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Abstract:  

Floods are unexpected natural disasters that can have a major impact on human life, 

soil along bank erosion, damage vital infrastructure, road closures, economy standard, 

and society of various affected regions.  An initial step of proper assessment is 

necessary for flood damage along with accurate measurements to easily restore 

essential damage of infrastructure, relief, and mitigation as quickly as possible. 

Nowadays, the rapid development of remote sensing images using deep learning as a 

most positive tool for accurately estimating the extent of overall flood detection 

surfaces. The monitoring of flood detections from remote sensing images still extends 

a few issues due to mostly varying from different weather changes conditions, cloud 

coverage areas that can have a limit to use of level of visible remote sensing satellite 

collected data. Moreover, Remote Sensing Satellite based observations may not always 

be mapped to the distribution's flood point peak, also it is very essential for both the 

flood extent and flood volume estimation. To overcome this challenge, we have 

presented a new remote sensing technology that integrates with a high resolution multi-

spectral satellite data/information by using an advanced Deep Learning to accurately 

analyze remote sensing based observations. In our experiment, we use the European 

Space Agency (ESA) launched Sentinel type-1, Sentinel type-2 data and Digital 

Elevation Model (DEM) to accurately measure flood monitoring results. In our study, 

we reviewed a real example of the flood situation that happened in 2019 in Kolhapur. 

In our results, we evaluated a  flood volume estimation at 0.0010 km3 in Kolhapur 

district. Finally, the proposed methodology provides an effective way to accurately 

motoring floods using low-cost satellite data and deep learning approaches. This 

project has the potential to improve the more accurate flood detection and mapping 

which can prevent an exactly timely response and immediate recovery efforts for flood 

surrounding affected areas. 

Keywords: Flood, Disaster Management, Satellite Imagery, Sentinel, Remote based 

Sensing. 
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1. Introduction 

Inundation is a very dangerous type of natural category of hazard that occurs worldwide, that are 

mainly affecting human life, negative effect on wildlife, disease proliferation, habitat destruction and 

causing significant damage to both economic standard and overall environmental damage. The 

common methodologies of floodwater monitoring are mostly floodwater ground-based various 

surveys, manual reports and collection of aerial images, which can be generally costly, a lot of time 

consuming along with high-risk tasks [1]. In many cases, there is no possibility of monitoring flood 

extent and volume estimation in larger flood areas. To overcome drawbacks of these Traditional 

methodologies in accurate flood monitoring of large areas. The remote sensing-based satellite data 

(RS) and machine learning algorithms can provide an efficient, high speed and low-cost option for an 

automatic flood monitoring in large areas [2]. For example, Floods in western Maharashtra’s Kolhapur 

district in India August 2019, affected nearly 51,000 peoples, 200 villages, 342 bridges have gone 

under flood, the highest flood in the last 100 years. Overall, economic losses due an expected flood in 

both Kolhapur and Sangli Maharashtra Districts ₹700 cr. ($94,280,000), Electricity based 

infrastructure worth ₹1,200 cr. ($16, 16, 41,000) has been damaged, while damage to many national 

highways, many roads and public bridges is overall ₹1,500 cr. ($202,051,000) and Crops across 

339,000 hectares have been damaged due a flood in western region of Maharashtra and Konkan region 

of India. Remote sensing-based satellite imagery can easily provide detailed information of the flooded 

coverage area, it is possible to accurately monitor the flood extent and volume estimation in large 

areas. For instance, in [3] Liis Sipelgas showed the mapping of Open- surface Water Flooding (OWF) 

and Flooding Under level of Vegetation (FUV). Jianzhong Lu used the Normalized Difference based 

Water Index (NDWI), Modified based Normalized Difference Water Index (MNDWI), and Water 

Ratio level Index (WRI) using advanced supervised maximum likelihood algorithm [4] that authors 

are being mainly carried out in area of the Chenab Basin, country- Pakistan with highest accuracy of 

89%. In [5], Rizwan Sadiq also proposed an advanced deep learning models for mainly flood detection 

based on remote sensing through satellite imagery. Kaixin Yang [6], proposed the Deep Learning 

advanced Models (DLM) to automated accurate detection of flood affected buildings construction with 

Unmanned Aerial Vehicles (UAVs) aerial imagery in Kangshan levee of Poyang Lake. Although 

Unmanned Aerial Vehicles (UAVs) are based on the measurements, they provide a complete detailed 

information of flood affected areas. Such various observations do not always acquire more valuable 

information such as flood depth and destroyed degree of the buildings due to factors of poor 

illuminations, in complete light time or bad weather conditions. Remote sensing satellites are more 

satisfactory in mostly particular cases.  Matias Bonansea [7], Various satellite (European Space 

Research) missions are most commonly used for flood detection such as Landsat-8 OLI- (L1 and L2), 

Sentinel-1, Sentinel-2A and 2 B, MODIS, MERIS, SPOT, QuickBird and Ikono. In [8], Asmamaw 

Gebrehiwot utilized various image classification techniques including mainly SVM (Support based 

Vector Machine) that have been primarily used for an automatic flood extent mapping. There has been 

the most significant improvement in remote sensing based image classification using advanced 

Convolutional based Neural Networks (CNNs). Convolutional Neural Networks (CNN_s) have a very 

high excellent performance in image classification and segmentation. Lianchong Zhang [9] has 

proposed the Chinese Satellite categories of Datasets including the 1) Gaofen (GF) series and 2) 
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Zhuhai-1 hyper spectra during the year of 2020 china summer period of the floods monitoring. 

