Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

Detecting Vulnerabilities Through the Examination of Software in
Cloud using Machine Learning Techniques

G P C Venkata Krishna*!, Dr D Vivekananda Reddy?
*1 Research Scholar, Dept of Computer Science and Engineering, SVUCE,
Sri Venkateswara University, Tirupati, Andhra Pradesh, India
2 Professor, Dept of Computer Science and Engineering, SVUCE,
Sri Venkateswara University, Tirupati, Andhra Pradesh, India

Article History: Abstract:

Received: 28-04-2024 This research proposes a vulnerability prediction approach that analyzes
Revised: 08-06-2024 functions/methods/classes in software systems using static analysis and machine learning
models. The proposed approach outperformed other vulnerability prediction approaches
Accepted: 26-06-2024 in publicly available datasets, providing valuable insights to prioritize vulnerability
remediation efforts. This approach has the potential to improve software security and help

software development teams develop more secure software systems.

Keywords: Software Vulnerability, Function Analysis, Machine Learning, Neural Network,
Complexity Analysis.

1. Introduction

In recent years, the increase in security breaches and cyberattacks has underscored the importance of
software security. These incidents have caused significant financial and reputational damage to the
organization. In addition, increasing reliance on software systems makes them more vulnerable to
security breaches, making it imperative to secure these systems. Vulnerability prediction is one of the
key aspects of software security and involves identifying potential vulnerabilities in software systems
before they are exploited by attackers. Early detection of potential security vulnerabilities helps
develop more secure software systems. It can also prevent significant damage and reduce the risk of
financial and reputational damage to your organization. In recent years, machine learning techniques
have become increasingly popular for predicting software vulnerabilities. These techniques are used
to predict various types of vulnerabilities. B. Buffer overflow vulnerabilities,

SQL injectionvulnerabilities, and cross-sitescripting

Identify applicable funding agency here.
If none, delete this.

vulnerabilities. However, most existing approaches to vulnerability prediction focus on predicting
vulnerabilities at the source code level rather than at the function/method/class level.

Proposed approaches to vulnerability prediction include function/method/class analysis of software
systems, which can provide a more granular level of analysis. By analyzing functions/methods/classes,
this approach can identify potential security vulnerabilities at a more granular level, thus providing a
better understanding of vulnerabilities and their impact on software systems. This approach uses static

https://internationalpubls.com 25

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

analysis techniques to extract functionality from functions/methods/classes of a software system. The
extracted features are used to train machine learning models that can predict potential security
vulnerabilities. In this research paper, we present the proposed approach and evaluate its effectiveness
using publicly available datasets. This evaluation compares the performance of the proposed approach
with other vulnerability prediction approaches. The results show that the proposed approach is
effective in predicting potential security vulnerabilities in software systems. The proposed approach
helps developers identify potential security vulnerabilities early in the software development lifecycle,
leading to the development of more secure software systems.

2. Background

The field of vulnerability prediction has been the subject of research in the software engineering
community for several years. Various approaches have been proposed to identify potential security
vulnerabilities in software systems. These approaches fall broadly into his two categories: Manual [1]
and Automatic [2]. In manual approaches, human experts review

Paper Title

Issue Addressed

Performance Analysis of Machine
Learning Algorithms for Intrusion
Detection in Cloud Computing, M. R.
Bhuyan, S. C. Satapathy, et al. [17]

The paper analyses the performance of various machine learning algorithms
for intrusion detection in cloud computing environments. The paper highlights
the limitations of rule-based approaches and demonstrate that SVM and ANN
algorithms outperform other approaches when it comes to accuracy

Machine Learning Techniques for
Software Defect Prediction, A.
Alghamdi and A. Nadeem [18]

The paper provides an overview of the different machine learning techniques
used for software defect prediction, such as supervised learning, unsupervised
learning and semi-supervised learning. They detail each type's associated
algorithms such as decision trees, Bayesian networks, support vector machines
and artificial neural networks

Vulnerable Code Detection Using
Software Metrics and Machine
Learning. N. Medeiros, N. Ivaki et al.
[19]

The paper proposes uses of machine learning algorithms, such as Random
Forest and Decision Tree, to extract vulnerability-related knowledge from
software metrics collected from the source code of various software projects
developed in C/C++

Deep Learning for Software
Vulnerabilities Detection Utilizing
Code Metrics. M. Zagane et al. [20]

Paper includes deep learning techniques to software vulnerability detection. By
using code metrics as features and exploring various deep learning
architectures, the authors demonstrate how code metrics can improve accuracy
and scalability of vulnerability detection models

Detecting and Removing Web
Application Vulnerabilities with
Static Analysis and Data Mining. I.
Medeiros et al. [21]

The paper proposes a novel approach that incorporates static analysis and data
mining techniques to increase the accuracy and efficiency of vulnerability
detection.

