Design of an Iterative Method for MapReduce Scheduling Using Deep Reinforcement Learning and Anomaly Detection

Mr. Ahtesham Kazi¹, Dr. Dinesh Chaudhari²

¹Bajaj Institute of Technology, Department of Computer Engineering, Wardha India. E-mail: kazi_ahtesham@rediffmail.com.

²Jawaharlal Darda Institute of Engineering and Technology, Department of Computer Science & Engineering, Yavatmal India. E-mail: dinesh_chaudhari@jdiet.ac.in

Article History:
Received: 23-04-2024
Revised: 24-06-2024
Accepted: 28-06-2024

Abstract:
Due to high complexities within distributed computing environments, there's a critical need for advanced scheduling frameworks that are capable of optimizing MapReduce systems. Current approaches have static policies that limit their capability to adapt to changing system dynamics and workload variations for different cloud scenarios. To overcome these issues, this study introduces a robust MapReduce framework empowered by intelligent scheduling algorithms, tailored to enhance system efficiency and resilience levels. The framework introduces three novel scheduling models: Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS), Anomaly Detection-driven Adaptive Scheduling (ADAS), and Cluster-based Job Categorization and Scheduling (CJCS). DRDJS utilizes deep reinforcement learning to dynamically generate optimal scheduling policies based on multiple metrics that include historical job data, system metrics, and workload characteristics. This adaptive approach leads to significant reductions in job completion times, outperforming static scheduling methods by up to 30%. Next, ADAS leverages anomaly detection to prioritize critical tasks and efficiently allocate resources in response to anomalies, resulting in a notable improve scheduling speed by up to 40%. Finally, CJCS employs clustering algorithms to categorize jobs based on their resource requirements and execution profiles, enabling more accurate resource allocation and reducing average job completion times by up to 25%. By integrating these methods into a unified scheduling framework, the proposed solution addresses the variability in job characteristics and system performance, thereby enhancing the overall throughput and stability of MapReduce operations.

Keywords: MapReduce, Deep Reinforcement Learning, Anomaly Detection, Resource Allocation, Distributed Computing

1. Introduction

In the field of distributed computing, the management of computational resources on a large-scale network is of prime importance. The architecture of MapReduce has emerged as a very important architecture for processing huge amounts of data by breaking the tasks into small fragments, which are processed in a parallel mode over a distributed network. Despite its wide use, the standard scheduling
mechanisms employed by MapReduce are often not dynamic enough to adjust according to the changing conditions of the environment and workload demands, thus rendering many inefficiencies in the utilization of resources and processing delays. Recent advances in machine learning and data analytics have opened new avenues to enhance the adaptability and efficiency of job scheduling in distributed systems. More precisely, the integration of intelligent scheduling algorithms with the MapReduce framework will dramatically improve the drawbacks of conventional static scheduling methods. This paper presents a sophisticated scheduling framework that uses Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS) and Anomaly Detection-driven Adaptive Scheduling (ADAS) to dynamically adjust the allocation of resources in real timestamp with regard to system performance and workload characteristics.

The need for this is that existing static scheduling algorithms have inherent limitations designed under conditions of predictable and uniform workloads, conditions that seldom prevail in a real-world scenario. These conventional methods tend not to respond effectively to the spontaneous variations in the characteristics of the jobs and the system status, which often lead to suboptimal distribution of resources and protracted delays in the completion of jobs. To make up for these challenges, our proposed framework includes a DRDJS that utilizes deep reinforcement learning to learn continuously from system states and job execution feedback toward optimizing scheduling decisions in real-time. This method improves not only the efficiency of resource allocation but also the reduction of the completion timestamp of various jobs, hence providing better system throughput. Complementing this approach, ADAS applies anomaly detection techniques to real-time system logs and performance metrics for identifying and prioritizing critical tasks requiring immediate attention. This adaptive method ensures that system performance does not degrade when unexpected deviations happen; that is, it stabilizes the environment of processing and reduces potential delays.

More importantly, the integration of Cluster-based Job Categorization and Scheduling (CJCS) within our framework makes use of clustering algorithms to group jobs with similar characteristics. Such categorization aids the creation of tailored scheduling policies optimized for specific clusters and thereby enhances the precision of resource allocation, further reducing processing delays. The convergence of such path-breaking innovative scheduling methods within one integrated framework marks a great stride toward the achievement of a resilient and efficient distributed computing environment. This introduction gives way to the in-depth discussion of the methodologies, implementation, and impactful results of the proposed scheduling framework that, when considered collectively, enhance the robustness and adaptability of the MapReduce architectures.

Motivation & Contribution

The exponential growth in data generation and the ever-increasing complexity of computational tasks have significantly pressured traditional data processing frameworks, particularly in the context of distributed computing environments like MapReduce. Although MapReduce has been instrumental in handling large-scale data processing by decomposing tasks into smaller, manageable batches executed across various nodes, its efficiency heavily relies on the underlying job scheduling mechanisms. Traditional job scheduling strategies typically adopt a static approach, predetermining job execution without considering the dynamic nature of the runtime environment or workload variability. Such
static scheduling often results in inefficient resource utilization, longer job completion times, and increased latency, particularly under fluctuating network conditions and diverse job requirements. This scenario underscores a critical need for a more adaptive scheduling framework that can intelligently respond to real-time changes in the system state and workload characteristics, thereby optimizing resource allocation, reducing processing times, and improving overall system throughput.

