
Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 25
https://internationalpubls.com

Detecting Vulnerabilities Through the Examination of Software in

Cloud using Machine Learning Techniques

G P C Venkata Krishna*1, Dr D Vivekananda Reddy2
*1 Research Scholar, Dept of Computer Science and Engineering, SVUCE,

Sri Venkateswara University, Tirupati, Andhra Pradesh, India

2 Professor, Dept of Computer Science and Engineering, SVUCE,

Sri Venkateswara University, Tirupati, Andhra Pradesh, India

Article History:

Received: 28-04-2024

Revised: 08-06-2024

Accepted: 26-06-2024

Abstract:

This research proposes a vulnerability prediction approach that analyzes

functions/methods/classes in software systems using static analysis and machine learning

models. The proposed approach outperformed other vulnerability prediction approaches

in publicly available datasets, providing valuable insights to prioritize vulnerability

remediation efforts. This approach has the potential to improve software security and help

software development teams develop more secure software systems.

Keywords: Software Vulnerability, Function Analysis, Machine Learning, Neural Network,

Complexity Analysis.

1. Introduction

In recent years, the increase in security breaches and cyberattacks has underscored the importance of

software security. These incidents have caused significant financial and reputational damage to the

organization. In addition, increasing reliance on software systems makes them more vulnerable to

security breaches, making it imperative to secure these systems. Vulnerability prediction is one of the

key aspects of software security and involves identifying potential vulnerabilities in software systems

before they are exploited by attackers. Early detection of potential security vulnerabilities helps

develop more secure software systems. It can also prevent significant damage and reduce the risk of

financial and reputational damage to your organization. In recent years, machine learning techniques

have become increasingly popular for predicting software vulnerabilities. These techniques are used

to predict various types of vulnerabilities. B. Buffer overflow vulnerabilities,

SQL injection vulnerabilities, and cross-sitescripting

Identify applicable funding agency here.

If none, delete this.

vulnerabilities. However, most existing approaches to vulnerability prediction focus on predicting

vulnerabilities at the source code level rather than at the function/method/class level.

Proposed approaches to vulnerability prediction include function/method/class analysis of software

systems, which can provide a more granular level of analysis. By analyzing functions/methods/classes,

this approach can identify potential security vulnerabilities at a more granular level, thus providing a

better understanding of vulnerabilities and their impact on software systems. This approach uses static

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 26
https://internationalpubls.com

analysis techniques to extract functionality from functions/methods/classes of a software system. The

extracted features are used to train machine learning models that can predict potential security

vulnerabilities. In this research paper, we present the proposed approach and evaluate its effectiveness

using publicly available datasets. This evaluation compares the performance of the proposed approach

with other vulnerability prediction approaches. The results show that the proposed approach is

effective in predicting potential security vulnerabilities in software systems. The proposed approach

helps developers identify potential security vulnerabilities early in the software development lifecycle,

leading to the development of more secure software systems.

2. Background

The field of vulnerability prediction has been the subject of research in the software engineering

community for several years. Various approaches have been proposed to identify potential security

vulnerabilities in software systems. These approaches fall broadly into his two categories: Manual [1]

and Automatic [2]. In manual approaches, human experts review

Paper Title Issue Addressed

Performance Analysis of Machine

Learning Algorithms for Intrusion

Detection in Cloud Computing, M. R.

Bhuyan, S. C. Satapathy, et al. [17]

The paper analyses the performance of various machine learning algorithms

for intrusion detection in cloud computing environments. The paper highlights

the limitations of rule-based approaches and demonstrate that SVM and ANN

algorithms outperform other approaches when it comes to accuracy

Machine Learning Techniques for

Software Defect Prediction, A.

Alghamdi and A. Nadeem [18]

The paper provides an overview of the different machine learning techniques

used for software defect prediction, such as supervised learning, unsupervised

learning and semi-supervised learning. They detail each type's associated

algorithms such as decision trees, Bayesian networks, support vector machines

and artificial neural networks

Vulnerable Code Detection Using

Software Metrics and Machine

Learning. N. Medeiros, N. Ivaki et al.

[19]

 The paper proposes uses of machine learning algorithms, such as Random

Forest and Decision Tree, to extract vulnerability-related knowledge from

software metrics collected from the source code of various software projects

developed in C/C++

Deep Learning for Software

Vulnerabilities Detection Utilizing

Code Metrics. M. Zagane et al. [20]

Paper includes deep learning techniques to software vulnerability detection. By

using code metrics as features and exploring various deep learning

architectures, the authors demonstrate how code metrics can improve accuracy

and scalability of vulnerability detection models

Detecting and Removing Web

Application Vulnerabilities with

Static Analysis and Data Mining. I.

