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Abstract:  

Ocular diseases, a leading cause of vision impairment globally, necessitate early, 

accurate diagnosis for timely intervention. Conventional methods often face 

limitations in sensitivity and specificity. 

To address this challenge, we propose a novel hybrid framework that 

synergistically integrates deep learning and traditional machine learning 

techniques. Our approach leverages the power of deep neural networks to extract 

intricate features from ocular images, while incorporating the robustness of 

traditional algorithms for enhanced classification. 

The proposed framework achieved exceptional performance, surpassing existing 

methods with an average accuracy of 95.7% across eight common ocular diseases. 

This significant improvement demonstrates the potential of our approach to 

revolutionize ophthalmic diagnostics. Our findings offer valuable insights for 

future research and clinical practice, paving the way for more accurate and 

efficient detection and management of ocular diseases. 

Keywords: Hybrid deep learning, Ocular disease classification, Attention 

mechanisms, Transfer learning, Retinal image analysis, Computer-aided 
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1. Introduction 

The global burden of ophthalmic conditions continues to grow, emphasizing the critical need for 

advanced diagnostic tools that can facilitate early detection and accurate classification of ocular 

diseases. Worldwide, approximately 2.2 billion people experience near or distant visual impairment. 

Of this number, at least 1 billion cases could have been avoided or remain unaddressed. Refractive 

errors and cataracts are the primary causes of visual impairment and blindness globally. Globally, it is 

estimated that only 36% of individuals with distance vision impairment due to refractive error and 17% 

of those with vision impairment due to cataracts have received appropriate interventions [1].  

Despite the necessity for a more pragmatic retinopathy severity scale, to date there is no prevalent 

practical clinical standard terminology that has been endorsed for the global interchanging of 

information and data [2]. While deep learning techniques, particularly Convolutional Neural Networks 

(CNNs), have shown promise in analyzing retinal images and detecting ocular abnormalities [3], they 

often face challenges such as the requirement for large labelled datasets and difficulties in capturing 

both high-level features and fine-grained details simultaneously. However, recent research, including 
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planned clinical trials, has demonstrated that deep learning systems can accurately identify diabetic 

retinopathy [4].  

This research addresses these limitations by proposing a novel hybrid framework that leverages the 

strengths of both deep learning and traditional machine learning approaches. This synergistic 

combination aims to enhance the accuracy and robustness of ocular disease detection and 

classification, potentially revolutionizing diagnostic practices in ophthalmology. The primary 

objective of this research is to develop a robust hybrid framework that leverages the strengths of deep 

learning and traditional machine learning techniques for accurate ocular disease detection and 

classification. By evaluating the performance of different deep learning architectures, including those 

incorporating attention mechanisms, the objective is to identify the most effective models for this task. 

Additionally, it is necessary to explore the potential benefits of transfer learning in addressing the 

challenges posed by limited ophthalmological datasets. Finally, the proposed hybrid approach will be 

compared with standalone deep learning and traditional machine learning methods across various 

performance metrics to assess its overall effectiveness in improving ocular disease diagnosis. 

2. Related Work 

The field of ocular disease detection has witnessed substantial advancements in recent years, driven 

by the integration of artificial intelligence (AI) and machine learning techniques. The Wilkinson et al. 

[5] paper of 2003 introduced a standardized classification system for diabetic retinopathy and macular 

edema. Developed through consensus among experts from diverse fields, this approach aims to 

improve global communication and care for patients with diabetes. While the paper offers a valuable 

framework, it has limitations, such as the potential for subjectivity in image interpretation and the lack 

of validation data. Future research should focus on integrating automated image analysis techniques, 

incorporating longitudinal changes, and validating the systems in diverse populations to enhance their 

effectiveness and reliability. 

As outlined by these authors, diabetic retinopathy can be classified into five grades: grade 0 represents 

normal with no signs of diabetic retinopathy, grade 1 indicates mild diabetic retinopathy, grade 2 

signifies moderate diabetic retinopathy, grade 3 denotes severe diabetic retinopathy, and grade 4 is 

characterized by new vessel proliferation, which carries the risk of vision loss due to bleeding into the 

vitreous or tractional retinal detachment. Figure 1 illustrates the different grades of diabetic ret inopathy 

[5]. 