Microwave remote based sensing flood inundation for flood assessment based on synthetic aperture 

radar (SAR) [10].  In [11], Afshin Akram has proposed a framework to accurate evaluate the flood 

water extent and volume mapping by used advanced MODIS and NDWI techniques (MODIS 

combined with NDWI-16 Days) for a cumulative based flood risk map for the period of 10 years 

(Year:2010 to 2020) in Mianwali region. In [12], Qiuyang Chen has proposed the solutions for 

detection of flood situations from remote based sensed satellite collected images, they have a 

worldwide serious problem due to cloud cover flood scenes, different weather conditions, leading to 

fragmented and degraded flood data collections. To overcome these challenges, the author proposed a 

framework based on Advanced U-Net architecture and collection of  dataset of flood situations in 

cloudy cover regions by collecting all information mainly from the ESA-Sentinel series-1 and Sentinel 

series-2 categories of the satellites. Shangjia Dong [13], demonstrates the predictive watershed flood 

monitoring of Harris County using an advanced deep learning technique based on the level of physical 

sensor and second level of social sensor data. In [14], Bonafilia et al has introduced the Sen1 Floods 

11-a row imagery water data set from Sentinel-1. The Sen1 Floods is used for both the train and test 

available dataset as well as test FCNN (Fully Convolutional Neural Networks) to accurate segments 

of flood water. B. Ghosh shows, in [15], two deep learning approaches: 1) U-Net Architecture and 2) 

Second, FPN (Feature Pyramid Network). The different dataset primarily covers all flood situations 

from various countries such as North Alabama, Nebraska, Red River North, Bangladesh and the city 

of Florence. Both deep learning approaches U-Net and FPN were easily evaluated with three sets 1) 

Training sets, 2) Testing sets and 3) Validation sets. During the testing sets, the model of  U-Net 

achieved the score of meanIoU-75.07% and the FPN deep learning approach achieved the score of 

meanIoU-75.77 %. In [16], Rudner has implemented a new approach for accurate segmentation of 

buildings in flood areas by using three satellite imagery such as Multisensory, Multi-resolution and 

Multi-temporal based satellite imagery in a Convolutional Neural Network-CNN. However, the 

proposed system has significantly expedited the flood maps based on satellite imagery, critical for first 

stage responders and all local administration in the before time stages of flooding. In addition, 

monitoring the flood water extent unattended  may not be sufficient for accurate flood detection. The 

estimate of both the extent of flood and flood volume of estimation of the flood surfaces. Quinn [17] 

has highlighted the importance of depth estimation of flood covered areas. In [18], Weikai Tan used 

remote sensing as a very powerful tool for accurate monitoring of floods. The Digital (advanced) 

Elevation Models (DEM'S) are very essential for flood inundation information estimation towards a 

proper flood mapping in urban areas. Most of the time High-Resolution (HR)- advanced DEMs are 

mostly inaccessible due to the very high acquisition costs of HR-DEMs. The proposed system has been 

designed as a framework consisting of three important components: 1) Novel DEM up scaling based 

Network 2) High Speed of flood segmentation network, and 3) GIS-Geographical collected 

Information System tool mainly for accurate mapping of flood extent and volume estimation. A similar 

approach is explored in [19], Kepeng Xu, Jiayi Fang has introduced a problem that is extremely acute 

in small size, flat coastal cities in the entire world. It is very necessary to find the various differences 

of the advanced DEMs and possibly reduce maximum anomalous errors of the DEMs method. The 

author has experimented on urban areas flood simulation in a coastal city of Shanghai-Huangpu River 

by utilizing Two-Dimensional Hydrodynamic based Model (LISFLOOD-FP) mainly designed to 
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estimate flood water inundation over complex topography and used six DEMs open access such as 1) 

SRTM, 2) MERIT, 3) Coastal-DEM, 4) GDEM, 5) NASA-DEM, and 6) AW-3D30m, and simply 

analyzed the differences in the various results of automated flood inundation level of simulations. In 

[20], Ahmed M. AL-Areeq has used the Global level of Digital Elevation Models (G-DEMs) to assess 

automatic risk of flooding in Jeddah, Saudi Arabia. This study, author compared the overall 

performance of all five Global level of Digital Elevation Models (G-DEMs) namely: 1) 30-m based 