Medeiros et al. [21]

The paper proposes a novel approach that incorporates static analysis and data

mining techniques to increase the accuracy and efficiency of vulnerability

detection.

A Comparative Study of Deep

Learning-Based Vulnerability

Detection System. Z. Li, D. Zou et al.

[22]

The authors compare the performance of several deep learning-based

vulnerability detection systems on the dataset using various evaluation metrics

such as accuracy, precision, recall, and F1 score

Techniques and Tools for Advanced

Software Vulnerability Detection. J.

D. Pereira. [23]

This paper provides an overview of various advanced techniques for

vulnerability detection, such as static analysis, dynamic analysis, fuzz testing

and symbolic execution. Each technique is discussed in detail along with its

strengths and weaknesses

An Empirical Study on Vulnerability

Detection for Source Code Software

based on Deep Learning. W. Lin and

S. Cai [24]

This paper presents the results of an empirical evaluation of the proposed

approach on a set of real-world software projects. The evaluation demonstrates

high accuracy in detecting vulnerabilities with a low false positive rate and high

recall rate.

The Secret Life of Software

Vulnerabilities: A Large-Scale

Empirical Study. E. Iannone, R.

Guadagni et al. [25]

The authors emphasize the significance of software defect prediction in

software engineering, as errors can have detrimental effects on quality, user

satisfaction and project costs and timeline. Machine learning techniques offer

an effective and efficient means for predicting software defects, enabling

developers to proactively detect and address potential issues before they arise.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 27
https://internationalpubls.com

Analyzing Software Vulnerabilities

Using Machine Learning, B. Peerzada

and D. Kumar [26]

The study uses machine learning algorithms, such as Random Forest and

Decision Tree, to extract vulnerability-related knowledge from software

metrics collected from the source code of various software projects developed

in C/C++. These projects include Mozilla Firefox, Linux Kernel, Apache

HTTPd, Xen, and Glibc.

Table 1: Comparison Table of various Research Papers

software code and identify potential security vulnerabilities. This approach is time consuming, labor

intensive, and impractical for large software systems. Moreover, the accuracy of manual approaches

often depends on the expertise of reviewers. Automated approaches use software tools to identify

potential security vulnerabilities in software systems. These approaches can be further classified into

two subcategories: Static and dynamic analysis [9]. Static analysis [3] analyzes software code

without executing it, while dynamic analysis [8] analyzes software code at runtime.

Most existing approaches to vulnerability prediction focus on predicting vulnerabilities at the source

code level. These approaches use static analysis techniques to extract features from software code and

train machine learning models to predict potential security vulnerabilities. However, source codelevel

approaches may not be sufficient to identify all potential security vulnerabilities in software systems.

The proposed approach focuses on analyzing functions/methods/classes of software systems, which

can provide a more detailed level of analysis. By analyzing functions/methods/classes, this approach

can identify potential security vulnerabilities at a more granular level, thus providing a better

understanding of vulnerabilities and their impact on software systems. This approach uses static

analysis techniques to extract functionality from functions/methods/classes of a software system. The

extracted features are used to train machine learning models that can predict potential security

vulnerabilities.

Overall, vulnerability prediction is an important aspect of software security, and the proposed approach

can provide a more effective method for identifying potential security vulnerabilities in software

systems. By analyzing functions/methods/classes, the proposed approach can provide a more detailed

and granular level of analysis, leading to the development of more secure software systems.

3. Literature Review

There is a wealth of literature available on vulnerability detection, including techniques such as static

and dynamic analysis. Unfortunately, there has been limited research on the application of functions,

classes and methods for vulnerability detection or the effectiveness of machine learning techniques for

improving vulnerability detection accuracy. This topic involves investigating functions, classes and

methods to detect vulnerabilities and applying machine learning techniques in order to increase

accuracy in vulnerability detection.

4. Possible Approaches

Proposed approaches to vulnerability prediction include analysis of functions/methods/classes of

software systems. This approach is based on the premise that functions/methods/classes are the

building blocks of software systems, and vulnerabilities are likely to emerge at this level of granularity.

By analyzing functions/methods/ classes, the proposed approach provides a more detailed and granular

level of analysis, allowing us to better understand vulnerabilities and their impact on software systems.