A Comparative Study of Deep
Learning-Based Vulnerability
Detection System. Z. Li, D. Zou et al.
[22]

The authors compare the performance of several deep learning-based
vulnerability detection systems on the dataset using various evaluation metrics
such as accuracy, precision, recall, and F1 score

Techniques and Tools for Advanced
Software Vulnerability Detection. J.
D. Pereira. [23]

This paper provides an overview of various advanced techniques for
vulnerability detection, such as static analysis, dynamic analysis, fuzz testing
and symbolic execution. Each technique is discussed in detail along with its
strengths and weaknesses

An Empirical Study on Vulnerability
Detection for Source Code Software
based on Deep Learning. W. Lin and

This paper presents the results of an empirical evaluation of the proposed
approach on a set of real-world software projects. The evaluation demonstrates
high accuracy in detecting vulnerabilities with a low false positive rate and high

Guadagni et al. [25]

S. Cai [24] recall rate.

The Secret Life of Software | The authors emphasize the significance of software defect prediction in
Vulnerabilities: A Large-Scale | software engineering, as errors can have detrimental effects on quality, user
Empirical Study. E. lannone, R. | satisfaction and project costs and timeline. Machine learning techniques offer

an effective and efficient means for predicting software defects, enabling
developers to proactively detect and address potential issues before they arise.

https://internationalpubls.com

26

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

The study uses machine learning algorithms, such as Random Forest and
Analyzing Software Vulnerabilities | Decision Tree, to extract vulnerability-related knowledge from software
Using Machine Learning, B. Peerzada | metrics collected from the source code of various software projects developed
and D. Kumar [26] in C/C++. These projects include Mozilla Firefox, Linux Kernel, Apache
HTTPd, Xen, and Glibc.

Table 1: Comparison Table of various Research Papers

software code and identify potential security vulnerabilities. This approach is time consuming, labor
intensive, and impractical for large software systems. Moreover, the accuracy of manual approaches
often depends on the expertise of reviewers. Automated approaches use software tools to identify
potential security vulnerabilities in software systems. These approaches can be further classified into
two subcategories: Static and dynamic analysis [9]. Static analysis [3] analyzes software code
without executing it, while dynamic analysis [8] analyzes software code at runtime.

Most existing approaches to vulnerability prediction focus on predicting vulnerabilities at the source
code level. These approaches use static analysis techniques to extract features from software code and
train machine learning models to predict potential security vulnerabilities. However, source codelevel
approaches may not be sufficient to identify all potential security vulnerabilities in software systems.
The proposed approach focuses on analyzing functions/methods/classes of software systems, which
can provide a more detailed level of analysis. By analyzing functions/methods/classes, this approach
can identify potential security vulnerabilities at a more granular level, thus providing a better
understanding of vulnerabilities and their impact on software systems. This approach uses static
analysis techniques to extract functionality from functions/methods/classes of a software system. The
extracted features are used to train machine learning models that can predict potential security
vulnerabilities.

Overall, vulnerability prediction is an important aspect of software security, and the proposed approach
can provide a more effective method for identifying potential security vulnerabilities in software
systems. By analyzing functions/methods/classes, the proposed approach can provide a more detailed
and granular level of analysis, leading to the development of more secure software systems.

3. Literature Review

There is a wealth of literature available on vulnerability detection, including techniques such as static
and dynamic analysis. Unfortunately, there has been limited research on the application of functions,
classes and methods for vulnerability detection or the effectiveness of machine learning techniques for
improving vulnerability detection accuracy. This topic involves investigating functions, classes and
methods to detect vulnerabilities and applying machine learning techniques in order to increase
accuracy in vulnerability detection.

4. Possible Approaches

Proposed approaches to vulnerability prediction include analysis of functions/methods/classes of
software systems. This approach is based on the premise that functions/methods/classes are the
building blocks of software systems, and vulnerabilities are likely to emerge at this level of granularity.
By analyzing functions/methods/ classes, the proposed approach provides a more detailed and granular
level of analysis, allowing us to better understand vulnerabilities and their impact on software systems.
The first step in the proposed approach is to use the functions/methods/classes of the software system

https://internationalpubls.com 27

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

under analysis. This can be achieved using various techniques such as program slicing and program
understanding tools. Once the functions/methods/classes have been extracted, the next step is to extract
functionality from them using static analysis techniques. Features extracted from
functions/methods/classes may include control flow, data flow, and code metrics such as cyclomatic
complexity, lines of code, and parameter count. Control flow analysis analyzes the control flow of a
program to identify potential security vulnerabilities. Dataflow analysis analyzes how data flows
through a program. Code metrics such as cyclomatic complexity, number of lines of code, and number
of parameters can provide useful information about the complexity of functions/ methods/classes.
Once features are extracted from functions/methods/classes, the next step is to train a machine learning
model using the extracted features and labeled data. Marked data may contain information about
known security gaps in software systems. Machine learning models can be trained using supervised
learning techniques such as decision trees and support vector machines. Machine learning models can
then be used to predict potential security vulnerabilities in software systems. Proposed