Figure-1. Random Samples Of Different Grades Of Diabetic Retinopathy 

 (a) grade 0, (b) grade 1 (c) grade 2, (d) grade 3, and (e) grade 4 
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Prentasic et al. [6] proposed a deep convolutional neural network (CNN) for exudate detection in color 

fundus photographs, a crucial step in early diabetic retinopathy diagnosis. The CNN, trained on the 

DRiDB dataset, demonstrated promising results. However, the paper acknowledged the potential for 

further improvement through techniques such as utilizing all image channels and incorporating 

preprocessing and postprocessing steps to enhance segmentation accuracy. The research contributes to 

the ongoing development of automated diabetic retinopathy screening tools, but additional validation 

and testing on larger and more diverse datasets are necessary to assess the method's clinical 

applicability. 

Kandel et al. [7] critically analyzed the application of transfer learning with convolutional neural 

networks (CNNs) for diabetic retinopathy (DR) image classification. They highlighted the limitations 

of traditional DR classification methods and the potential of deep learning to provide a more efficient 

and accurate diagnosis. To mitigate the challenges posed by limited availability of DR images, transfer 

learning was proposed as a promising approach. This technique involves repurposing pre-trained 

convolutional neural networks (CNNs) developed for other domains. A comprehensive review of 

existing literature on DR classification utilizing transfer learning was conducted. This analysis 

encompassed various methodological approaches and their associated performance evaluation metrics. 

The findings of this review underscore the potential of transfer learning as a valuable asset in the 

medical domain, especially when confronted with constrained training datasets. Furthermore, the study 

highlights the imperative for ongoing research aimed at developing innovative CNN architectures 

specifically tailored to DR classification tasks. 

In 2021, Brown et al. [8] introduced attention mechanisms into deep learning architectures for ocular 

disease detection. The researchers empirically validated the efficacy of attention mechanisms in 

identifying salient regions within retinal images. This strategic focus on relevant areas significantly 

augmented the model's capacity to detect subtle disease-specific characteristics. This breakthrough 

represents a substantial contribution to the field, as it substantially improved the interpretability and 

accuracy of AI-powered diagnostic tools. Ting et al. [9] in 2019 provided a comprehensive overview 

of the application of deep learning in ophthalmology, focusing on both technical and clinical 

considerations. This research significantly advances the field by providing a comprehensive analysis 

of the challenges and potential benefits of integrating deep learning models into clinical 

ophthalmology. A notable strength of this study lies in its meticulous exploration of the technical 

intricacies of deep learning, including data preprocessing, model architecture selection, and the critical 

role of large, heterogeneous datasets in training robust models. The study elucidates the transformative 

potential of deep learning in revolutionizing ophthalmic diagnostics. Despite the demonstrated efficacy 

of deep learning models in detecting ocular diseases, challenges such as the requirement for extensive 

labeled data and the need for model interpretability persist. The authors underscore the imperative of 

ethical considerations and collaborative efforts among clinicians, researchers, and regulatory bodies to 

facilitate the safe and effective integration of deep learning into ophthalmic practice. 

Lam [10] demonstrated the potential of deep learning, specifically CNNs, for automated diabetic 

retinopathy staging. While the model demonstrated performance on par with established benchmarks, 

it encountered difficulties in differentiating subtle disease characteristics, particularly mild disease 

from normal conditions. The researchers underscored the critical role of data quality and preprocessing 
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techniques in optimizing model performance. Although pre-trained ImageNet models offer a solid 

foundation, they may not be ideally suited for identifying fine-grained features within medical images. 

The study proposed potential avenues for future research, including feature localization, segmentation, 

and addressing class imbalance, with the aim of improving the accuracy and clinical applicability of 

automated diabetic retinopathy detection. Brown et al. [11] in 2023 presented a pioneering study on 

the application of deep learning for the localized detection of optic disc hemorrhages, a critical 

indicator of glaucoma progression. This research is noteworthy for its focused exploration of a specific 

and challenging aspect of ophthalmic diagnostics, employing advanced deep learning methodologies 

to elevate detection accuracy. A key strength of this study lies in its utilization of a substantial, 

annotated dataset, providing a robust foundation for training and validating the deep learning model. 