SRTM, 2) 30-m based ASTER, 3) 90-m based MERIT, 4) 10 m Sentinel type-1 satellite DEM, and 5) 

12.5 m based ALOS PALSAR - in estimating the flood inundation extent level and volume of 

watersheds in Jeddah including all three dams. The quality with resolution of Digital based Elevation 

Models (DEMs) has mainly focused on urban hydrology research . Manoranjan Muthusamy [21] 

focused on all primary impact root causes of DEM based resolution and quality on urban category of 

fluvial flood monitoring results simply using Digital Elevation Models (DEMs) with a high grid 

resolution ranging between 1m to maximum 50m. HEC-RAS two-dimensional model was used for all 

the simulations. The results show that there is an approximately 30% increase in flood extent from 

58.8 ha to 78.0 ha and a 151% increase in mean level of flood depth volume from 1.75 m to 4.31 m 

when the resolution reduces mainly from  1 m grid to maximum 50 m grid. 

In our proposed research methodology, we evaluated experiments by using three Neural Network 

based architectures: 1) Nested U-Net (U-Net++), 2) MA-Nets and 3) DeepLabV3+. We used all real 

time cases of flood events that mostly occurred in Kolhapur, India-2019.  

The major contributions of our proposed work are mentioned: 

1) We designed an automatic flood volume estimation by using remote sensing Sentinel type-1 

and Sentinel type-2 satellite data / information that easily utilizes NN-Neural concept Network 

Technologies. 

2) In our experiments, we took real time limitations such as limited availability of satellite data 

and cloud shadows or cloud area coverage during real time flood events. 

3) Also, we utilized various advanced deep learning methodologies to achieve our approach. 

4) Lastly, we designed an advanced method for mainly flood water volume accurate estimation 

that used both DEM methods and expected flood water extent. 

2. Resources and Approaches 

2.1. Data-Record 

2.1.1. Flood Monitoring Data Explanation 

In our proposed system, the original set of data includes only possible raw images of Sentinel type-1. 

The preprocessed data are collected from Sentinel-1 and Sentinel-2. Both training and testing datasets 

are called as labels taken from the Sen1 Floods 11 [22] open datasets. The datasets are collected from 

various continents and cover different areas with climate changes, topographical influencing factors 

and natural causes of floods. The dataset covered the flood that occurred in 2019 in Maharashtra state. 

The labels are classified into three different categories: 1) Water Areas 2) No water Areas, and 3) 

Clouds coverage areas. The overall area of flood water is “66.82 km²” of Kolhapur district of which 
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only 10 km² flood areas are hand operated and manually identified. Remaining rest of areas, based on 

indices images that are captured from multiband images. It was observed that the Indices based Sen1 

Floods 11 dataset is not strongly accurate. Hence, we commonly used accurate manual annotation in 

our present research work. 

  
Figure 1. Example of Flood is taken from Open Sen1-Floods 11 [22] set of data records and three RGB 

channels of the Sentinel type-2 data a) Real Image of flood from Sentinel type-2 satellite with cloud 

mask b) Shows [Blue] water areas, c) [Green] background and d) [Gray] Cloud areas. 

Table 1: The dataset statistics are presented. 

 Area ( km2) Total number of Images 

Train Flood Area 6 km² 95 Images 

Test Flood Area 4 km² 42 Images 

Validation Area 4 km² 42 Images 

 

2.1.2 Satellite based Image Processing: 

The Copernicus Open Access Hub (Formerly known as Scientific Data/ Information Hub) was used to 

download, free and open access images to Sentinel-1 and Sentinel-2 products starting from the In-

Orbit Commissioning Review-IOCR which provides continuous all three weather, full day and night 

latest collection of imagery for land monitoring. Both the Satellites, Sentinel type-1 and Sentinel type-

2 provides up-to-date up-to-date information of land, mostly revisit time might change for various 

areas of land territories, but satellite Sentinel type-1 revisit frequency is up to next 3 days. The Sentinel 

type-2 with two satellites (Sentinel type- 2A and Sentinel type-2B) to take 5 days revisiting time over 

land area and surface. The Sentinel-2 Multispectral Instrument (MSI) has 13 spectral bands for 

measure the earth's reflected radiance from Visible along with Near Infrared (V-NIR) to Short Wave 

based Infrared (S-WIR) with 10 m, 20m and 58-60 m spatial (pixel)resolution depending on the 

wavelength. 