16000 |

12000 |

2000
0

2010 2011 2012 2013 2014 2015 2016 2007 2018 2019

Fig. 1. Number of CWE vulnerabilities over the years[27]

approaches to vulnerability prediction include analysis of functions/methods/classes of software
systems. This approach is based on the premise that functions/methods/classes are the building blocks
of software systems, and vulnerabilities are likely to emerge at this level of granularity.

By analyzing functions/methods/classes, the proposed approach provides a more detailed and granular
level of analysis, allowing us to better understand vulnerabilities and their impact on software systems.
The first step in the proposed approach is to use the functions/methods/classes of the software system
under analysis. This can be achieved using various techniques such as program slicing and program
understanding tools. Once the functions/methods/classes have been extracted, the next step is to extract
functionality

Code group Code Description Example
Correction No Tool capable only of detecting | Design and implementation of a
defects deep learning-based
vulnerability detection system
Yes Tool capable of correcting defects End-to-end solution that can fix
multiple such errors in a program
Defect type Syntactic Tool targets syntax defects Algorithm for finding repairs to
syntax errors
Semantic Tool targets semantic defects Addressing the issue of semantic
program repair
Vulnerability Tool targets vulnerabilities System for vulnerability
detection
Representation Tokens Source code represented as a | Model treats a program
sequence of tokens statement as a list of tokens
AST Source code represented as an | Representations of ASTs
abstract syntax tree

https://internationalpubls.com 28

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X
Vol 31 No. 5s (2024)

Graph Source code represented as a graph | Generates a system dependency
capturing additional semantic | graph for each training program
information (control flow graphs,
data flow graphs, and so on)

Language Python Tool evaluated on source code | From an introduction to
written in Python programming in python course

C Tool evaluated on source code | Fixing common C language
written in C/C++ errors

Java Tool evaluated on source code | Targeting Java source code
written in Java

JavaScript Tool evaluated on source code | Broad range of bugs in
written in JavaScript JavaScript programs

C# Tool evaluated on source code | Open-source C# projects on
written in C# GitHub

Type No bug Tool trained on only nonbuggy | Using language models trained
source code on correct source code to find
tokens that seem out of place
Bug + fixed Tool trained on paired examples of | A pair (p, p°), where P is an
buggy and fixed code incorrect program and p° is its
correct version
Bug + no bug | Tool trained on unpaired examples of | Data set that contains 181,641
buggy and nonbuggy code pieces of code; 138,522 are
nonvulnerable (i.e., not known to
contain vulnerabilities) and
43,119 are vulnerable
Label Yes Tool trained on labelled data A program is labelled as "good,"
"pad" or "mixed"
No Tool trained on unlabelled data Self-supervised learning with
unlabelled programs
Realism Real Data set consists of mostly real | JavaScript code change commits
programs collected from GitHub
Semireal Data set consists of semirealistic | Corpus of open-source Python
code: real code injected with | projects with synthetically
synthetic injected bugs and C programs
bugs, or simpler/ beginner code with | written by students for 93
real mistakes different programming tasks
Synthetic Data set consists of mainly | Juliet Test Suite, with 81,000
synthetic/academic code synthetic C/C++ and Java
programs with known security
vulnerabilities
Availability Yes Data set and/or tool are publicly | -
available
No Data set and/or tool are not publicly | -
available

from them using static analysis techniques. Features extracted rrom tunctions/methods/classes may
include control flow, data flow, and code metrics such as cyclomatic complexity, lines of code, and

parameter count.

Control flow analysis analyzes the control flow of a program to identify potential security
vulnerabilities. Dataflow analysis analyzes how data flows through a program. Code metrics such as
cyclomatic complexity, number of lines of code, and number of parameters can provide useful
information about the complexity of functions/methods/classes. Once features are extracted from
functions/methods/classes, the next step is to train a machine learning model using the extracted

Table 2: Common Software Vulnerabilities

https://internationalpubls.com

29

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

features and labeled data. Marked data may contain information about known security gaps in software
systems. Machine learning models can be trained using supervised learning techniques such as
decision trees and support vector machines. Machine learning models can then be used to predict
potential security vulnerabilities in software systems.

5. Static Analysis Techniques

Static analysis techniques are an important aspect of the proposed approach to vulnerability prediction,
as they can extract features from functions/methods/ classes of software systems. These techniques
provide a way to analyze software code without executing it to identify potential security
vulnerabilities in software. Below are some static analysis techniques that can be used to extract
functionality from functions/methods/classes in a software system.