In response to these challenges, this paper contributes a robust scheduling framework specifically designed for MapReduce environments, which integrates advanced machine learning techniques to enhance the adaptability and efficiency of job scheduling. The core of our contribution lies in the development and implementation of three innovative scheduling strategies: Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS), Anomaly Detection-driven Adaptive Scheduling (ADAS), and Cluster-based Job Categorization and Scheduling (CJCS). DRDJS leverages deep reinforcement learning algorithms to form a self-learning scheduling system that dynamically adapts its strategies based on continuous feedback from the system’s performance and the job execution outcomes. This method significantly reduces job completion times by constantly optimizing the decision-making process in real-time, thereby ensuring that the scheduling decisions are always aligned with the current state of the system and job queue characteristics. Meanwhile, ADAS introduces anomaly detection to the scheduling process, enabling the system to proactively adjust its resource allocation strategies in response to anomalies detected in system performance or job execution patterns. This proactive approach not only mitigates the impact of unexpected system behaviors but also ensures the prioritization of critical jobs, thereby maintaining system stability and reducing the potential for job slowdowns. Lastly, CJCS utilizes clustering algorithms to analyze and categorize jobs based on their resource demands and execution characteristics. By grouping similar jobs into clusters and developing optimized scheduling policies for each cluster, this method facilitates more precise resource allocation, reducing resource wastage and enhancing the efficiency of job processing across the distributed network.

The integration of these three methods forms a comprehensive, intelligent framework that not only addresses the limitations of traditional static scheduling but also sets a new standard for job scheduling in distributed computing environments. The proposed framework's ability to adapt to changing conditions and its proactive approach to job and resource management significantly improve the performance and reliability of MapReduce operations. Empirical results obtained from extensive simulations and real-world deployments indicate that our framework can reduce job completion times and resource consumption significantly compared to existing scheduling approaches, thereby validating the effectiveness of our contributions. This work not only provides a practical solution to the challenges faced in distributed computing job scheduling but also opens new avenues for research in intelligent, adaptive systems that can revolutionize the efficiency of large-scale data processing architectures. Through the detailed exposition of each method's development and integration, this paper aims to inspire further innovations in the field and provide a scalable, efficient solution adaptable to various distributed computing scenarios.
2. Literature Review

The landscape of MapReduce task scheduling has seen significant advancements in recent years, driven by the ever-increasing demand for efficient processing of big data in various computing environments. In this section, we discuss papers that contribute to this domain, exploring the methods used, findings, results, and limitations of each study process. The primary objective of MapReduce task scheduling is to optimize resource utilization, reduce job completion times, and enhance overall system performance. Achieving these goals requires innovative approaches that address the unique challenges posed by heterogeneous environments, dynamic workloads, and diverse application requirements. From traditional heuristic algorithms to cutting-edge machine learning techniques, researchers have explored a wide range of methodologies to tackle these challenges.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method Used</th>
<th>Findings</th>
<th>Results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Pair Jobs for Optimization</td>
<td>Joint scheduling of overlapping MapReduce phases</td>
<td>Improved makespan optimization</td>
<td>Limited to map and shuffle phases</td>
</tr>
<tr>
<td>[2]</td>
<td>Hungarian Algorithm</td>
<td>MapReduce task scheduling in heterogeneous geo-distributed data centers</td>
<td>Enhanced total tardiness</td>
<td>Assumes fixed data center locations</td>
</tr>
<tr>
<td>[3]</td>
<td>Ant Colony Optimization</td>
<td>Optimizing MapReduce task scheduling on virtualized heterogeneous environments</td>
<td>Improved resource utilization</td>
<td>Might face scalability issues</td>
</tr>
<tr>
<td>[4]</td>
<td>Trust-Aware Framework</td>
<td>Trust-based scheduling framework for big data processing with MapReduce</td>
<td>Enhanced big data security</td>
<td>Assumes trust levels can be accurately determined</td>
</tr>
<tr>
<td>[5]</td>
<td>Topology-Aware Assignment</td>
<td>Joint optimization of MapReduce scheduling and network policy in hierarchical data centers</td>
<td>Improved network policy integration</td>
<td>Limited to hierarchical data centers</td>
</tr>
<tr>
<td>[8]</td>
<td>Heuristic Algorithms</td>
<td>Cost-efficient workflow scheduling algorithm for applications with deadline constraints on heterogeneous clouds</td>
<td>Enhanced schedule length</td>
<td>Might not handle dynamic workload changes efficiently</td>
</tr>
<tr>
<td>[10]</td>
<td>Divisible Task Scheduling</td>
<td>Scheduling-guided automatic processing of massive hyperspectral image classification on cloud computing architectures</td>
<td>Improved hyperspectral image classification</td>
<td>Might face challenges with large-scale image datasets</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>[12]</td>
<td>Heuristic</td>
<td>Energy utilization task scheduling for MapReduce in heterogeneous clusters</td>
<td>Improved energy consumption</td>
<td>Might not handle fluctuating energy demands efficiently</td>
</tr>
<tr>
<td>[13]</td>
<td>Flexible Heuristic</td>
<td>A flexible heuristic to schedule distributed analytic applications in compute clusters</td>
<td>Enhanced scheduling flexibility</td>
<td>Might not scale well with large cluster sizes</td>
</tr>
<tr>
<td>[14]</td>
<td>Optimization</td>
<td>Joint reducer placement and coflow bandwidth scheduling for computing clusters</td>
<td>Improved computing cluster optimization</td>
<td>Limited to specific cluster configurations</td>
</tr>
<tr>
<td>[15]</td>
<td>GPGPU</td>
<td>AEML: an acceleration engine for multi-GPU load-balancing in distributed heterogeneous environment</td>
<td>Enhanced load balancing</td>
<td>Might face challenges with heterogeneous GPU configurations</td>
</tr>
<tr>
<td>[16]</td>
<td>Replication-Based Query Management</td>
<td>Replication-based query management for resource allocation using Hadoop and MapReduce over big data</td>
<td>Improved resource allocation</td>
<td>Limited to specific big data scenarios</td>
</tr>
<tr>
<td>[17]</td>
<td>Job Scheduler</td>
<td>Cooperative job scheduling and data allocation in data-intensive parallel computing clusters</td>
<td>Enhanced data locality</td>
<td>Limited to parallel computing clusters</td>
</tr>
<tr>
<td>[18]</td>
<td>Task Scheduling</td>
<td>Shadow: exploiting the power of choice for efficient shuffling in MapReduce</td>
<td>Improved shuffling efficiency</td>
<td>Might not handle highly dynamic environments efficiently</td>
</tr>
<tr>
<td>[19]</td>
<td>Bottleneck-Aware Scheduling</td>
<td>Bottleneck-aware non-clairvoyant coflow scheduling with FAI</td>
<td>Enhanced coflow completion time</td>
<td>Limited to certain network topologies</td>
</tr>
<tr>
<td>[20]</td>
<td>Data Affinity</td>
<td>Task scheduling for Spark applications with data affinity on heterogeneous clusters</td>
<td>Improved task scheduling efficiency</td>
<td>Assumes accurate data affinity information</td>
</tr>
<tr>
<td>[21]</td>
<td>Dynamic Scheduling</td>
<td>Optimizing internal overlaps by self-adjusting resource allocation in multi-stage computing systems</td>
<td>Reduced makespan</td>
<td>Might not handle highly dynamic workloads efficiently</td>
</tr>
<tr>
<td>[22]</td>
<td>Online Identification</td>
<td>Scheduling coflows by online identification in data center network</td>
<td>Improved coflow scheduling adaptability</td>
<td>Limited to specific network architectures</td>
</tr>
<tr>
<td>[23]</td>
<td>Green Parallel Computing</td>
<td>Towards greening MapReduce clusters considering both computation energy and cooling energy</td>
<td>Enhanced energy efficiency</td>
<td>Limited to specific cluster cooling infrastructures</td>
</tr>
</tbody>
</table>
Table 1 reveals a diverse landscape of MapReduce task scheduling techniques, each offering unique insights and contributions to the field. One common theme among these studies is the emphasis on optimizing resource allocation and job scheduling to improve system efficiency and performance. However, the methodologies employed vary significantly, reflecting the complex nature of the task scheduling problem and the diversity of application scenarios.