The first step in the proposed approach is to use the functions/methods/classes of the software system

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 28
https://internationalpubls.com

under analysis. This can be achieved using various techniques such as program slicing and program

understanding tools. Once the functions/methods/classes have been extracted, the next step is to extract

functionality from them using static analysis techniques. Features extracted from

functions/methods/classes may include control flow, data flow, and code metrics such as cyclomatic

complexity, lines of code, and parameter count. Control flow analysis analyzes the control flow of a

program to identify potential security vulnerabilities. Dataflow analysis analyzes how data flows

through a program. Code metrics such as cyclomatic complexity, number of lines of code, and number

of parameters can provide useful information about the complexity of functions/ methods/classes.

Once features are extracted from functions/methods/classes, the next step is to train a machine learning

model using the extracted features and labeled data. Marked data may contain information about

known security gaps in software systems. Machine learning models can be trained using supervised

learning techniques such as decision trees and support vector machines. Machine learning models can

then be used to predict potential security vulnerabilities in software systems. Proposed

Fig. 1. Number of CWE vulnerabilities over the years[27]

approaches to vulnerability prediction include analysis of functions/methods/classes of software

systems. This approach is based on the premise that functions/methods/classes are the building blocks

of software systems, and vulnerabilities are likely to emerge at this level of granularity.

By analyzing functions/methods/classes, the proposed approach provides a more detailed and granular

level of analysis, allowing us to better understand vulnerabilities and their impact on software systems.

The first step in the proposed approach is to use the functions/methods/classes of the software system

under analysis. This can be achieved using various techniques such as program slicing and program

understanding tools. Once the functions/methods/classes have been extracted, the next step is to extract

functionality

Code group Code Description Example

Correction No Tool capable only of detecting

defects

Design and implementation of a

deep learning-based

vulnerability detection system

 Yes Tool capable of correcting defects End-to-end solution that can fix

multiple such errors in a program

Defect type Syntactic Tool targets syntax defects Algorithm for finding repairs to

syntax errors

 Semantic Tool targets semantic defects Addressing the issue of semantic

program repair

 Vulnerability Tool targets vulnerabilities System for vulnerability

detection

Representation Tokens Source code represented as a

sequence of tokens

Model treats a program

statement as a list of tokens

 AST Source code represented as an

abstract syntax tree

Representations of ASTs

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 29
https://internationalpubls.com

 Graph Source code represented as a graph

capturing additional semantic

information (control flow graphs,

data flow graphs, and so on)

Generates a system dependency

graph for each training program

Language Python Tool evaluated on source code

written in Python

From an introduction to

programming in python course

 C Tool evaluated on source code

written in C/C++

Fixing common C language

errors

 Java Tool evaluated on source code

written in Java

Targeting Java source code

 JavaScript Tool evaluated on source code

written in JavaScript

Broad range of bugs in

JavaScript programs

 C# Tool evaluated on source code

written in C#

Open-source C# projects on

GitHub

Type No bug Tool trained on only nonbuggy

source code

Using language models trained

on correct source code to find

tokens that seem out of place

Bug + fixed Tool trained on paired examples of

buggy and fixed code

A pair (p, p°), where P is an

incorrect program and p° is its

correct version

Bug + no bug Tool trained on unpaired examples of

buggy and nonbuggy code

Data set that contains 181,641

pieces of code; 138,522 are

nonvulnerable (i.e., not known to

contain vulnerabilities) and

43,119 are vulnerable

Label Yes Tool trained on labelled data A program is labelled as "good,"

"bad" or "mixed"

No Tool trained on unlabelled data Self-supervised learning with

unlabelled programs

Realism Real Data set consists of mostly real

programs

JavaScript code change commits

collected from GitHub

Semireal Data set consists of semirealistic

code: real code injected with

synthetic

bugs, or simpler/ beginner code with

real mistakes

Corpus of open-source Python

projects with synthetically

injected bugs and C programs

written by students for 93

different programming tasks

Synthetic Data set consists of mainly

synthetic/academic code

Juliet Test Suite, with 81,000

synthetic C/C++ and Java

programs with known security

vulnerabilities

Availability Yes Data set and/or tool are publicly

available

-

No Data set and/or tool are not publicly

available

-

from them using static analysis techniques. Features extracted from functions/methods/classes may

include control flow, data flow, and code metrics such as cyclomatic complexity, lines of code, and

parameter count.

Control flow analysis analyzes the control flow of a program to identify potential security

vulnerabilities. Dataflow analysis analyzes how data flows through a program. Code metrics such as

cyclomatic complexity, number of lines of code, and number of parameters can provide useful

information about the complexity of functions/methods/classes. Once features are extracted from

functions/methods/classes, the next step is to train a machine learning model using the extracted

Table 2: Common Software Vulnerabilities

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 30
https://internationalpubls.com

features and labeled data. Marked data may contain information about known security gaps in software

systems. Machine learning models can be trained using supervised learning techniques such as

decision trees and support vector machines. Machine learning models can then be used to predict

potential security vulnerabilities in software systems.