The Sentinel type-1 Ground Range Detected (GRD) is focused on satellite data/ information that has 

been accurate detected, multi-looked and projected to various ground range by simply using an 

advanced Earth-Ellipsoid Model (EEM).The Sentinel-1 preprocessing system is consists of 7 steps to 

mainly reduce propagation of error in subsequent processes: 1) Apply Obit File: The operator to apply 

precise orbit (po) available in Sentinel Application Platform (SNAP) that allows to automatically 
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download the accurate state vectors of each satellite images in its metadata of product information with 

accurate position of satellite and information of velocity 2) Removal of Thermal Noise: The thermal 

noise removal is mainly reducing noise effects in the texture, normalizing the signal of backscatter 

within the complete sentinel type-1 image. The Thermal noise removal operator present in the SNAP 

for Sentinel-1 data can reintroduce the noise signal 3) Border Noise Removal: The algorithm of Border 

noise based removal is present in the SNAP to remove all low level intensity of noise and also remove 

the false data on image edges. 4) Calibration: The Calibration that mainly converts all digital pixel 

values to calibrated satellite backscatter. 5) Speckle Filtering: Speckle is appearing in satellite 

images/data as granular type of noise, The Speckle filtering removes the speckle and increases the 

quality of image. 6) Range Doppler Terrain Correction: The Range doppler terrain correction (RDTC) 

operator is present in the SNAP to mainly used in causes of topography in correction of geometric 

distortions. 7) Conversion to dB: This is a final step of sentinel-1 preprocessing workflow, we used a 

logarithmic transformation to convert the unit less backscatter into dB. For Sentinel type-2 images, we 

extract all 13 spectral (bands) channels excluding B-10 band and reflectance multiplied by 10^5 is 

considered as units for all spectral channels. 

Furthermore, we calculated three water level of indices based on Sentinel type-2 on 13 multi-spectral 

channels: 

1) N-DWI: Normalized based Difference Water Index is mainly appropriate for mapping of water 

bodies and N-DWI can enhance the information of water effectively [23]. 

 

                                                 NDWI=    (1) 

 

2) MNDWI: Modified Normalized Difference Water Index uses both green and SWIR bands for the 

enhancement of open water information [24].  

                                                            MNDWI=   (2)           

 

 

3) SWI: Standardized based Water-Level Index. It mainly estimates the contents of soil moisture by 

simply analyzing the difference between the method of Near-infrared (NIR) and Shortwave infrared 

(SWIR) reflectance [25].  

                                               SWI=   (3)          

2.1.3. External Data Test: 

In the external data test , we covered an area of Kolhapur District (Maharashtra, India). The heavy 

flood occurred there during the months of July & August 2019. We collected 3 days of data in three 

available categories such as before flood, after flood and during flood. 

Table 2. Remote Sensing satellite images were collected of the flood events in Kolhapur District 

according to various dates . 

GREEN-NIR 

GREEN+NI

R 

GREEN-SWIR 

GREEN+SWIR 

NIR-SWIR 

NIR+SWIR 
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Date of Satellite Images (August 2019) Manual Markup Flood Position 

20/05/2019 Yes Before Flood 

07/08/2019 No During Flood 

12/08/2019 Yes  During Flood 

25/08/2019 No After Flood 

 

 
Figure: 2 Geography of External test area of land, Kolhapur district, Maharashtra, India. 

2.2. Flood Approaches 

2.2.1. Flood Water Extent 

The proposed system is illustrated in figure 03. Cloud and other atmospheric interference can have an 

important impact on overall accuracy and usability of satellite observation data. They can hide the 

extraction of useful information from the satellite images and complicate data analysis. For this reason, 

we employ Usable Data Mask (UDM 2.1 Latest version) from raw image data of sentinel type-1 and 

sentinel type-2 to extract the availability of Surface Water Mask (SWM) for Synthetic Aperture Radar 

(S-AR) satellite data along with Multi-spectral (MS) data. In addition, cloud masking is an essential 

step in our proposed work. We utilize s2 cloudless (s2cloudless algorithm) to improve cloud and cloud 

shadow masking with probabilities in sentinel type-2 imagery which is generated by using the Sentinel-

2 cloudless (S2) processor. These three masks are generally processed concurrently to create (SWM_S-

AR) mask, (SWM_S-AR+MS) mask and (MS) mask. These all masks are mostly utilized to describe 

a specific land region where these specific models should be successfully applied. In this, each of the 

three various data configurations as well as we train two unique combinations of input channels. 

Furthermore, we used the per-channel technique of Min-Max normalization (also called Min-Max 

scaling) technique to calculate global minimum (global-min[i]) and global maximum (global-max[i]) 

data values based on availability of data per channel. 

    (4) 

 

 

Where, s[i] show i-th channels, global-min[i] indicate the minimum value in per channel, global-max[i] 

indicate the maximum value in per channel.  

MIN_MAX(s(i)) 

= 

s[i]- global-min[i] 

global-max[i]- global-min[i] 
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Figure 3: The proposed method for identifying water level bodies primarily based on Sentinel-1 and 

Sentinel-2 imagery. 

In our result, we conducted various experiments by using three Neural advanced Network 

Architectures:  Nested U-Net (U-Net++) [26], MA-Nets [27] and DeepLabV3+ [28] in both the remote 

sensing and segmentation tasks. 