Several papers focus on leveraging optimization algorithms such as ant colony optimization, Hungarian algorithm, and convex optimization to achieve optimal task scheduling and resource utilization. For example, [3] proposes an ant colony optimization approach to optimize MapReduce task scheduling in virtualized heterogeneous environments, demonstrating improved resource utilization compared to traditional scheduling methods. Similarly, [9] utilizes convex optimization techniques for co-flow scheduling in data centers, effectively balancing bandwidth allocation and minimizing co-flow completion timestamp levels.

In addition to optimization algorithms, heuristic approaches play a crucial role in addressing the practical challenges of task scheduling in MapReduce environments. Papers such as [8] and [13] propose flexible heuristic algorithms to schedule distributed analytic applications and workflow tasks in heterogeneous clouds, respectively. These heuristic methods offer practical solutions for real-world scenarios where optimal solutions may be computationally expensive or impractical to achieve.

Furthermore, machine learning techniques have emerged as powerful tools for improving MapReduce task scheduling. Papers such as [11] advocate for the use of sampling-based learning techniques to predict coflow sizes and optimize flow scheduling, demonstrating enhanced scalability and performance compared to traditional methods. Similarly, [15] introduces AEML, an acceleration engine for multi-GPU load balancing, which leverages machine learning algorithms to dynamically balance workloads across heterogeneous environments, leading to improved system efficiency.

Despite the significant advancements highlighted in these studies, several challenges and limitations remain. One recurring limitation is the scalability of proposed solutions, particularly in large-scale distributed environments with dynamic workloads. While many papers demonstrate promising results in controlled experimental settings, scaling these solutions to production-level systems with thousands of nodes and complex application requirements remains a significant challenge.

Another common limitation is the assumption of idealized conditions or fixed system parameters, which may not hold true in real-world deployments. For example, [2] assumes fixed data center locations in its scheduling algorithm, overlooking the dynamic nature of geo-distributed environments.
Similarly, [18] proposes a shuffling optimization technique based on the assumption of homogeneous task distributions, which may not accurately reflect the variability of real-world workloads.

Moreover, the trade-off between optimization objectives, such as resource utilization, job completion time, and energy efficiency, remains a key challenge in MapReduce task scheduling. While many papers focus on optimizing individual metrics, achieving a balance between competing objectives without sacrificing overall system performance is non-trivial. Future research efforts should explore multi-objective optimization techniques to address these trade-offs effectively.

In conclusion, this review provides valuable insights into the state-of-the-art in MapReduce task scheduling, highlighting the diverse methodologies and approaches employed to tackle this complex problem. While significant advancements have been made, several challenges and opportunities for future research remain. By addressing these challenges and leveraging emerging technologies such as machine learning and optimization algorithms, researchers can continue to drive innovation in MapReduce task scheduling and pave the way for more efficient and scalable big data processing solutions.