5. Static Analysis Techniques

Static analysis techniques are an important aspect of the proposed approach to vulnerability prediction,

as they can extract features from functions/methods/ classes of software systems. These techniques

provide a way to analyze software code without executing it to identify potential security

vulnerabilities in software. Below are some static analysis techniques that can be used to extract

functionality from functions/methods/classes in a software system.

A. Control Flow Analysis

Control flow analysis is a static analysis technique that analyzes the control flow of a program. This

technique can be used to identify potential security vulnerabilities related to control flow such as: B.

Buffer overflow vulnerabilities, integer overflow vulnerabilities, or other types of security

vulnerabilities. Control flow analysis helps identify code paths that can lead to these types of

vulnerabilities. This technique focuses on identifying the flow of program execution and can be used

to identify the conditions under which certain parts of the program execute. One of the main goals of

control flow analysis is to identify code paths that can lead to security vulnerabilities such as: B. Buffer

overflow vulnerabilities or other types of security vulnerabilities. For example, executing if statements

under certain conditions can lead to buffer overflow vulnerabilities. Control flow analysis helps

identify conditions and code paths that can lead to security vulnerabilities. Control flow analysis can

be performed using various techniques such as: B. Dataflow analysis, symbolic execution, or abstract

interpretation. Dataflow analysis is a technique of analyzing how data flows through a program, and

symbolic execution is a technique of simulating program execution using symbolic inputs instead of

concrete inputs. Abstract interpretation is a technique for analyzing program behavior using

mathematical models. Control flow analysis helps identify potential security vulnerabilities in several

ways. For example, analyzing the conditions under which a particular code path executes can help

identify buffer overflow vulnerabilities. It can also help identify SQL injection vulnerabilities by

analyzing how user input is used in programs. In summary, control flow analysis is an important static

analysis technique that helps identify potential security vulnerabilities in software systems.

By analyzing a program’s control flow, this technique helps identify code paths that can lead to security

vulnerabilities, such as: B. Buffer overflow vulnerabilities or other types of security vulnerabilities.

Control flow analysis can be performed using various techniques such as: B. Data Flow Analysis,

Symbolic Execution or Abstract Interpretation. It can provide useful insight into program behavior.

B. Data Flow Analysis

Dataflow analysis is a static analysis technique used to analyze how data flows through a program.

You can use this technique to detect how user input is used in your program and whether this can lead

to security vulnerabilities such as SQL injection or cross-site scripting. Data flow analysis helps

identify possible data paths leading to such vulnerabilities. This technique helps detect how user input

is used in programs and whether this can lead to security vulnerabilities such as SQL injection or cross-

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 31
https://internationalpubls.com

site scripting. Data flow analysis also helps you see how data is processed and transformed within your

program.

Data flow analysis can be performed using a variety of techniques, including: B. Analyzing program

slicing or data dependencies. Program slices identify code statements that are relevant to program

behavior, and data dependency analysis identifies how data flows through the program. One of the

main purposes of data flow analysis is to determine how user input is used in your program. User input

is a common source of security vulnerabilities such as SQL injection and cross-site scripting [4]. By

analyzing how user input flows through a program, data flow analysis helps determine how it is

processed and used in a safe manner. For example, in a program that interacts with a database, data

flow analysis can determine how to use user input to construct SQL queries. Failure to properly

validate or sanitize user input can lead to SQL injection vulnerabilities. By analyzing a program’s data

flow, data flow analysis can identify potential security vulnerabilities related to user input. Data flow

analysis not only identifies potential security vulnerabilities related to user input, but also helps

determine how data is processed and transformed within a program. Data flow analysis can determine

how data is transformed and used safely by analyzing the flow of data in a program. In summary, data

flow analysis is an important static analysis technique that helps identify potential security

vulnerabilities in software systems. By analyzing the flow of data through a program, this technique

reveals how user input is used by the program and how this can lead to security vulnerabilities such as

SQL injection and cross-site scripting. helps determine whether Data flow analysis also helps you see

how data is processed and transformed within your program.

C. Code Metrics

Code Metrics is a static analysis technique that measures the complexity of functions/methods/ classes

in software systems. These metrics include cyclomatic complexity, number of lines of code, and

number of parameters. Cyclomatic Complexity measures the number of decision points in a

function/method/class and Lines of Code measures the number of lines of code in a

function/method/class. The number of parameters measures the number of inputs to the

function/method/class. These metrics provide useful information about function/method/class

complexity and help identify code that is more vulnerable to security vulnerabilities.