The paper introduces a novel convolutional neural network (CNN) architecture specifically designed 

to detect optic disc hemorrhages in glaucoma patients. This AI-powered approach surpasses traditional 

methods in terms of sensitivity and specificity. While promising, the study acknowledges limitations 

such as the requirement for labeled data and the need for model interpretability. The authors discuss 

the potential clinical implications of AI in glaucoma management, emphasizing the importance of 

seamless integration with existing workflows and addressing ethical considerations. This research 

contributes to the advancement of ophthalmology; however, further validation and the establishment 

of clear guidelines are essential for safe clinical implementation. 

These studies collectively illustrate the evolution of ocular disease detection methodologies, from the 

initial application of CNNs to the development of sophisticated hybrid models. While significant 

progress has been made, challenges remain, particularly in the areas of data diversity and real-time 

application. The current study aims to address these gaps by proposing a novel hybrid framework that 

integrates deep learning with traditional machine learning, offering a promising solution for enhanced 

ocular disease detection and classification. 

3. Methodology 

3.1 Dataset and Preprocessing 

This research leveraged a comprehensive dataset of retinal fundus images obtained from multiple 

sources, including publicly accessible repositories and collaborating ophthalmology clinics. While the 

Kaggle dataset contains a substantial number of images that are challenging to interpret due to 

prevalent artifacts, it comprises 6,392 high-resolution color fundus photographs representing eight 

common ocular diseases: Diabetic retinopathy, Glaucoma, Age-related Macular Degeneration, 

Cataract, Hypertensive Retinopathy, Myopia, Normal (healthy eyes), and Other retinal diseases. These 

diseases are represented with single letters in the dataset: D, G, A, M, C, H, M, N, and O, respectively. 

The images were captured using a variety of fundus cameras, reflecting the real-world clinical diversity 

in resolution. Experienced ophthalmologists labeled each image, with consensus sought for ambiguous 

cases. The dataset was partitioned into training (70%), validation (20%), and test (10%) sets, ensuring 

balanced representation of each disease category. Figure 2 provides a summary of the dataset 

characteristics. To enhance the quality and diversity of the dataset, this study employed various 

preprocessing techniques, including resizing, normalization, color space conversion, and data 

augmentation. 
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Figure-2: Overview Of The Dataset Characteristics 

 

 3.2 The Hybrid model  

This study introduces a hybrid approach that synergizes the strengths of deep learning and traditional 

machine learning models. The proposed hybrid model leverages the power of deep learning and 

traditional machine learning to enhance the classification of ocular diseases. An ensemble of cutting-

edge deep learning architectures, including Inception V3, ResNet50, DenseNet121, and 

EfficientNetB4, was employed. To focus on relevant image regions, attention mechanisms were 

integrated into the model. Figure 3 illustrates the architecture of the deep learning component. 

Figure 3: Architecture Of Deep learning Component 

 

Support Vector Machines, Random Forests, and Gradient Boosting Machines were integrated to 

capture diverse aspects of retinal images [12], utilizing both deep features and handcrafted features. 

To mitigate the challenges associated with limited labeled data, transfer learning was employed. 

Transfer learning enables the repurposing of a model trained for one task to address a new task. For 

instance, a model initially trained to recognize images of cats could be adapted to identify dogs. It has 

led to new methods for analyzing EEG signals [13]. Transfer learning leverages data or knowledge 

from related or applicable topics/sessions/devices/activities to aid learning [14]. The deep learning 

models were initially pre-trained on the ImageNet dataset and subsequently fine-tuned using the ocular 

disease dataset. 

This hybrid model integrates these approaches in a two-step process. In the first stage, pre-processed 

images are fed into the pre-trained and fine-tuned deep learning models. Features are extracted from 

the penultimate layer and concatenated. In the second stage, these deep features, along with 

handcrafted features, are used as input to traditional machine learning models. Predictions from all 

models are combined using weighted voting, with weights determined through validation. This 

approach effectively harnesses the hierarchical feature learning capabilities of deep neural networks 

and the interpretability and robustness of traditional machine learning algorithms. 
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4. Results and Discussion:  

4.1 Dataset Analysis 

The visualizations presented below offer a comprehensive overview of the dataset, providing valuable 

insights into the demographic characteristics of the study population and the associations between age, 

gender, and various ocular conditions. These findings can serve as a foundation for generating  

hypotheses, guiding clinical decision-making, and informing future research directions in the field of 

ophthalmology. 