The A Nested U-Net (U-Net++) is an advanced deep learning model mainly based on transfer learning 

concept to solve the semantic level of segmentation problem of high pixel resolution on remote 

sensing-based satellite imagery. The U-Net++ model is consist of  encoder–decoder framework, the 

sensing device encoder part of U-Net++ model that simply captures high level of relevant features 

from the input image through a series of convolutional layer and pooling layer where the decoder part 

of U-Net++ up-samples features of these input image to product a dense based segmentation advance 

map. After complementing the U-Net++, we include the MA-Nets used to extract the detailed features 

of low spatial resolution based on the remote sensing satellite images at multi scales. This capability 

of MA-Nets permits it to efficiently account for the changeable scales present in the remote sensing 

satellite imagery to accurately capture all large level geographical features to small level geographical 

features. Additionally, both the U-Net++ and MA-Nets, we utilized an advanced DeepLabV3+ 

lightweight neural network based on the sensing device of encoder and decoder structure, where the 

DeepLabV3+ encoder is also responsible for extracting shallow as well as high-level detailed 

information. The DeepLabV3+ decoder is responsible for combining both the low level and high-level 

information to improve high level of accuracy of remote sensing segmentation across various 

boundaries and accurately categorize detailed information of various pixels. To enhance flexibility and 

robustness of our proposed models, we used the VAE-Variational Auto-encoder into our system 

architecture of each image from different time series and utilized a distance metric to detect any 

changes between two sentinel-2 images. Nowadays, there is a huge demand for remote sensing-based 

image classification in many applications. Inputting the feature map into the CNN-convolutional 

neural network can obtain more accurate abstract features from the input feature map. Thus all features 

of the input feature map can be applied to remote sensing-based image classification. Therefore, we 

used MobileNetV3 as a simple network applied CNN- convolutional neural network can obtain more 

features of the input map, and these features can be applied on CNN- convolutional neural network to 
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remote sensing image classification. Similarly, ResNet50 is CNN- convolutional neural network that 

belongs to ResNet-Residual Networks family, the ResNet50 consists of 16 residual blocks and each 

block of residual consisting of several convolutional based layers with residual connections. The 

ResNet50 also includes 3 layers such as pooling layers, softmax output layer and fully connected layers 

for remote sensing image classification. In the CNN model, the input data of  CNN model is available 

in a 3D Three-Dimensional Array with a simple combination of pre-processed channels of various 

multispectral images, also calculated remote sensing indices. The set of these input features differs 

depending on the new various experimental setup. In our experimental output, we took a 2D Two-

Dimensional Array primary consisting of values“0” and “1”. Where, “0”pixel value indicates the 

surface level without water objects; “1”pixel value indicates surface with water level objects. 

Additionally, cloud levels are masked for post-processing as a new class of these multispectral images 

and these models are trained to operate over 150 epochs and the same batch size is consistent across 

all these models. 

2.2.2. Flood Water Volume 

New Digital Elevation Model (DEM) plays an important part in Flood monitoring. The mapping of 

flood water is extremely dependent on  accuracy of DEM. Most of the time,  DEM-Copernicus 

products with a resolution between [10-30 m], that defines the level of altitude, cannot be used easily 

for estimating level of water including both before flood as well as after flood events to lower the 

temporal resolution. Cohen et al. proposed [29], to estimate the depth of water surface during the flood 

time by using the DEM for collection of general information of the surface. In our proposed work, we 

used one new method for flood volume estimation which is based on prediction of flood water surface 

from remote sensing derived information and single-DEM that defines territory. The basic information 

of territory, represents the territory before the flood occur, the calculation of levels of water from 

different points of territory boils down to primary estimating the Absolute Level of Surface water 

floods (ALSWFs) during flood event. Recognizing where floods are occurred, along with the baseline 

territory, we can exactly calculate the Absolute Level of Surface water floods (ALSWFs) at flood 

boundary, other than internal areas of interpolating (ALSWFs) presents a more difficult due to  

probably complex territory. In this method, we obtained (ALSWFs) the complete flooded area, along 

with the baseline level. We can accurately calculate the various water levels in all points of flood events 

by using a simple subtraction method. After recognizing the water level in all points of the flooded 

surface, the volume of flood can be estimated using the products of the flood area and level of water 

for all points of  flood event.  

2.3. Metrics of Flood Evaluation: 

To accurately evaluate and overall performance of flood water segmentation methods, we used two 

different metrics: 1) Intersection over Union (Io_U) called “Jaccard index” 2) F1_Score (F1) called 

“Dice Score”. Equation of Intersection over Union (IoU) and F1_Score are the following:  

Io_U   =                      T_P                                         (5)  

T_P+F_P+

F_N 
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Recall_R= 

T_P                                                           

(7)  
T_P+F_N 

                        

F1_Score= 

 

2 * 

Precision_P * Recall_R                                

(8) 
Precision_P +Recall_R 

The F1_Score ranges between (“0” and “1”) where F1_range is 1 shows the highest accuracy and 

F1_Range is 0 shows lowest accuracy. True Positive T_P is number of all pixels accurately classified 

in the target class, False Positive F_P is number of all pixels inaccurately classified in the target class, 

as well  as False Negative F_N is number of  pixels of target class that were incorrectly classified as 

one more class. 