Cyclomatic complexity is a code metric that measures the number of decision points in a

function/method/class. A decision point is a point in code where a program can take one of two or

more paths based on conditions in the code. A higher cyclomatic complexity value indicates that the

code has more decision points and is more complex. Complex code is often more vulnerable to security

vulnerabilities than simple code. Lines of Code is another code metric that measures the number of

lines of code in a function/method/class. The more lines of code a function/method/class can get, the

more complex it can get. Overly complex code can be more difficult to maintain and more vulnerable

to security vulnerabilities. The number of parameters is another code metric that measures the number

of inputs to the function / method / class. Functions / methods / classes with many parameters can

become more complex and vulnerable to security vulnerabilities. [10]

By using code metrics to measure the function/method/class complexity of a software system,

developers can identify code that is more vulnerable to security vulnerabilities. Complex code is harder

to understand, harder to maintain, and more likely to be compromised.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 32
https://internationalpubls.com

In summary, code metrics such as cyclomatic complexity, lines of code, and number of parameters can

provide useful information about the complexity of functions/methods/ classes in software systems.

Complex code is often more vulnerable to security vulnerabilities than simple code. By using code

metrics to measure code complexity, developers can identify code that is more vulnerable to security

vulnerabilities and reduce complexity to improve the overall security of software systems. You can

take steps to make it happen.

D. Taint Analysis

Taint Analysis is a static analysis technique that tracks the flow of user input through a program. This

technique can be used to determine whether user input is being used in a secure manner or in a manner

that could lead to security vulnerabilities. Tainting analysis helps identify data paths that can lead to

security vulnerabilities such as SQL injection and cross-site scripting.

E. Symbolic Execution

Symbolic Execution is a static analysis technique that simulates program execution using symbolic

rather than concrete inputs. This technique can be used to identify potential security vulnerabilities

related to input values used in programs. Symbolic execution helps identify code paths that can lead

to security vulnerabilities, such as: B. Buffer Overflow Vulnerabilities or Integer Overflows.

In summary, static analysis techniques are an important aspect of the proposed approach to

vulnerability prediction. These techniques can be used to extract functionality from software system

functions/methods/classes and identify potential security vulnerabilities. Control flow analysis, data

flow analysis, code metrics, taint analysis, and symbolic execution are some of the static analysis

techniques that can be used to extract features from software systems. By using these techniques, the

proposed approach can provide a finer, more granular level of analysis, thus allowing us to better

understand vulnerabilities and their impact software systems.

6. Machine Learning Techniques

A. Logistic Regression

You can use logistic regression to predict potential security vulnerabilities in software systems.

Logistic regression is a statistical method that can be used to determine the relationship between a

binary dependent variable (i.e., vulnerability or not) and one or more independent variables (i.e.,

features extracted from a function/method/class).

However, one of the biggest challenges in using machine learning techniques for vulnerability analysis

is the lack of labeled data. Training machine learning models requires labeled data, but obtaining

labeled data for security vulnerabilities can be difficult. One solution to this challenge is to use transfer

learning, which transfers knowledge from a pre-trained model to a new vulnerability prediction model.

In summary, machine learning techniques are effective in predicting potential security vulnerabilities

in software systems. You can train machine learning models using supervised learning techniques such

as decision trees, support vector machines, logistic regression, and random forests. Unsupervised

learning techniques such as clustering and anomaly detection can also be used to identify potential

vulnerabilities. However, the lack of labeled data is a challenge transfer learning can address.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 33
https://internationalpubls.com

Machine learning techniques are increasingly being used to predict potential security vulnerabilities in

software systems. These techniques use tagged data and statistical models to learn patterns and

characteristics of known vulnerabilities and predict potential vulnerabilities in new software systems.

This section describes some of the commonly used machine learning techniques for vulnerability

analysis.

1) Random Forest: : Random Forest can be used to predict potential security vulnerabilities in

software systems. Random forest is an ensemble learning technique that combines multiple decision

trees to improve prediction accuracy.

In addition to supervised learning techniques, unsupervised learning techniques such as clustering and

anomaly detection can also be used to identify potential security vulnerabilities in software systems.

Clustering techniques can be used to group functions/methods/classes with similar characteristics to

identify potential vulnerabilities. Anomaly detection techniques can be used to identify

functions/methods/classes that exhibit anomalous behavior. This also helps identify potential

vulnerabilities.

2) Decision tree: Decision trees are a popular method of supervised learning for vulnerability

analysis. Create a treelike model of decisions and their consequences, where each inner node represents

a decision and each leaf node represents a label. Decision trees are easy to interpret and can handle

both numeric and categorical data.

