dimension Of Comb Product Graphs, Matematiqki Vesnik 69, 4, pp.248–258