A. Control Flow Analysis

Control flow analysis is a static analysis technique that analyzes the control flow of a program. This
technique can be used to identify potential security vulnerabilities related to control flow such as: B.
Buffer overflow vulnerabilities, integer overflow vulnerabilities, or other types of security
vulnerabilities. Control flow analysis helps identify code paths that can lead to these types of
vulnerabilities. This technique focuses on identifying the flow of program execution and can be used
to identify the conditions under which certain parts of the program execute. One of the main goals of
control flow analysis is to identify code paths that can lead to security vulnerabilities such as: B. Buffer
overflow vulnerabilities or other types of security vulnerabilities. For example, executing if statements
under certain conditions can lead to buffer overflow vulnerabilities. Control flow analysis helps
identify conditions and code paths that can lead to security vulnerabilities. Control flow analysis can
be performed using various techniques such as: B. Dataflow analysis, symbolic execution, or abstract
interpretation. Dataflow analysis is a technique of analyzing how data flows through a program, and
symbolic execution is a technique of simulating program execution using symbolic inputs instead of
concrete inputs. Abstract interpretation is a technique for analyzing program behavior using
mathematical models. Control flow analysis helps identify potential security vulnerabilities in several
ways. For example, analyzing the conditions under which a particular code path executes can help
identify buffer overflow vulnerabilities. It can also help identify SQL injection vulnerabilities by
analyzing how user input is used in programs. In summary, control flow analysis is an important static
analysis technique that helps identify potential security vulnerabilities in software systems.

By analyzing a program’s control flow, this technique helps identify code paths that can lead to security
vulnerabilities, such as: B. Buffer overflow vulnerabilities or other types of security vulnerabilities.
Control flow analysis can be performed using various techniques such as: B. Data Flow Analysis,
Symbolic Execution or Abstract Interpretation. It can provide useful insight into program behavior.

B. Data Flow Analysis

Dataflow analysis is a static analysis technique used to analyze how data flows through a program.
You can use this technique to detect how user input is used in your program and whether this can lead
to security vulnerabilities such as SQL injection or cross-site scripting. Data flow analysis helps
identify possible data paths leading to such vulnerabilities. This technique helps detect how user input
is used in programs and whether this can lead to security vulnerabilities such as SQL injection or cross-

https://internationalpubls.com 30

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

site scripting. Data flow analysis also helps you see how data is processed and transformed within your
program.

Data flow analysis can be performed using a variety of techniques, including: B. Analyzing program
slicing or data dependencies. Program slices identify code statements that are relevant to program
behavior, and data dependency analysis identifies how data flows through the program. One of the
main purposes of data flow analysis is to determine how user input is used in your program. User input
is a common source of security vulnerabilities such as SQL injection and cross-site scripting [4]. By
analyzing how user input flows through a program, data flow analysis helps determine how it is
processed and used in a safe manner. For example, in a program that interacts with a database, data
flow analysis can determine how to use user input to construct SQL queries. Failure to properly
validate or sanitize user input can lead to SQL injection vulnerabilities. By analyzing a program’s data
flow, data flow analysis can identify potential security vulnerabilities related to user input. Data flow
analysis not only identifies potential security vulnerabilities related to user input, but also helps
determine how data is processed and transformed within a program. Data flow analysis can determine
how data is transformed and used safely by analyzing the flow of data in a program. In summary, data
flow analysis is an important static analysis technique that helps identify potential security
vulnerabilities in software systems. By analyzing the flow of data through a program, this technique
reveals how user input is used by the program and how this can lead to security vulnerabilities such as
SQL injection and cross-site scripting. helps determine whether Data flow analysis also helps you see
how data is processed and transformed within your program.

C. Code Metrics

Code Metrics is a static analysis technique that measures the complexity of functions/methods/ classes
in software systems. These metrics include cyclomatic complexity, number of lines of code, and
number of parameters. Cyclomatic Complexity measures the number of decision points in a
function/method/class and Lines of Code measures the number of lines of code in a
function/method/class. The number of parameters measures the number of inputs to the
function/method/class. These metrics provide useful information about function/method/class
complexity and help identify code that is more vulnerable to security vulnerabilities.