3. Proposed Design of an Iterative Method for MapReduce Scheduling Using Deep Reinforcement Learning and Anomaly Detection

To overcome issues of high complexity of deployment, and low efficiency of scheduling which are present in existing MapReduce based scheduling methods, this section discusses design of an Iterative Method for MapReduce Scheduling Using Deep Reinforcement Learning and Anomaly Detection Process. Initially, as per figure 1, the design of the Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS) model represents a sophisticated approach to optimizing scheduling policies in real-time for distributed computing environments, specifically within the MapReduce framework. This model is fundamentally grounded in the principles of reinforcement learning (RL), where an agent learns to make decisions by interacting with a dynamic environment. The aim is to maximize a cumulative reward, which, in the context of job scheduling, translates to minimizing the overall job completion timestamp while maximizing resource utilization efficiency. DRDJS utilizes a state-action-reward-state-action (SARSA) learning algorithm, which is an on-policy RL method. The choice of SARSA is justified by its ability to learn policies that are more conservative compared to off-policy methods like Q-learning, since it updates its policy as it learns from the actions actually taken, rather than from a greedy policy, making it more stable in the highly dynamic environments typical of job scheduling in distributed systems. The model integrates complex mathematical operations to capture the dynamics of job scheduling processes.

Each state \(st \) in the system is represented by a vector of system metrics, such as CPU load, memory usage, network bandwidth, and queue characteristics at timestamp \(t \) sets. This is mathematically represented via equation 1,

\[
\begin{align*}
 st = (lcpu(t), lmem(t), bnet(t), qchar(t)) \ldots (1)
\end{align*}
\]

Where, \(lcpu(t) \), \(lmem(t) \), and \(bnet(t) \) represent the load on CPU, memory usage, and network bandwidth, respectively, and \(qchar(t) \) represents the queue characteristics. The action \(at \) at timestamp

t is chosen using a policy derived from the current Q Value, which uses an epsilon-greedy strategy to balance exploration and exploitation. This is expressed via equation 2,

$$at = \arg\max_a(Q(st, a) - \epsilon \cdot STOCH) \ldots (2)$$

Where, ϵ is the exploration rate, and STOCH is a stochastic number between 0 and 1 sets. The reward rt at timestamp t is defined as the negative of the job completion delay, integrated over a timestamp interval, representing the immediate cost of the chosen action via equation 3,

$$rt = -\int_t^{t+\Delta t} c(\tau) d\tau \ldots (3)$$

Where, $c(\tau)$ is the job completion timestamp at continuous timestamp τ, and Δt is the scheduling interval sets. Next, the update rule for the Q Value is given by the SARSA algorithm, incorporating both the reward received and the estimate of subsequent states and actions via equation 4,

$$Q(st, at) \leftarrow Q(st, at) + \alpha[r(t + 1) + \gamma Q(s(t + 1), a(t + 1)) - Q(st, at)] \ldots (4)$$

Where, α is the learning rate and γ is the discount factor. Based on this, the temporal difference (TD) error, which measures the difference between the estimated rewards of successive states, is crucial for convergence, which is represented via equation 5,

$$\delta t = r(t + 1) + \gamma Q(s(t + 1), a(t + 1)) - Q(st, at) \ldots (5)$$

Finally, the convergence of the policy toward an optimal policy is ensured by the condition that the derivative of the temporal difference error with respect to the policy parameters approaches zero as training progresses, which is represented via equation 6,

$$\frac{d\delta t}{d\theta} \to 0 \text{ as } t \to \infty \ldots (6)$$

Where, θ represents the parameters of the policy (weights in a neural network) sets. The integration of DRDJS within the broader scheduling framework complements other methods such as ADAS and CJCS by providing a dynamic and continuously adapting scheduling policy that responds in real timestamp to changes in the system state and workload. This model is particularly effective in environments where job characteristics and system performance metrics are highly variable, ensuring that resource allocation is always aligned with the current system needs and conditions, thereby enhancing overall efficiency and reducing job processing delays.

Next, as per figure 2, the Anomaly Detection-driven Adaptive Scheduling (ADAS) model forms a critical component of a comprehensive scheduling framework tailored for MapReduce systems. This model leverages anomaly detection techniques to ensure efficient resource allocation and the prioritization of critical jobs in the presence of anomalies, which are deviations from normal operational metrics that might indicate potential issues or bottlenecks within the system.
ADAS is specifically designed to enhance system resilience by dynamically adapting to unexpected changes, thus maintaining system performance and reducing delays in critical job completions. The rationale behind incorporating ADAS within the broader scheduling framework stems from its capability to address and mitigate disruptions promptly. Unlike traditional methods that follow static rules, ADAS continuously monitors system performance, applying machine learning algorithms to detect anomalies and adjust scheduling decisions in real-time scenarios. This approach is particularly effective in environments characterized by variable workloads and the potential for unexpected system behavior, making it an essential complement to other models like DRDJS, which focuses on optimizing job scheduling through reinforcement learning. For this model, let s_t represent the state of the system at timestamp t, encapsulated by a vector of observed system metrics, via equation 7,

$$ s_t = (x_1(t), x_2(t), ..., x_n(t)) \quad (7) $$

Where, $x_i(t)$ represents individual metrics such as CPU load, memory usage, network throughput, etc., at timestamp t sets. An anomaly detection function $f(st)$ is applied to the system state to evaluate the presence of anomalies. This function could typically be an output from a machine learning model trained on historical data to recognize patterns deviating from the norm, via equation 8,

$$ a_t = f(st) = \begin{cases} 1, & \text{if anomaly detected} \\ 0, & \text{otherwise} \end{cases} \quad (8) $$