3. Results 

3.1. Practically Results on Dataset of Sen1_Floods_11 Surface Water  

We conducted various practicals on different combinations of multiple input channels. The tables 3-5 

are shown the outputs for the test set of Sen1_Flood_11 dataset. The best result of the Sen-1_Floods_11 

dataset was obtained from combining all Sentinel type-2 multispectral based channels and all of 

Sentinel type-1 radar channels. In this MA-Nets model, the F1-Score on  test set is 0.94 and Io_U score 

is 0.853. Overall, the result is based on both multi-spectral data and available radar data separately. 

Even with only the availability of multi-spectral data, it is more easy to achieve very high outcomes 

by using all spectral channels of Sentinel type-2. In the U-Net++ model, the accuracy of F1- score on 

the test set is 0.919. The radar measurements show lower results of F1_Score is 0.795 and Io_U score 

is 0.659. In [30,31], it was experimented that many input channels have not provided the best outcomes, 

along with use of dedicated indices can yield poorer results than a complete application of all accessible 

channels. 

 

 

 

Table 3. Results of Nested U-Net (U-Net++) model with various configurations of input data. 

Combination of Various Features MobileNetV3 ResNet-50 

F1_Score Io_U F1_Score Io_U 

SWR- SAR  0.779 0.638 0.783 0.643 

SWR- SAR+NDWI 0.876 0.778 0.889 0.799 

SWR- SAR+MNDWI 0.895 0.809 0.895 0.809 

SWR- SAR+SWI 0.874 0.774 0.869 0.767 

Precision_P = T_P                                        (6) 

T_P+F_P 
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MS+ SWR-SAR 0.919 0.847 0.916 0.844 

MS 0.919 0.849 0.915 0.86 

SWR-SAR + All Indices 0.900 0.816 0.895 0.809 

MS+ SWR-SAR+ All Indices 0.903 0.819 0.904 0.823 

MS+ All Indices 0.905 0.826 0.897 0.811 

 

MS (0.919 and 0.849) shows the best combination of features and type of encoder type with highest 

metric. 

Table 4. Results of MA-Nets model with various configurations of input data. 

Combination of Various Features MobileNetV3 ResNet-50 

F1_Score Io_U F1_Score Io_U 

SWR- SAR  0.794 0.657 0.794 0.657 

SWR- SAR+NDWI 0.884 0.81 0.91 0.804 

SWR- SAR+MNDWI 0.895 0.809 0.898 0.813 

SWR- SAR+SWI 0.89 0.79 0.875 0.776 

MS+ SWR-SAR 0.94 0.853 0.917 0.845 

MS 0.917 0.845 0.911 0.835 

SWR-SAR + All Indices 0.905 0.825 0.897 0.811 

MS+ SWR-SAR+ All Indices 0.901 0.818 0.903 0.821 

MS+ All Indices 0.898 0.813 0.899 0.815 

 

MS+ SWR-SAR (0.94 and 0.853) shows the best combination of features and type of encoder type 

with highest metric. 

 

Table 5. Results of DeepLabV3+ model with various configurations of input data. 

Combination of Various Features MobileNetV3 ResNet-50 

F1_Score Io_U F1Score IoU 

SWR- SAR  0.783 0.643 0.795 0.659 

SWR- SAR+NDWI 0.850 0.738 0.89 0.755 

SWR- SAR+MNDWI 0.876 0.778 0.876 0.779 

SWR- SAR+SWI 0.855 0.746 0.845 0.730 

MS+ SWR-SAR 0.893 0.805 0.890 0.801 

MS 0.889 0.799 0.888 0.798 

SWR-SAR + All Indices 0.875 0.776 0.880 0.784 

MS+ SWR-SAR+ All Indices 0.884 0.791 0.885 0.81 

MS+ All Indices 0.881 0.786 0.91 0.788 
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MS+ SWR-SAR (0.893 and 0.805) shows the best combination of features and type of encoder type 

with highest metric. 

3.2. Experimental Results on Availabilities of External Data 

3.2.1.Real of Flood Water Extent 

Figure 4 and Figure 5 shows the Forecasts for Kolhapur District beyond flood event (BF) and Kolhapur 

District during flood event (DF) areas. The F1_Scores shows 0.708 and 1.01 for Kolhapur BF event 

and Kolhapur DF event respectively. Thus, the overall average value is 0.850. In water surface 

segmentation, the difference in metrics before flood and during flood can be explained easily as 

follows. Mostly, the segmentation based models are difficult to find to differentiate areas along with a 

limited number of pixels except the boundaries of surfaces are apparently detectable. In our study, the 

river is somewhat thin, and all models have some inaccuracies i.e. F1_Score is 0.708.  Particularly, in 

the situation of flood, the level of water area has a very larger, more unceasing and additional more 

dissimilar area which allows the segmentation model to accurately segment the surface water body i.e. 