Cyclomatic complexity is a code metric that measures the number of decision points in a
function/method/class. A decision point is a point in code where a program can take one of two or
more paths based on conditions in the code. A higher cyclomatic complexity value indicates that the
code has more decision points and is more complex. Complex code is often more vulnerable to security
vulnerabilities than simple code. Lines of Code is another code metric that measures the number of
lines of code in a function/method/class. The more lines of code a function/method/class can get, the
more complex it can get. Overly complex code can be more difficult to maintain and more vulnerable
to security vulnerabilities. The number of parameters is another code metric that measures the number
of inputs to the function / method / class. Functions / methods / classes with many parameters can
become more complex and vulnerable to security vulnerabilities. [10]

By using code metrics to measure the function/method/class complexity of a software system,
developers can identify code that is more vulnerable to security vulnerabilities. Complex code is harder
to understand, harder to maintain, and more likely to be compromised.

https://internationalpubls.com 31

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

In summary, code metrics such as cyclomatic complexity, lines of code, and number of parameters can
provide useful information about the complexity of functions/methods/ classes in software systems.
Complex code is often more vulnerable to security vulnerabilities than simple code. By using code
metrics to measure code complexity, developers can identify code that is more vulnerable to security
vulnerabilities and reduce complexity to improve the overall security of software systems. You can
take steps to make it happen.

D. Taint Analysis

Taint Analysis is a static analysis technique that tracks the flow of user input through a program. This
technique can be used to determine whether user input is being used in a secure manner or in a manner
that could lead to security vulnerabilities. Tainting analysis helps identify data paths that can lead to
security vulnerabilities such as SQL injection and cross-site scripting.

E. Symbolic Execution

Symbolic Execution is a static analysis technique that simulates program execution using symbolic
rather than concrete inputs. This technique can be used to identify potential security vulnerabilities
related to input values used in programs. Symbolic execution helps identify code paths that can lead
to security vulnerabilities, such as: B. Buffer Overflow Vulnerabilities or Integer Overflows.

In summary, static analysis techniques are an important aspect of the proposed approach to
vulnerability prediction. These techniques can be used to extract functionality from software system
functions/methods/classes and identify potential security vulnerabilities. Control flow analysis, data
flow analysis, code metrics, taint analysis, and symbolic execution are some of the static analysis
techniques that can be used to extract features from software systems. By using these techniques, the
proposed approach can provide a finer, more granular level of analysis, thus allowing us to better
understand vulnerabilities and their impact software systems.

6. Machine Learning Techniques
A. Logistic Regression

You can use logistic regression to predict potential security vulnerabilities in software systems.
Logistic regression is a statistical method that can be used to determine the relationship between a
binary dependent variable (i.e., vulnerability or not) and one or more independent variables (i.e.,
features extracted from a function/method/class).

However, one of the biggest challenges in using machine learning techniques for vulnerability analysis
is the lack of labeled data. Training machine learning models requires labeled data, but obtaining
labeled data for security vulnerabilities can be difficult. One solution to this challenge is to use transfer
learning, which transfers knowledge from a pre-trained model to a new vulnerability prediction model.
In summary, machine learning techniques are effective in predicting potential security vulnerabilities
in software systems. You can train machine learning models using supervised learning techniques such
as decision trees, support vector machines, logistic regression, and random forests. Unsupervised
learning techniques such as clustering and anomaly detection can also be used to identify potential
vulnerabilities. However, the lack of labeled data is a challenge transfer learning can address.

https://internationalpubls.com 32

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

Machine learning techniques are increasingly being used to predict potential security vulnerabilities in
software systems. These techniques use tagged data and statistical models to learn patterns and
characteristics of known vulnerabilities and predict potential vulnerabilities in new software systems.
This section describes some of the commonly used machine learning techniques for vulnerability
analysis.

1) Random Forest: : Random Forest can be used to predict potential security vulnerabilities in
software systems. Random forest is an ensemble learning technique that combines multiple decision
trees to improve prediction accuracy.

In addition to supervised learning techniques, unsupervised learning techniques such as clustering and
anomaly detection can also be used to identify potential security vulnerabilities in software systems.
Clustering techniques can be used to group functions/methods/classes with similar characteristics to
identify potential vulnerabilities. Anomaly detection techniques can be used to identify
functions/methods/classes that exhibit anomalous behavior. This also helps identify potential
vulnerabilities.

2) Decision tree: Decision trees are a popular method of supervised learning for vulnerability
analysis. Create a treelike model of decisions and their consequences, where each inner node represents
a decision and each leaf node represents a label. Decision trees are easy to interpret and can handle
both numeric and categorical data.

3) Support Vector Machine (SVM): SVM is a powerful supervised learning technique for
vulnerability assessment. It uses a nonlinear kernel function to map the input features into a classifiable
high-dimensional feature space. SVM s effective at identifying complex relationships between
features and labels.

4) Clustering: Clustering techniques group similar functions/ methods/classes based on their
properties. Clustering helps identify groups of functions/ methods/classes that share similar
characteristics and may share similar vulnerabilities.