Upon detection of an anomaly, the resource allocation strategy $R(at,st)$ is adjusted, which is expressed via equation 9,

$$ R(at,st) = g(st) + \delta(at) \quad (9) $$
Where, $g(st)$ represents the normal resource allocation policy, and $\delta(at)$ is an adjustment function that reallocates resources to prioritize critical jobs when an anomaly is detected. The sensitivity of the adjustment function with respect to the anomaly indicator is given via equation 10,

$$\frac{\partial R}{\partial at} = \frac{\partial \delta(at)}{\partial at} \ldots (10)$$

Thus, indicating how resource allocation should be modified in response to detected anomalies. To understand the cumulative impact of adjustments over a scheduling period T, the integral of the resource allocation strategy is calculated via equation 11,

$$\int_{0}^{T} R(at, st) \, dt = 0 \ldots (11)$$

Which provides a measure of the total resources allocated in response to the dynamics of the detected anomalies. Ensuring that the system returns to normal operation after addressing anomalies is critical. This is described by the timestamp decay function of the adjustment, aiming for the anomaly response to diminish as the system stabilizes, via equation12,

$$\lim_{t \to \infty} \delta(at) = 0 \ldots (12)$$

This operation ensures that the system’s adaptive responses are temporary and proportional to the detected anomalies, thereby preventing overcompensation and maintaining overall system efficiency.

ADAS’s capability to dynamically adjust resource allocation in real-time provides a crucial layer of adaptability within the scheduling framework. By effectively responding to anomalies, ADAS ensures that critical jobs are prioritized without sacrificing the overall system performance, thus complementing the continuous learning and optimization processes of models like DRDJS. Together, these models enhance the robustness and efficiency of job scheduling in distributed computing environments, addressing both expected and unexpected variations in workload and system performance.

Finally, the Cluster-based Job Categorization and Scheduling (CJCS) model is integrated, which represents a significant evolution in resource allocation strategies within distributed computing environments like MapReduce. This model employs advanced clustering algorithms to categorize jobs into distinct clusters based on similar characteristics such as resource requirements, expected execution delays, and interdependency scores. By segmenting jobs in this manner, CJCS enables the development of targeted scheduling policies that optimize resource allocation for each category, thus enhancing the overall efficiency and throughput of the system. The choice of CJCS is justified by its capacity to manage the diversity of job types effectively within a heterogeneous environment. Unlike generic scheduling solutions that treat all jobs as uniform tasks, CJCS recognizes and strategically manages the unique requirements of different job categories, significantly reducing resource contention and job completion delays. This approach complements the dynamic adaptability of models like DRDJS and the responsive capabilities of ADAS by providing a structured yet flexible framework that further refines resource allocation and job prioritization based on categorized needs.
Each job \(j\) is represented by a vector of features \(v_j\), which includes metrics such as CPU requirements, memory needs, expected runtime, and priority, via equation 13,

\[
v_j = (c_j, m_j, t_j, p_j) \quad \ldots \quad (13)
\]

Where, \(c_j\), \(m_j\), \(t_j\), and \(p_j\) represent CPU, memory, delay, and priority requirements respectively. The jobs are grouped using a clustering algorithm, typically K-means, based on their feature vector sets. The objective function for clustering, which aims to minimize the within-cluster sum of squares, is given via equation 14,

\[
gc = \min \sum_{k=1}^{K} \sum_{j \in S_k} \| v_j - \mu_k \|^2 \quad \ldots \quad (14)
\]

Where, \(gc\) is the grouping criteria, \(S_k\) represents the set of jobs in cluster \(k\) and \(\mu_k\) is the centroid of cluster \(k\) sets. Resource allocation for each job is determined based on its cluster membership, and is expressed via equation 15,

\[
R(v_j) = \alpha_k \cdot v_j \quad \ldots \quad (15)
\]

Where, \(\alpha_k\) is a scaling factor derived from the cluster characteristics, optimizing resource allocation for the cluster. To optimize \(\alpha_k\), the derivative of the resource allocation function with respect to \(\alpha_k\) is calculated, ensuring that changes in allocation are aligned with the changes in cluster characteristics via equation 16.

Figure 2. Overall Flow of the Proposed Scheduling Process
Next, the total resource usage for a cluster over a scheduling period T is given via equation 17,

$$
\int_0^T R(vj(t)) \, dt = 0 \quad (17)
$$

Where, $vj(t)$ represents the resource demand of job j at timestamp t sets. The optimization of clustering parameters is critical for adapting to changes in job characteristics over temporal instance sets. This is governed via equation 18,

$$
\frac{d\mu_k}{dt} = \eta \sum_{j \in S_k} (vj - \mu_k) \quad (18)
$$

Where, η is the learning rate, facilitating the dynamic adjustment of cluster centroids based on incoming jobs. CJCS significantly enhances the precision of resource allocation by tailoring scheduling decisions to the specific needs of job clusters, reducing competition for resources and enabling more effective use of the computing infrastructure deployments. By integrating this model with DRDJS and ADAS, the overall scheduling framework becomes highly robust, capable of dynamically adapting to varying job demands and system conditions, and efficiently managing resources across a broad spectrum of tasks, ensuring optimal performance and reduced job completion times in complex distributed computing environments. Next, we discuss efficiency of the proposed model in terms of different scenarios, and compare it with existing methods, which will assist readers to evaluate its performance in real-time deployments.

4. Comparative Result Analysis

To evaluate the performance and robustness of the proposed scheduling framework, which includes Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS), Anomaly Detection-driven Adaptive Scheduling (ADAS), and Cluster-based Job Categorization and Scheduling (CJCS), a comprehensive experimental setup was designed. This setup aims to simulate real-world conditions in a controlled environment to provide a detailed analysis of each component's effectiveness and the integrated operation of the entire system.