F1_Score of 1.01. 

 

Figure 04. Test area: Kolhapur (Before Flood) Observation date: 20 May 2019. a) Before Flood Image 

(RGB), b) Result of Manual Markup, c) Result of Model prediction. 

 

Figure 05. Test area: Kolhapur (During Flood) Observation date: 12 August 2019. a) During Flood 

Image ( RGB), b) Result of Manual Markup, c) Result of Model prediction. 

For permanent surface water measurements, Yang Liu [33] provides an advanced Global annual 

surface water cover frequency based dataset (GLOBMAP_SWF) at the level of global scale from the 

MODIS. Yang Liu [33]: GLOBMAP_SWF: an advanced Global annual surface water cover frequency 

based dataset during the year of 2000–2020. To complete analysis of infrastructure objects along with 
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also natural objects, Open_Street_Map+ (OSM+) [32] dataset is most often commonly used. Mostly, 

emergencies during flood events, all these datasets can only be used to primarily compare a huge 

flooded water area with primary areas of water level bodies. In figure 6-Kolhapur test area, simply 

shows a difference of mask predicated by model as well as mask provided with Sentinel type-2 data. 

The main advantages of the proposed method to water level body detection is combination of both the 

multi-spectral data and radar based data. In the figure 6, a dissimilar type mask provided with Sentinel 

type-2 data, the same mask predicted by the model correctly processes flood areas coverage covered 

by heavy clouds and cloud shadows.   

The advanced algorithm always allows for a very effective mapping of rivers during a wide flood 

event. Figure 7 shows a real example of a river flood event that occurred in July 2019 in Kolhapur with  

overall calculated water surface area (WSA). 

3.2.2. Volume of  Flood Water 

To estimate the level of flood extent along with the level of flood volume, we successfully applied our 

proposed method described rapidly. In our figure 5 to 7, we used original images (RGB colors) in our 

study area during the flood event along with after flood event, respectively.   

 

Figure 06. Kolhapur Test Area. Observation date: 12 August 2019 a) During Flood Image (RGB), B) 

Result of Model Prediction, c) Mask of Sentinel-2. Examples of a) and b) Where the result of model 

prediction superior to sentinel-2 mask are red spotlighted.   

 

Figure: 07 Continued. 
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Figure: 07 Flood event monitoring in Kolhapur with sequences of available images: RGB color image 

and predicted based mask on 7 August 2019 a) RGB image, estimated water level of surface area-8.3 

km2 and predicted mask on 12 August 2019; b) RGB image, estimated water surface area-5.0 km2 and 

predicted based mask on 25 August 2019; c) Estimated a complete surface area-4.1 km2. Legend: 

Water (Blue), Green (Background), and Red (Clouds). 

4. Discussion on Flood Analysis 

In our research study, we designed an unique methodology for accurately estimating both the flood 

water extent and flood volume level by simply employing a popular remote sensing-based satellite 

data/ imagery from both Sentinel type-1 and Sentinel type-2. In this study, we used multi-spectral data 

and radar based data by utilizing various advanced deep learning algorithms to accurately process 

along with analyzing both of these data. In our result, we created an effective tool for flood water 

monitoring, reliable and also added many multispectral images and indices levels that leads to accurate 

outcomes in our case study of the 2019 flood event that occurred in Kolhapur district of India. 

Therefore, a more constant estimate is proposed where indices level can not work correctly either, 

sometimes it requires additional levels of decision rules. The proposed system has advantages from 

addition of advanced machine learning algorithms, mainly the type of both learning based algorithms 

or zero-shot learning based techniques. Both algorithms can effectively help to accurately uncover the 

patterns of  visual data sets. Additionally, we saw an accurate estimate of the volume of floods. Such 

a method, combined with hydro-meteorological models, will simply allow a complete examination of  

dynamics of developing emergency situations. Many researchers have previously defined approaches 

for both flood extent and volume estimation based on advanced DEM methods. The main issues are 

availability of those data and their spatial pixel resolution of water level bodies map. The Landsat-5 

satellite can be primarily used for mapping these water level bodies with only 30 m spatial pixel 

resolution per pixel. So, our work, we focus on flood level analysis with 10 to 30 m per pixel spatial 

resolution using both Sentinel type-1 and Sentinel type-2 observations. In the previous research 

studies, often Liis Sipelgas [3], showed the mapping of both OpenWater_Flooding (OW_F) and 

Flooding Under_Vegetation (FU_V) which might lead to inaccurate accuracy in predictions. Quinn 