3) Support Vector Machine (SVM): SVM is a powerful supervised learning technique for

vulnerability assessment. It uses a nonlinear kernel function to map the input features into a classifiable

high-dimensional feature space. SVM is effective at identifying complex relationships between

features and labels.

4) Clustering: Clustering techniques group similar functions/ methods/classes based on their

properties. Clustering helps identify groups of functions/ methods/classes that share similar

characteristics and may share similar vulnerabilities.

5) Anomaly Detection: Anomaly detection techniques identify functions/ methods/classes that

exhibit anomalous behavior compared to the rest of the software system. These techniques help

identify potential vulnerabilities that are otherwise undetectable.

In summary, machine learning techniques help predict potential security vulnerabilities in software

systems. Supervised learning techniques such as decision trees, SVMs, random forests, and

unsupervised learning techniques such as clustering and anomaly detection can be used for

vulnerability analysis. However, it is important to note that machine learning techniques require large

amounts of high-quality data and careful model selection and training to achieve accurate results.

7. Proposed Method

A. Classification

Before classifying the functions as vulnerable or not, it is better to group the vulnerable functions into

those of similar types and then perform analysis on these. Since there already exists a standard for the

aforementioned [13], called CWE or Common Weakness Enumeration, we shall be using the same

and use some of the most found vulnerabilities as groups.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 34
https://internationalpubls.com

• CWE – 120: Buffer Copy without checking size of the input

• CWE – 119: Improper Restriction of Operations within the Bounds of a Memory Buffer

• CWE – 469: Use of Pointer Subtraction to Determine

Size

• CWE – 476: NULL Pointer Dereference

• All other vulnerabilities are classified into a single class for now

B. Preprocessing of Data

The functions are stored in an hdf5 [14] file from which they are extracted during training of the model.

Once extracted they are converted into a byte string using the pickle [15] library which is then sent to

the model for analysis.

C. Creating the Machine Learning Model

We propose the use of a CNN to process this byte string to try and develop a classifier. Our proposed

CNN consists of 6 layers:

• Embedding Layer

• Convolution Layer

• Pooling Layer

• Followed by 3 Dense Layers

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 35
https://internationalpubls.com

D. Training the Model

To develop the model, we have used an open source dataset [16] that consists of over 1.27 million

functions after performing static analysis on them.

E. Evaluation

A data set of open-source software systems was used to evaluate the proposed approach. The dataset

contained functions/methods/classes extracted from software systems along with tagged data

indicating whether the functions/methods/classes contained known vulnerabilities. The proposed

approach used static analysis techniques to extract features from functions/methods/classes, and used

the extracted features and labeled data to train machine learning models.

Several metrics were used to compare the performance of the proposed approach with other

vulnerability prediction approaches. Metrics included precision, recall, F1 score, and area under the

receiver operating characteristic curve (AUC-ROC). Precision measures the proportion of true

positives out of predicted positives, and recall measures the proportion of true positives out of actual

positives. The F1 score is a harmonious average of accuracy and memory. AUC-ROC is a measure of

a model’s performance across all possible classification thresholds.

Evaluation results showed that the proposed approach achieves high accuracy in predicting potential

security vulnerabilities in software systems. The proposed approach outperformed other vulnerability

prediction approaches in terms of accuracy, recall, F1 score, and AUC-ROC. The results show that the

proposed approach is effective in identifying potential security vulnerabilities in software systems and

may be used as a tool for software security analysis.

However, it is important to note that this evaluation was performed on a limited data set of open-source

software systems. The performance of the proposed approach may differ when applied to proprietary

software systems or different kinds of software systems. Further evaluation is needed to determine the

generalizability and robustness of the proposed approach.

In summary, the proposed approach was evaluated using publicly available datasets and the evaluation

results showed that this approach is effective in predicting potential security vulnerabilities in software

systems. The proposed approach outperformed other vulnerability prediction approaches in terms of

accuracy, recall, F1 score, and AUC-ROC. Further evaluation is needed to determine the

generalizability and robustness of the proposed approach.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 36
https://internationalpubls.com

8. Related Works

Several vulnerability prediction approaches have been proposed in the literature, with many of them

utilizing machine learning techniques to predict software vulnerabilities. For example, machine

learning has been used to predict buffer overflow vulnerabilities, SQL injection vulnerabilities, and

cross-site scripting vulnerabilities. These approaches typically use features extracted from the source

code of the software system to train a machine learning model that can predict potential security

vulnerabilities.