1. Age Distribution of Patients 

Figure 4: Age Distribution Of Patients 

 

Figure 4 presents a histogram illustrating the age distribution of patients within the study. The x-axis 

represents age, while the y-axis indicates the count of patients. The distribution exhibits an 

approximately normal pattern with a slight rightward skew. The peak of the distribution suggests that 

the majority of patients are middle-aged to elderly. This information is essential for comprehending 

the demographic characteristics of the study population and may have implications for the prevalence 

and types of ocular conditions observed. 

2. Prevalence of Eye Conditions 

Figure 5: Prevalence Of Different Eye Conditions 

 

Figure 5 presents a bar chart illustrating the prevalence of various ocular conditions within the dataset. 

Each bar represents a specific condition, denoted by a single letter (N, D, G, C, A, H, M, O), and the 

height of the bar indicates the count of patients with that condition. This visualization enables a rapid 

comparison of the relative frequency of different eye conditions within the study population. It is 
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particularly valuable for identifying the most prevalent conditions, which may warrant increased 

clinical attention. 

3. Age Distribution across Eye Conditions 

Figure 6 presents a box plot illustrating the age distribution for each ocular condition. The x-axis 

displays the various conditions (N, D, G, C, A, H, M, O), while the y-axis represents age. Each box 

represents the interquartile range of ages for patients with a particular condition, with the median age 

indicated by the line within the box. 

Figure 6: Box Plot for Age Distribution For Each Eye Condition 

 

The whiskers extend to display the full range of ages, excluding outliers, which are indicated as 

individual points. This visualization is valuable for identifying age-related patterns in the occurrence 

of different ocular conditions, potentially revealing which conditions are more prevalent in younger or 

older populations. Figure 7 presents a heatmap illustrating the correlation between age and various eye 

conditions. The color scale represents the strength and direction of correlations, with red indicating 

positive correlations, blue indicating negative correlations, and white representing weak or no 

correlation. 

Figure 7: Heatmap For Correlation Between Age And Eye conditions 

 

The numerical values within each cell represent the precise correlation coefficient. This visualization 

is particularly valuable for identifying the ocular conditions that exhibit the strongest associations with 

age, potentially guiding future research into age-related risk factors. 
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4.2 The Crosstab performance evaluation 

1. Age Group vs Eye Conditions 

The crosstab analysis of age groups versus ocular conditions reveals intriguing patterns in the 

prevalence of various eye conditions across different age groups, as depicted in Table 2. 

Table-2: Age Group vs Eye Conditions Crosstab 

Age Group Types of Ocular Diseases 

A C D G H M N O 

0-20 2 0 4 0 0 25 6 1 

20-40 8 6 129 18 2 9 155 50 

41-60 108 74 1250 111 53 96 1143 410 

61-80 139 197 734 195 32 126 773 421 

81+ 10 45 6 17 0 1 24 12 

This analysis reveals that the 41-60 and 61-80 age groups exhibit the highest prevalence of ocular 

conditions, suggesting that middle-aged and older adults are more susceptible to eye problems. 

Condition 'D' (potentially representing diabetic retinopathy) is most prevalent in the 41-60 age group, 

indicating a potential association with the onset of type 2 diabetes in middle age. While condition 'N' 

(possibly normal) remains relatively high across all age groups, it decreases in the oldest age group 

(81+), suggesting that the likelihood of having some form of eye condition increases with age. 

Conditions 'A' and 'C' demonstrate an increasing trend with age, potentially representing age-related 

conditions such as age-related macular degeneration or cataracts. These findings highlight the 

importance of age-specific screening and prevention strategies for maintaining ocular health in middle-

aged and older populations. 

Figure 8: Distribution of Eye Conditions Across Age Groups 

 

2. Correlation between Different Eye Conditions 

Table 3 presents the correlation analysis between various ocular conditions, which can provide insights 

into potential comorbidities or associations between different conditions. 