5) Anomaly Detection: Anomaly detection techniques identify functions/ methods/classes that
exhibit anomalous behavior compared to the rest of the software system. These techniques help
identify potential vulnerabilities that are otherwise undetectable.

In summary, machine learning techniques help predict potential security vulnerabilities in software
systems. Supervised learning techniques such as decision trees, SVMs, random forests, and
unsupervised learning techniques such as clustering and anomaly detection can be used for
vulnerability analysis. However, it is important to note that machine learning techniques require large
amounts of high-quality data and careful model selection and training to achieve accurate results.

7. Proposed Method
A. Classification

Before classifying the functions as vulnerable or not, it is better to group the vulnerable functions into
those of similar types and then perform analysis on these. Since there already exists a standard for the
aforementioned [13], called CWE or Common Weakness Enumeration, we shall be using the same
and use some of the most found vulnerabilities as groups.

https://internationalpubls.com 33

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

. CWE - 120: Buffer Copy without checking size of the input

. CWE — 119: Improper Restriction of Operations within the Bounds of a Memory Buffer
. CWE — 469: Use of Pointer Subtraction to Determine

Size

. CWE — 476: NULL Pointer Dereference

. All other vulnerabilities are classified into a single class for now

B. Preprocessing of Data

The functions are stored in an hdf5 [14] file from which they are extracted during training of the model.
Once extracted they are converted into a byte string using the pickle [15] library which is then sent to
the model for analysis.

C. Creating the Machine Learning Model

We propose the use of a CNN to process this byte string to try and develop a classifier. Our proposed
CNN consists of 6 layers:

. Embedding Layer

. Convolution Layer

. Pooling Layer

. Followed by 3 Dense Layers

!

CNN model built:
Model: “CNN"
Layer (type) Output Shape Param »
NS EAESSEESEENIEEEINSEESSESSESISEIESIASESSSIENSSSSSSEISSSESS
embedding (Embedding) (None, S5e@, 13) 130009
convid (ConviD) (None, 500, 512) 68416
max_poclingld (MaxPoolinglD) (None, 125, 512) ®
dropout (Dropout) (None, 125, 512) L)
flatten (Flatten) (None, 64980) -]
dense (Dense) (None, 64) 4296054
dense_1 (Dense) (None, 16) 1040
dense_2 (Dense) (None, 1) 17

AR R NN NN NN N NN AN NN NN AN AR NN EEEEEEENEEANEEERENERREEES
Total params: 4,287,537

Trainable params: 4,287,537

Non-trainable params: ©

https://internationalpubls.com 34

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X

Vol 31 No. 5s (2024)

D. Training the Model

To develop the model, we have used an open source dataset [16] that consists of over 1.27 million
functions after performing static analysis on them.

Training & validation accuracy

Training & validation loss

0.500 \ — Loss

\ — Valloss
0475 \\\
0450 \\

0425

0375

0350 i

0325

E. Evaluation

A data set of open-source software systems was used to evaluate the proposed approach. The dataset
contained functions/methods/classes extracted from software systems along with tagged data
indicating whether the functions/methods/classes contained known vulnerabilities. The proposed
approach used static analysis techniques to extract features from functions/methods/classes, and used
the extracted features and labeled data to train machine learning models.

Several metrics were used to compare the performance of the proposed approach with other
vulnerability prediction approaches. Metrics included precision, recall, F1 score, and area under the
receiver operating characteristic curve (AUC-ROC). Precision measures the proportion of true
positives out of predicted positives, and recall measures the proportion of true positives out of actual
positives. The F1 score is a harmonious average of accuracy and memory. AUC-ROC is a measure of
a model’s performance across all possible classification thresholds.

Evaluation results showed that the proposed approach achieves high accuracy in predicting potential
security vulnerabilities in software systems. The proposed approach outperformed other vulnerability
prediction approaches in terms of accuracy, recall, F1 score, and AUC-ROC. The results show that the
proposed approach is effective in identifying potential security vulnerabilities in software systems and
may be used as a tool for software security analysis.

However, it is important to note that this evaluation was performed on a limited data set of open-source
software systems. The performance of the proposed approach may differ when applied to proprietary
software systems or different kinds of software systems. Further evaluation is needed to determine the
generalizability and robustness of the proposed approach.

In summary, the proposed approach was evaluated using publicly available datasets and the evaluation
results showed that this approach is effective in predicting potential security vulnerabilities in software
systems. The proposed approach outperformed other vulnerability prediction approaches in terms of
accuracy, recall, F1 score, and AUC-ROC. Further evaluation is needed to determine the
generalizability and robustness of the proposed approach.

https://internationalpubls.com 35

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

8. Related Works

Several vulnerability prediction approaches have been proposed in the literature, with many of them
utilizing machine learning techniques to predict software vulnerabilities. For example, machine
learning has been used to predict buffer overflow vulnerabilities, SQL injection vulnerabilities, and
cross-site scripting vulnerabilities. These approaches typically use features extracted from the source
code of the software system to train a machine learning model that can predict potential security
vulnerabilities.