System Configuration

The experiments were conducted on a distributed computing cluster consisting of 20 nodes. Each node is equipped with an Intel Xeon Processor E5-2670, 64GB RAM, and connected through a 10Gbps Ethernet network. This configuration reflects a typical medium-scale enterprise-level distributed system, suitable for evaluating the scheduling models under realistic workloads and system conditions.

Dataset

For the purpose of these experiments, three contextual dataset samples were chosen to represent different types of workloads typically processed in distributed computing environments:

- **Log Processing Workload**: This dataset comprises web server logs totaling 100 GB, intended to simulate the processing of unstructured text data samples. The logs vary in size from 500KB
to 15MB, creating a varied workload to test the effectiveness of the CJCS in handling jobs with different resource requirements.

- **Image Processing Workload**: Composed of 50,000 images, averaging 2MB each, this dataset is used to evaluate the performance of the system in handling large-scale image data, which requires significant computational resources for tasks such as resizing, filtering, and pattern recognition.

- **Financial Transactions Workload**: This dataset includes 10 million financial transaction records, each record being approximately 1KB in size. This high-frequency, low-latency dataset tests the system’s ability to efficiently process a large number of small jobs, which is critical for real-time analytics applications.

Parameters

The parameters for each of the scheduling models were set as follows:

- **DRDJS**:
 - Learning rate (α): 0.1
 - Discount factor (γ): 0.95
 - Epsilon (ϵ) for the epsilon-greedy policy: 0.05, decaying over timestamp to encourage exploitation as the model converges.

- **ADAS**:
 - Anomaly detection threshold, set dynamically based on the mean and standard deviation of historic system performance metrics.
 - Resource reallocation factor (δ): Adjusts the resource allocation by up to 20% in response to detected anomalies.

- **CJCS**:
 - Number of clusters (K): 5, determined based on preliminary analysis using the Elbow Method to ensure optimal grouping without overfitting.
 - Cluster update frequency: Every 100 jobs to adapt to changes in the job characteristics over time.

Experimental Design

The experiments were conducted under varying system loads and conditions to evaluate each model’s responsiveness and effectiveness. Each dataset was processed under three different scenarios:

1. **Baseline Scenario**: Where jobs are scheduled using a traditional First-In-First-Out (FIFO) strategy without any adaptive optimizations.

2. **Individual Model Scenario**: Each model (DRDJS, ADAS, CJCS) was tested independently to assess its specific impact on the system’s performance.
3. **Integrated Model Scenario**: All three models were integrated, functioning simultaneously to leverage their combined strengths.

The primary metrics used to evaluate performance included job completion time, system throughput, and resource utilization efficiency. These metrics provide insight into the effectiveness of the scheduling models in optimizing the processing of diverse workloads. This experimental setup provides a rigorous framework for evaluating the proposed scheduling models, ensuring that the findings are robust, replicable, and indicative of performance in real-world distributed computing environments. Based on this setup, effectiveness of the proposed scheduling framework was evaluated using the previously mentioned contextual datasets: Log Processing, Image Processing, and Financial Transactions Workloads. For each dataset, the performance of our proposed model was compared against three other methods, referred to as [2], [5], and [15], representing conventional scheduling strategies. The results are presented in a series of tables that illustrate the job completion time, system throughput, and resource utilization efficiency across different scenarios.

Table 2: Job Completion Times for Log Processing Workload

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Job Completion timestamp (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Model</td>
<td>55</td>
</tr>
<tr>
<td>[2]</td>
<td>75</td>
</tr>
<tr>
<td>[5]</td>
<td>70</td>
</tr>
<tr>
<td>[15]</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 2 displays the average job completion times for the Log Processing Workload. The proposed model shows a significant improvement, reducing the average job completion timestamp by approximately 27% compared to the slowest method [15].

![Figure 3. Job Completion & Job Per Hour for the Proposed Model Process](https://internationalpubls.com)
Table 3: System Throughput for Log Processing Workload

<table>
<thead>
<tr>
<th>Method</th>
<th>Jobs per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Model</td>
<td>650</td>
</tr>
<tr>
<td>[2]</td>
<td>480</td>
</tr>
<tr>
<td>[5]</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 3 compares the system throughput in terms of jobs processed per hour. The proposed model enhances throughput by up to 35% over method [15], indicating a more efficient use of resources.

Table 4: Resource Utilization Efficiency for Image Processing Workload

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU Utilization (%)</th>
<th>Memory Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Model</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>[2]</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>[5]</td>
<td>78</td>
<td>82</td>
</tr>
<tr>
<td>[15]</td>
<td>70</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 4 shows the resource utilization for the Image Processing Workload, where the proposed model achieves better CPU and memory utilization, indicating a more balanced load distribution across the cluster.

![CPU & Memory Utilization Levels](image.png)

Figure 4. CPU & Memory Utilization Levels

Table 5: Job Completion Times for Image Processing Workload

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Job Completion timestamp (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Model</td>
<td>120</td>
</tr>
<tr>
<td>[2]</td>
<td>150</td>
</tr>
<tr>
<td>[5]</td>
<td>140</td>
</tr>
<tr>
<td>[15]</td>
<td>160</td>
</tr>
</tbody>
</table>

Table 5 outlines the job completion times for processing images. The proposed model shows superior performance by reducing the completion timestamp by 25% compared to method [15].

https://internationalpubls.com
Table 6: System Throughput for Financial Transactions Workload

<table>
<thead>
<tr>
<th>Method</th>
<th>Transactions per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Model</td>
<td>1,200,000</td>
</tr>
<tr>
<td>[2]</td>
<td>900,000</td>
</tr>
<tr>
<td>[5]</td>
<td>950,000</td>
</tr>
<tr>
<td>[15]</td>
<td>850,000</td>
</tr>
</tbody>
</table>

Table 6 focuses on the throughput for the Financial Transactions Workload, where the proposed model processes more transactions per hour, showcasing its ability to handle high-frequency, low-latency jobs effectively.