Table 3: Correlation Between Eye Conditions 

  N D G C A H M O 

N 1 -0.4935 -0.1801 -0.1813 -0.1604 -0.1267 -0.1569 -0.4023 

D -0.4935 1 -0.1044 -0.0814 -0.1128 0.0409 -0.1021 -0.0234 
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G -0.1801 -0.1044 1 -0.0506 0.0006 0.0088 -0.0182 -0.0309 

C -0.1813 -0.0814 -0.0506 1 -0.0594 -0.0322 -0.0581 -0.0654 

A -0.1604 -0.1128 0.0006 -0.0594 1 -0.0087 -0.0379 -0.0885 

H -0.1267 0.0409 0.0088 -0.0322 -0.0087 1 -0.0406 -0.0608 

M -0.1569 -0.1021 -0.0182 -0.0581 -0.0379 -0.0406 1 -0.0306 

O -0.4023 -0.0234 -0.0309 -0.0654 -0.0885 -0.0608 -0.0306 1 

 

The analysis reveals a significant inverse relationship between condition N and the majority of other 

conditions, as anticipated if N represents a normal ocular state. While weak positive associations are 

observed between certain conditions, such as D and M, these findings suggest potential comorbidities 

or risk factors that may contribute to multiple conditions. However, the overall low correlations 

between most conditions indicate that they often occur independently of one another. 

Figure 9: Correlation Between Eye Conditions 

 

3.  Co-occurrence of Eye Conditions 

The co-occurrence matrix provides valuable insights into the frequency with which various eye 

conditions appear concurrently in patients. A notable finding is the high co-occurrence of condition D 

with other conditions, particularly O, suggesting that D is a complex condition often associated with 

other ocular problems. In contrast, conditions N and C demonstrate no co-occurrence with other 

conditions, indicating their potential mutual exclusivity or representation of specific states of ocular 

health. The diagonal elements of the matrix reveal the overall prevalence of each condition, with D, 

N, and O being the most commonly observed. 

Table 4: Co-occurrence of eye conditions 

 N D G C A H M O 

N 2101 0 0 0 0 0 0 0 

D 0 2123 56 74f 32 89 36 497 

G 0 56 397 6 20 15 13 78 
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C 0 74 6 402 0 4 0 56 

A 0 32 20 0 319 8 4 26 

H 0 89 15 4 8 203 0 21 

M 0 36 13 0 4 0 306 59 

O 0 497 78 56 26 21 58 1588 

4.  Proportion of Each Condition by Age Group 

As depicted in Table 5, examining the prevalence of each condition within age groups offers a 

standardized understanding of how condition occurrence fluctuates across different age demographics.  

Table 5: Proportion Of Each Condition By Age Group 

 Age Group A C D G H M N 0 

0-20 0.0526 0 0.1053 0 0 0.6578 0.1578 0.0263 

21-40 0.0212 0.0159 0.3421 0.0477 0.0053 0.0238 0.4111 0.1326 

41-60 0.0332 0.0228 0.3852 0.0342 0.0163 0.0295 0.3522 0.1263 

61-80 0.0531 0.0752 0.2804 0.0745 0.0122 0.0481 0.2953 0.1608 

81+ 0.0869 0.3913 0.0521 0.1478 0 0.0086 0.2086 0.1043 

Key Insights: 

i. The proportion of condition N, potentially representing a normal state, diminishes with 

increasing age. Conversely, the prevalence of most other conditions rises, reflecting the overall 

deterioration of ocular health associated with aging. 

ii. Condition D exhibits a peak in the 41-60 age group, further reinforcing the hypothesis of its 

potential connection to the onset of age-related diseases such as diabetes. 

iii. Conditions A and C demonstrate a significant increase in proportion among the oldest age group 

(81+), suggesting their strong association with advanced age. 

Figure 10: Proportion of each condition by age group 

 

These cross-tabular insights, tables, and figures offer a comprehensive examination of the ocular 

condition dataset. They uncover significant patterns in the distribution of eye conditions across age 

groups and genders, as well as interrelationships between various conditions. These findings are 

instrumental for understanding risk factors, guiding clinical decision-making, and informing future 

research directions in ophthalmology. 
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4.3 Performance Evaluation of a Hybrid Model 

The proposed hybrid model, incorporating InceptionV3 and ResNet deep learning backbones with 

SVM and LightGBM, exhibited exceptional performance in classifying ocular diseases. Rigorous 

hyperparameter tuning, employing Bayesian optimization and 5-fold cross-validation, optimized 

parameters such as learning rate, batch size, and regularization strengths. 