However, most of the existing vulnerability prediction approaches focus on predicting vulnerabilities

at the source code level, rather than at the function/method/class level. This is a limitation because

vulnerabilities can exist at the function/ method/class level that may not be apparent at the source code

level. Therefore, it is important to develop approaches that can predict vulnerabilities at a more

granular level, such as the function/method/class level.

One related work that has proposed a vulnerability prediction approach at the function/method/class

level is the work by Yang et al. (2016) [5]. They proposed an approach that uses a machine learning

model to predict security vulnerabilities at the function level. They extracted features from functions,

such as the number of function parameters, the number of function calls, and the number of conditional

statements, and used them to train a support vector machine (SVM) model. Their approach achieved a

high accuracy in predicting potential security vulnerabilities in open-source software systems. Another

related work is the study by F Jaffar et al. (2017) [6], who proposed an approach that uses a decision

tree model to predict security vulnerabilities at the class level. They extracted features from classes,

such as the number of methods, the number of attributes, and the number of dependencies, and used

them to train a decision tree model. Their approach achieved a high accuracy in predicting potential

security vulnerabilities in open-source software systems. CodeQL[11] is a powerful tool for detecting

vulnerabilities in programs. Here’s a simple example CodeQL query that can help detect SQL injection

vulnerabilities in a Java program: In conclusion, several vulnerability prediction approaches have been

proposed in the literature, with many of them utilizing machine learning techniques to predict software

vulnerabilities. However, most of the existing approaches focus on predicting vulnerabilities at the

source code level, rather than at the function/method/class level. The related works by Yang et al. and

F Jaffar et al. have proposed approaches that can predict vulnerabilities at a more granular level, which

can provide more detailed insights into potential security vulnerabilities in software systems.

9. Conclusion

In conclusion, this research paper proposed a vulnerability prediction approach that involves analyzing

functions/methods/classes in software systems. The approach leverages static analysis techniques to

extract features from functions/methods/classes in software systems and then uses these features to

train a machine learning model that can predict potential security vulnerabilities. The evaluation of the

proposed approach showed that it is effective in identifying potential security vulnerabilities in

software systems and outperformed other vulnerability prediction approaches in terms of precision,

recall, F1 score, and AUC-ROC.

The proposed approach can provide several benefits to software development teams. It can help

identify potential security vulnerabilities early in the software development lifecycle, leading to the

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 37
https://internationalpubls.com

development of more secure software systems. It can also reduce the cost and time associated with

manual code review and testing by automating the process of vulnerability detection. Additionally, the

proposed approach can be used to prioritize vulnerability remediation efforts, allowing software

development teams to focus on the most critical vulnerabilities first.

However, it is important to note that the proposed approach has some limitations. The approach relies

on labeled data to train the machine learning model, and obtaining labeled data for security

vulnerabilities can be challenging. Additionally, the approach may not be effective in identifying

complex or novel vulnerabilities that are not included in the labeled data. Therefore, further research

is needed to address these limitations and improve the effectiveness of the proposed approach.

Overall, the proposed vulnerability prediction approach has the potential to improve the security of

software systems and provide valuable insights into potential security vulnerabilities.

10. Future Scope

The model developed by us can only classify and detect common vulnerabilities and is not an all-

powerful tool that can detect all possible vulnerabilities. Further work can be done to try and develop

a model that may be able to do the same and even at a faster rate. As our model takes a lot of time to

develop the model.

References

[1] W. Wang, F. Dumont, N. Niu and G. Horton, ”Detecting Software Security Vulnerabilities Via Requirements

Dependency Analysis,” in IEEE Transactions on Software Engineering, vol. 48, no. 5, pp. 16651675, 1 May 2022,

doi: 10.1109/TSE.2020.3030745.

[2] Li, X.; Wang, L.; Xin, Y.; Yang, Y.; Tang, Q.; Chen, Y. Automated Software Vulnerability Detection Based on

Hybrid Neural Network. Appl. Sci. 2021, 11, 3201. https://doi.org/10.3390/app11073201

[3] Peng Li and Baojiang Cui, ”A comparative study on software vulnerability static analysis techniques and tools,” 2010

IEEE International Conference on Information Theory and Information Security, Beijing, 2010, pp. 521-524, doi:

10.1109/ICITIS.2010.5689543.

[4] Jorrit Kronjee, Arjen Hommersom, and Harald Vranken. 2018. Discovering software vulnerabilities using data-flow

analysis and machine learning. In Proceedings of the 13th International Conference on Availability, Reliability and

Security (ARES 2018). Association for Computing Machinery, New York, NY, USA, Article 6, 1–10.

https://doi.org/10.1145/3230833.3230856

[5] X. Chang and Y. Yang, ”Semisupervised Feature Analysis by Mining Correlations Among Multiple Tasks,” in IEEE

Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2294-2305, Oct. 2017, doi:

10.1109/TNNLS.2016.2582746.