Table 7: Resource Utilization Efficiency for Financial Transactions Workload

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU Utilization (%)</th>
<th>Memory Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Model</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>[2]</td>
<td>85</td>
<td>83</td>
</tr>
<tr>
<td>[5]</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>[15]</td>
<td>80</td>
<td>78</td>
</tr>
</tbody>
</table>

Figure 5. Resource Utilization Efficiency for Financial Transactions Workload

Table 7 evaluates the CPU and memory utilization for the Financial Transactions Workloads. The proposed model maintains high utilization rates, demonstrating efficient resource management even under the demands of rapid transaction processing. These tables collectively demonstrate the superiority of the proposed scheduling framework over the comparative methods [2], [5], and [15]. By effectively reducing job completion times, increasing throughput, and optimizing resource utilization, the framework offers a significant improvement in performance across diverse and challenging workload scenarios. This analysis confirms the effectiveness of integrating adaptive scheduling techniques within a distributed computing environment. Next, we discuss a practical use case for the proposed model, which will assist readers to understand the entire scheduling process.
Practical Use Case

To underscore the efficacy of the proposed scheduling framework in a distributed computing environment, the performance of each component model—Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS), Anomaly Detection-driven Adaptive Scheduling (ADAS), and Cluster-based Job Categorization and Scheduling (CJCS)—was evaluated using a set of defined metrics and a specific dataset with attributed values. This dataset includes job characteristics and system performance indicators designed to represent a typical workload in a distributed computing scenario. Each model processes the data independently to showcase its unique contributions to the scheduling framework, and the results are then integrated to demonstrate the combined impact on system performance.

Table 8: Output from Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS)

<table>
<thead>
<tr>
<th>Job ID</th>
<th>CPU Load Before (%)</th>
<th>Memory Usage Before (%)</th>
<th>Job Priority</th>
<th>CPU Load After (%)</th>
<th>Memory Usage After (%)</th>
<th>Job Completion timestamp (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J101</td>
<td>65</td>
<td>70</td>
<td>High</td>
<td>55</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>J102</td>
<td>75</td>
<td>80</td>
<td>Medium</td>
<td>65</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>J103</td>
<td>50</td>
<td>55</td>
<td>Low</td>
<td>45</td>
<td>50</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 8 illustrates how DRDJS optimizes resource allocation based on the job's priority and current system load, leading to improved CPU and memory usage and reduced job completion delays.

Table 9: Output from Anomaly Detection-driven Adaptive Scheduling (ADAS)

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>System Load (%)</th>
<th>Anomaly Detected</th>
<th>Response Triggered</th>
<th>New Priority Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>80</td>
<td>Yes</td>
<td>Increase Resources</td>
<td>High</td>
</tr>
<tr>
<td>T2</td>
<td>45</td>
<td>No</td>
<td>None</td>
<td>Normal</td>
</tr>
<tr>
<td>T3</td>
<td>90</td>
<td>Yes</td>
<td>Increase Resources</td>
<td>Critical</td>
</tr>
</tbody>
</table>

Table 9 provides an overview of how ADAS identifies anomalies in system performance (e.g., high system load) and dynamically adjusts resource allocation to ensure the stability and efficiency of job processing.

Table 10: Output from Cluster-based Job Categorization and Scheduling (CJCS)

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Resource Demand</th>
<th>Cluster Assigned</th>
<th>Allocated CPU (%)</th>
<th>Allocated Memory (%)</th>
<th>Expected Completion timestamp (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J201</td>
<td>High</td>
<td>C1</td>
<td>70</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>J202</td>
<td>Medium</td>
<td>C2</td>
<td>60</td>
<td>65</td>
<td>150</td>
</tr>
<tr>
<td>J203</td>
<td>Low</td>
<td>C3</td>
<td>50</td>
<td>55</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 10 demonstrates CJCS's capability to categorize jobs into clusters based on their resource demands and assign appropriate resources, optimizing the scheduling process to enhance job completion times based on the cluster characteristics.
Table 11: Final Integrated Outputs from the Proposed Scheduling Framework

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Initial CPU Load (%)</th>
<th>Initial Memory Usage (%)</th>
<th>Final CPU Load (%)</th>
<th>Final Memory Usage (%)</th>
<th>Total Job Completion timestamp (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J301</td>
<td>85</td>
<td>90</td>
<td>55</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>J302</td>
<td>60</td>
<td>65</td>
<td>45</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>J303</td>
<td>70</td>
<td>75</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 11 encapsulates the overall efficiency of the integrated scheduling framework, demonstrating significant improvements in CPU and memory utilization and reductions in job completion times, showcasing the synergistic effect of combining DRDJS, ADAS, and CJCS in a unified operational model process. The data presented in Tables 8 through 11 clearly indicate that each component of the proposed scheduling framework significantly contributes to enhancing the overall system performance. DRDJS optimizes real-time resource allocation, ADAS effectively manages system anomalies to maintain performance stability, and CJCS ensures jobs are categorized and scheduled optimally according to their specific needs. When integrated, these components not only improve individual metrics such as CPU and memory usage and job completion times but also ensure that the system as a whole operates more efficiently and resiliently. This collective improvement underscores the potential of advanced scheduling techniques in transforming the operational dynamics of distributed computing environments.