Table-6: Model Performance Metrics 

Metric Value 

Accuracy 0.957 

Sensitivity 0.945 

Specificity 0.956 

Precision 0.960 

F1-Score 0.955 

Quantitative evaluation metrics corroborate the model's exceptional performance, as illustrated in 

Table 6. Achieving an accuracy of 95.7%, it outperforms standalone convolutional neural networks 

(CNNs) and traditional machine learning models. The model demonstrated robust sensitivity (94.5%) 

and specificity (95.6%), indicating accurate identification of both diseased and healthy cases. Precision 

(96.0%) and F1-score (95.5%) further validate the model's reliability by minimizing false positives 

and maintaining high predictive accuracy. 

These findings underscore the potential of hybrid models in medical imaging, particularly 

ophthalmology. The integration of attention mechanisms enhanced the model's ability to concentrate 

on discriminative image regions, thereby improving interpretability and decision-making capabilities. 

5. Discussion of Findings and Future Directions 

The analysis of the ocular condition dataset provides valuable insights into the demographic and 

clinical characteristics of the study population [15]. However, in this study, the age distribution analysis 

reveals a predominance of middle-aged to elderly patients, with a peak in the 41-60 age group. This 

demographic trend aligns with the observed prevalence of various eye conditions, which tend to 

increase with age. The gender distribution analysis indicates a relatively balanced representation of 

males and females, with certain conditions exhibiting gender-specific prevalence patterns. For 

example, conditions D and G are more prevalent in males, while C and M are more common in females. 

These disparities may be attributed to hormonal influences or lifestyle factors that vary between 

genders. 

Figure 11: Learning Curves Plot 
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The accompanying learning curves (Figure 11) illustrate how the model's performance improves with 

increasing amounts of training data, underscoring the effectiveness of our transfer learning approach. 

The generated plot effectively demonstrates the impact of transfer learning on model performance, 

showcasing a clear improvement in accuracy as the fraction of training data increases. This insight is 

crucial for emphasizing the benefits of transfer learning in scenarios with limited labeled data, as it 

enables the model to achieve high accuracy with less data compared to traditional approaches. 

The learning curves plot illustrates the significant advantage of employing transfer learning in the 

classification of ocular diseases. As depicted, the model utilizing transfer learning achieves superior 

accuracy across varying fractions of training data, compared to a traditional approach without transfer 

learning. This enhancement is particularly evident as the training data increases, where the transfer-

learning model converges more rapidly and attains a higher final accuracy. The final accuracy of 95.7% 

demonstrates the model's robust generalization capabilities, facilitated by the pre-training on the 

ImageNet dataset and subsequent fine-tuning on the ocular disease dataset. These findings highlight 

the efficacy of transfer learning in leveraging pre-existing knowledge to improve model performance.  

The crosstab analysis of age groups versus eye conditions underscores the increasing prevalence of 

conditions such as D (potentially diabetic retinopathy) and C (potentially cataracts) with advancing 

age. The co-occurrence analysis further reveals that condition D frequently co-occurs with other 

conditions, suggesting its complexity and potential association with systemic diseases like diabetes. 

The correlation analysis between different eye conditions provides additional insights into potential 

shared risk factors or pathophysiological mechanisms. 

In conclusion, this study offers a comprehensive overview of the demographic and clinical 

characteristics of patients with various eye conditions. The findings highlight the significance of age 

and gender as key factors influencing the prevalence and distribution of eye conditions. The high 

prevalence of certain conditions in middle-aged and older adults emphasizes the need for targeted 

screening and intervention strategies in these populations. 

Future research should focus on longitudinal studies to better understand the progression of eye 

conditions over time and their association with systemic diseases. Additionally, exploring the genetic 

and environmental factors contributing to the observed gender differences in condition prevalence 

could provide valuable insights. The development of predictive models incorporating demographic 

and clinical data could enhance early detection and personalized treatment strategies for patients at 

risk of developing severe eye conditions. Furthermore, integrating advanced imaging techniques and 

machine learning algorithms could improve the accuracy and efficiency of eye condition diagnosis and 

management. 
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