[6] M. Davari, M. Zulkernine and F. Jaafar, ”An Automatic Software Vulnerability Classification Framework,” 2017

International Conference on Software Security and Assurance (ICSSA), Altoona, PA, USA, 2017, pp. 44-49, doi:

10.1109/ICSSA.2017.27.

[7] Munonye, K., Peter, M. Machine learning approach to vulnerability´ detection in OAuth 2.0 authentication and

authorization flow. Int. J. Inf.Secur. 21, 223–237 (2022). https://doi.org/10.1007/s10207-021-00551-w

[8] Kim, S., Kim, R. Park, Y.B. Software Vulnerability Detection Methodology Combined with Static and Dynamic

Analysis. Wireless Pers Commun 89, 777–793 (2016).

[9] R. Zhang, S. Huang, Z. Qi and H. Guan, ”Combining Static and Dynamic Analysis to Discover Software

Vulnerabilities,” 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous

Computing, Seoul, Korea (South), 2011, pp. 175-181, doi: 10.1109/IMIS.2011.59.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 31 No. 5s (2024)

 38
https://internationalpubls.com

[10] A. Andrzejak, F. Eichler and M. Ghanavati, ”Detection of Memory Leaks in C/C++ Code via Machine Learning,”

2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Toulouse, France,

2017, pp. 252-258, doi: 10.1109/ISSREW.2017.72.

[11] https://codeql.github.com/

[12] https://osf.io/d45bw/

[13] Common Weakness Enumeration https://cwe.mitre.org/

[14] HDF5 documentation https://docs.h5py.org/en/stable/ and https://www.hdfgroup.org/solutions/hdf5/

[15] Pickle documentation https://docs.python.org/3/library/pickle.html

[16] https://osf.io/d45bw/

[17] S. J. Ahmed and D. B. Taha, ”Machine Learning for Software Vulnerability Detection: A Survey,” 2022 8th

International Conference on Contemporary Information Technology and Mathematics (ICCITM), Mosul, Iraq, 2022,

pp. 66-72, doi: 10.1109/ICCITM56309.2022.10031734. [18]

[19] N. Medeiros, N. Ivaki, P. Costa and M. Vieira, ”Vulnerable Code Detection Using Software Metrics and Machine

Learning,” in IEEE Access, vol. 8, pp. 219174-219198, 2020, doi: 10.1109/ACCESS.2020.3041181.

[20] M. Zagane, M. K. Abdi and M. Alenezi, ”Deep Learning for Software Vulnerabilities Detection Using Code Metrics,”

in IEEE Access, vol. 8, pp. 74562-74570, 2020, doi: 10.1109/ACCESS.2020.2988557.

[21] I. Medeiros, N. Neves and M. Correia, ”Detecting and Removing Web Application Vulnerabilities with Static

Analysis and Data Mining,” in IEEE Transactions on Reliability, vol. 65, no. 1, pp. 54-69, March 2016, doi:

10.1109/TR.2015.2457411.

[22] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun and H. Jin, ”A Comparative Study of Deep Learning-Based Vulnerability

Detection System,” in IEEE Access, vol. 7, pp. 103184-103197, 2019, doi: 10.1109/ACCESS.2019.2930578.

[23] J. D. Pereira, ”Techniques and Tools for Advanced Software Vulnerability Detection,” 2020 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW), Coimbra, Portugal, 2020, pp. 123-126, doi:

10.1109/ISSREW51248.2020.00049.

[24] W. Lin and S. Cai, ”An Empirical Study on Vulnerability Detection for Source Code Software based on Deep

Learning,” 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-

C), Hainan, China, 2021, pp. 1159-1160, doi: 10.1109/QRS-C55045.2021.00173.

[25] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia and F. Palomba, ”The Secret Life of Software Vulnerabilities: A

Large-Scale Empirical Study,” in IEEE Transactions on Software Engineering, vol. 49, no. 1, pp. 44-63, 1 Jan. 2023,

doi: 10.1109/TSE.2022.3140868.

[26] B. Peerzada and D. Kumar, ”Analyzing Software Vulnerabilities Using Machine Learning,” 2021 9th International

Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida,

India, 2021, pp. 1-4, doi: 10.1109/ICRITO51393.2021.9596509.

[27] https://www.hindawi.com/journals/scn/2020/8858010/