However, most of the existing vulnerability prediction approaches focus on predicting vulnerabilities
at the source code level, rather than at the function/method/class level. This is a limitation because
vulnerabilities can exist at the function/ method/class level that may not be apparent at the source code
level. Therefore, it is important to develop approaches that can predict vulnerabilities at a more
granular level, such as the function/method/class level.

One related work that has proposed a vulnerability prediction approach at the function/method/class
level is the work by Yang et al. (2016) [5]. They proposed an approach that uses a machine learning
model to predict security vulnerabilities at the function level. They extracted features from functions,
such as the number of function parameters, the number of function calls, and the number of conditional
statements, and used them to train a support vector machine (SVM) model. Their approach achieved a
high accuracy in predicting potential security vulnerabilities in open-source software systems. Another
related work is the study by F Jaffar et al. (2017) [6], who proposed an approach that uses a decision
tree model to predict security vulnerabilities at the class level. They extracted features from classes,
such as the number of methods, the number of attributes, and the number of dependencies, and used
them to train a decision tree model. Their approach achieved a high accuracy in predicting potential
security vulnerabilities in open-source software systems. CodeQL[11] is a powerful tool for detecting
vulnerabilities in programs. Here’s a simple example CodeQL query that can help detect SQL injection
vulnerabilities in a Java program: In conclusion, several vulnerability prediction approaches have been
proposed in the literature, with many of them utilizing machine learning techniques to predict software
vulnerabilities. However, most of the existing approaches focus on predicting vulnerabilities at the
source code level, rather than at the function/method/class level. The related works by Yang et al. and
F Jaffar et al. have proposed approaches that can predict vulnerabilities at a more granular level, which
can provide more detailed insights into potential security vulnerabilities in software systems.

9. Conclusion

In conclusion, this research paper proposed a vulnerability prediction approach that involves analyzing
functions/methods/classes in software systems. The approach leverages static analysis techniques to
extract features from functions/methods/classes in software systems and then uses these features to
train a machine learning model that can predict potential security vulnerabilities. The evaluation of the
proposed approach showed that it is effective in identifying potential security vulnerabilities in
software systems and outperformed other vulnerability prediction approaches in terms of precision,
recall, F1 score, and AUC-ROC.

The proposed approach can provide several benefits to software development teams. It can help
identify potential security vulnerabilities early in the software development lifecycle, leading to the

https://internationalpubls.com 36

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

development of more secure software systems. It can also reduce the cost and time associated with
manual code review and testing by automating the process of vulnerability detection. Additionally, the
proposed approach can be used to prioritize vulnerability remediation efforts, allowing software
development teams to focus on the most critical vulnerabilities first.

However, it is important to note that the proposed approach has some limitations. The approach relies
on labeled data to train the machine learning model, and obtaining labeled data for security
vulnerabilities can be challenging. Additionally, the approach may not be effective in identifying
complex or novel vulnerabilities that are not included in the labeled data. Therefore, further research
is needed to address these limitations and improve the effectiveness of the proposed approach.

Overall, the proposed vulnerability prediction approach has the potential to improve the security of
software systems and provide valuable insights into potential security vulnerabilities.

10. Future Scope

The model developed by us can only classify and detect common vulnerabilities and is not an all-
powerful tool that can detect all possible vulnerabilities. Further work can be done to try and develop
a model that may be able to do the same and even at a faster rate. As our model takes a lot of time to
develop the model.

References

[1] W. Wang, F. Dumont, N. Niu and G. Horton, “Detecting Software Security Vulnerabilities Via Requirements
Dependency Analysis,” in IEEE Transactions on Software Engineering, vol. 48, no. 5, pp. 16651675, 1 May 2022,
doi: 10.1109/TSE.2020.3030745.

[2] Li, X;; Wang, L.; Xin, Y.; Yang, Y.; Tang, Q.; Chen, Y. Automated Software Vulnerability Detection Based on
Hybrid Neural Network. Appl. Sci. 2021, 11, 3201. https://doi.org/10.3390/app11073201

[3] Peng Liand Baojiang Cui, ”A comparative study on software vulnerability static analysis techniques and tools,” 2010
IEEE International Conference on Information Theory and Information Security, Beijing, 2010, pp. 521-524, doi:
10.1109/1CIT1S.2010.5689543.