[17] has highlighted the significance of a complete depth estimation of flood covered surfaces. The 

research authors mentioned all challenges of such level of value estimation due to mostly similar type 

of reflectance of other surfaces. In [18], Weikai Tan used remote sensing as a very powerful tool for 

mainly flood monitoring. The Digital Elevation based Models (DEM'S) are compulsory for flood 

inundation information for accurate estimation towards a real flood mapping in urban areas; sometimes 
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High-Resolution-DEMs techniques are mostly inaccessible due to a very high acquisition cost of HR-

DEMs. Our method is developed to simply mapping the flood areas using advanced convolutional 

based neural networks (CNN) that are easily capable of extraction of spatial features. Also, our 

proposed method has been added with previous research on flood water mapping. In addition, our 

research methodology could be simply expanded to other types of data and various modeling such as 

hydrological models could help to predict the temporal based analysis of flood events, same as the 

more detailed information of topographical collected data [34] could increase an accurate estimation 

of wide flood extent and flood volumes. We can expand our methodologies with other regions and 

different types of flood events. Kaixin Yang [6], proposed the Deep Learning various models (DLM) 

to automated based detection of flood affected houses with Unmanned Aerial Vehicles (UAVs) aerial 

images in Kangshan levee of Poyang Lake. Although Unmanned Aerial Vehicles (UAVs) based on 

measurements simply provide the detailed information of flood affected regions. Such  types of 

observations do not always acquire more related information namely flood depth and destroyed degree 

of buildings due to factors of poor illuminations, in complete light time or bad weather conditions. Our 

research approach could be improved to flood study in urban coverage areas. It is possible to integrate 

with other types of neural network techniques, mainly solutions for construction / building recognition 

in flood for further a huge damage evaluation [35]. There is possibility to estimate the level of water 

in the number of flooded coverage floors in houses and structures. In proposed work, we focus mainly 

on remote sensing-based Sentinel type-1 and Sentinel type-2 satellite imagery. All those data are freely 

available and its high temporal resolution. The Sentinel-2 satellite has 13 multispectral bands for 

measuring the earth’s reflected form from VNIR to SWIR with 10 m, 20m and 60 m spatial resolution 

depending on the wavelength that enable us to easily compute more indice levels to improve the overall 

performance of the model. Our method, we added super resolution techniques [36]. The main 

advantages of our proposed method is the possibility to combine many sensors and simply apply these 

corresponding models in a single (ROI) region of interest, completely depending on the possibility of 

imagery information for that area along with the current climate situations. 

Additionally, we experimented with the flood event in Sangli district (India) on 9 August 2019. In 

figure 9 the level of water body before the flood event is accurately segmented by using multi-spectral 

images as well as figure 10 illustrates the level of  flood water body with a cloud mask where the 

complete study of flood area is covered by cloud as well as cannot be useful for a proper flood 

monitoring based on various visual level of bands. 
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Figure 8. Test area (Before Flood): Sangli District. Observation Date: 1 August 2021. a) Before flood 

image (RGB), b) Result of Manual markup, c) Result of model prediction.  

  

Figure 9. Test area (During Flood): Sangli District. Observation Date: 9 August 2021. a) During flood 

(RGB) composite, b) Result of manual markup, c) result of (SWM-SAR+MS and SWM-SAR), d) 

Result of MS prediction  Legend: Water (Blue), Green (Background), and Red (Clouds). 

The proposed methodology introduces an effective tool mainly for the event of flood water monitoring 

by using advanced remote sensing satellite data/ images along with advanced deep neural network 

technologies. Further research work should focus on improving a high level of accuracy and high speed 

of automatic flood damage identification and assessments. In the flood monitoring, it will expressively 

be important to the accurate timely flood monitoring response and these all recovery shows in flood 

affected covered regions, finally best to superior flood events risk management and decrease 

approaches. 

Conclusion:  

In our proposed work, we have implemented a unique  method for automatic assessing flood extent 

and volume estimation of flooding in real time using remote sensing sentinel type-1 and sentinel type-

2 data with deep learning models. Our flood monitoring method produced the F1-score of 0.893, in the 

flood event in Kolhapur in 2019. This F1 score shows a capability to effectively predict the depth level 

of flood and calculate its level of volume during a flood as well as after a flood. In our result, we 

evaluated the level of flood volume at 0.0010 km3. In our proposed approach, we used both the sentinel 

type-1 and sentinel type-2 and an advanced Digital Elevation Model (DEM) that provided exact along 

with consistent in our flood monitoring results. It has improved a high accuracy with  speed of accurate 

estimation of flood damage assessments. The advantage of the proposed work, it is possible for an 

extended of time response, to assess the flood peak and recovery efforts in flood affected areas 

regardless of different weather conditions and cloud coverage. Finally, the proposed system must 

perform an effective tool for flood monitoring and management which is important in the real time 

flooded impacted regions. In our future work, we would like to improve our approaches to have better 

accuracy and high speed of flood water mapping in the affected regions.    
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