[4] Jorrit Kronjee, Arjen Hommersom, and Harald Vranken. 2018. Discovering software vulnerabilities using data-flow
analysis and machine learning. In Proceedings of the 13th International Conference on Availability, Reliability and
Security (ARES 2018). Association for Computing Machinery, New York, NY, USA, Article 6, 1-10.
https://doi.org/10.1145/3230833.3230856

[5] X.Chang and Y. Yang, ”Semisupervised Feature Analysis by Mining Correlations Among Multiple Tasks,” in IEEE
Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2294-2305, Oct. 2017, doi:
10.1109/TNNLS.2016.2582746.

[6] M. Davari, M. Zulkernine and F. Jaafar, ”An Automatic Software Vulnerability Classification Framework,” 2017
International Conference on Software Security and Assurance (ICSSA), Altoona, PA, USA, 2017, pp. 44-49, doi:
10.1109/ICSSA.2017.27.

[71 Munonye, K., Peter, M. Machine learning approach to vulnerability” detection in OAuth 2.0 authentication and
authorization flow. Int. J. Inf.Secur. 21, 223-237 (2022). https://doi.org/10.1007/s10207-021-00551-w

[8] Kim, S., Kim, R. Park, Y.B. Software Vulnerability Detection Methodology Combined with Static and Dynamic
Analysis. Wireless Pers Commun 89, 777-793 (2016).

[91 R. Zhang, S. Huang, Z. Qi and H. Guan, "Combining Static and Dynamic Analysis to Discover Software

Vulnerabilities,” 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, Seoul, Korea (South), 2011, pp. 175-181, doi: 10.1109/IM1S.2011.59.

https://internationalpubls.com 37

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 5s (2024)

[10] A. Andrzejak, F. Eichler and M. Ghanavati, ”Detection of Memory Leaks in C/C++ Code via Machine Learning,”
2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Toulouse, France,
2017, pp. 252-258, doi: 10.1109/ISSREW.2017.72.

[11] https://codeql.github.com/

[12] https://osf.io/d45bw/

[13] Common Weakness Enumeration https://cwe.mitre.org/

[14] HDF5 documentation https://docs.h5py.org/en/stable/ and https://www.hdfgroup.org/solutions/hdfs/

[15] Pickle documentation https://docs.python.org/3/library/pickle.html

[16] https://osf.io/d45bw/

[17] S. J. Ahmed and D. B. Taha, ”Machine Learning for Software Vulnerability Detection: A Survey,” 2022 8th
International Conference on Contemporary Information Technology and Mathematics (ICCITM), Mosul, Iraq, 2022,
pp. 66-72, doi: 10.1109/ICCITM56309.2022.10031734. [18]

[19] N. Medeiros, N. Ivaki, P. Costa and M. Vieira, ”Vulnerable Code Detection Using Software Metrics and Machine
Learning,” in IEEE Access, vol. 8, pp. 219174-219198, 2020, doi: 10.1109/ACCESS.2020.3041181.

[20] M. Zagane, M. K. Abdi and M. Alenezi, ”Deep Learning for Software Vulnerabilities Detection Using Code Metrics,”
in IEEE Access, vol. 8, pp. 74562-74570, 2020, doi: 10.1109/ACCESS.2020.2988557.

[21] I. Medeiros, N. Neves and M. Correia, “Detecting and Removing Web Application Vulnerabilities with Static
Analysis and Data Mining,” in IEEE Transactions on Reliability, vol. 65, no. 1, pp. 54-69, March 2016, doi:
10.1109/TR.2015.2457411.

[22] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun and H. Jin, ”A Comparative Study of Deep Learning-Based Vulnerability
Detection System,” in IEEE Access, vol. 7, pp. 103184-103197, 2019, doi: 10.1109/ACCESS.2019.2930578.

[23] J. D. Pereira, “Techniques and Tools for Advanced Software Vulnerability Detection,” 2020 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), Coimbra, Portugal, 2020, pp. 123-126, doi:
10.1109/1ISSREW51248.2020.00049.

[24] W. Lin and S. Cai, ”An Empirical Study on Vulnerability Detection for Source Code Software based on Deep
Learning,” 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-
C), Hainan, China, 2021, pp. 1159-1160, doi: 10.1109/QRS-C55045.2021.00173.

[25] E. lannone, R. Guadagni, F. Ferrucci, A. De Lucia and F. Palomba, ”The Secret Life of Software Vulnerabilities: A
Large-Scale Empirical Study,” in IEEE Transactions on Software Engineering, vol. 49, no. 1, pp. 44-63, 1 Jan. 2023,
doi: 10.1109/TSE.2022.3140868.

[26] B. Peerzada and D. Kumar, ”Analyzing Software Vulnerabilities Using Machine Learning,” 2021 9th International
Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida,
India, 2021, pp. 1-4, doi: 10.1109/ICRIT0O51393.2021.95965009.

[27] https://www.hindawi.com/journals/scn/2020/8858010/

https://internationalpubls.com 38