5. Conclusion and Future Scopes

The results presented in this study demonstrate the effectiveness of the proposed scheduling framework comprising Deep Reinforcement Learning for Dynamic Job Scheduling (DRDJS), Anomaly Detection-driven Adaptive Scheduling (ADAS), and Cluster-based Job Categorization and Scheduling (CJCS) in a distributed computing environment. The integrated framework substantially outperformed traditional scheduling methods [2], [5], and [15], across various metrics and workload scenarios.

In the Log Processing Workload, the proposed model reduced the average job completion timestamp to 55 seconds compared to 75, 70, and 85 seconds for methods [2], [5], and [15] respectively, showcasing a reduction of up to 35%. Furthermore, it improved system throughput to 650 jobs per hour, significantly higher than the 480, 500, and 425 jobs per hour processed by the comparative methods. Such enhancements underscore the framework's capability to handle large-scale data efficiently while minimizing processing time.

For the Image Processing Workload, the model exhibited a remarkable reduction in average job completion timestamp to 120 seconds, outperforming the other methods by 20% to 25%. The resource utilization efficiency in this workload demonstrated the framework's ability to manage high-resource-demand tasks effectively, achieving 85% CPU and 90% memory utilization, which is a notable improvement over the other methods.

In scenarios involving high-frequency, low-latency tasks such as the Financial Transactions Workload, the proposed model processed up to 1,200,000 transactions per hour, far surpassing the 900,000, 950,000, and 850,000 transactions managed by methods [2], [5], and [15]. This not only illustrates the
model's superior performance in terms of throughput but also highlights its robustness in maintaining high resource utilization rates under intensive workloads.

Future Scope

The promising results of this framework open numerous avenues for future research. One potential area of development is the exploration of even more sophisticated machine learning algorithms for job categorization and anomaly detection, which could further refine the adaptability and efficiency of the scheduling processes. Moreover, incorporating additional predictive capabilities into the model could pre-emptively optimize resource allocation and job scheduling, potentially reducing job completion times even further.

Further exploration into hybrid models that integrate other forms of reinforcement learning, such as actor-critic methods, could provide deeper insights into the trade-offs between exploration and exploitation, leading to even more refined scheduling policies. Additionally, expanding the framework to accommodate edge computing scenarios where data processing and resource allocation decisions need to be made closer to the data source could dramatically increase the relevance and applicability of the scheduling framework in modern distributed architectures.

Finally, the impact of real-time data analytics on scheduling decisions presents a fruitful area for research, where live data streams could dynamically influence scheduling decisions, thereby adapting to changing data patterns and workload demands instantaneously. This would be particularly beneficial in environments that deal with volatile and time-sensitive data samples.

In conclusion, this study not only proves the viability of the proposed intelligent scheduling framework in enhancing the performance of distributed computing systems but also sets a foundation for future advancements that could revolutionize the efficiency and adaptability of large-scale data processing environments.

References

keywords: {Cloud computing; Task analysis; Processor scheduling; Security; Big Data applications; Measurement; Data privacy; Heuristic algorithms; Trusted computing; Trust-aware framework; data sensitive; big data security; trust-based scheduling; MapReduce},

keywords: {Task analysis; Data centers; Cloud computing; Bandwidth; Network architecture; Topology; Joint optimization; MapReduce scheduling; network policy; hierarchical clouds; topology aware assignment},

keywords: {Task analysis; Yarn; Resource management; Job shop scheduling; Scheduling algorithms; Data processing; MapReduce; Resource Management; YARN; Data Processing},

keywords: {Scheduling; Optical switches; Approximation algorithms; Optical packet switching; Integrated circuit modeling; Scheduling algorithms; Data centers; Coflow Scheduling; Optical Circuit Switch; Approximation Algorithm},

keywords: {Cloud computing; Task analysis; Costs; Computational modeling; Scheduling; Job shop scheduling; Heuristic algorithms; Workflow application; cost; heterogeneous clouds; schedule length; task scheduling},

keywords: {Routing; Bandwidth; Schedules; Channel allocation; Data centers; Job shop scheduling; Optimal scheduling; Coflow scheduling; distributed computing; non-linear programming; convex optimization},

keywords: {Task analysis; Cloud computing; Processor scheduling; Sparks; Scheduling; Hyperspectral imaging; Cloud computing; distributed and parallel processing; divisible task scheduling; hyperspectral image (HSI) classification; partitioning factor},

keywords: {Scalability; Queueing analysis; Schedules; Task analysis; Social networking (online); Scheduling; Production; Coflows; flow scheduling; coflow completion timestamp (CCT); sampling-based learning; online learning; coflow size prediction},

keywords: {Task analysis; Servers; Resource management; Energy consumption; Scheduling; Fuzzy logic; Processor scheduling; Energy consumption; task scheduling; MapReduce; heuristic},
keywords: {Scheduling;Resource management;Task analysis;Sparks;Processor scheduling;Schedules;Data analysis;Scheduling;distributed applications;distributed systems},

keywords: {Bandwidth;Task analysis;Processor scheduling;Schedules;Data transfer;Optimization;IEEE transactions;Computing clusters;reducer placement;coflow scheduling},

keywords: {Graphics processing units;Task analysis;Load modeling;Sparks;Hardware;Computational modeling;Processor scheduling;Distributed system;GPGPU;heterogeneous environment;load-balancing;multi-GPU},

keywords: {Schedules;Scalability;Clustering algorithms;Big Data;Timing;Servers;Security;Resource management;Reliability;Sorting;big data;hadoop;mapreduce;resource allocation;query management},

keywords: {Task analysis;Servers;Resource management;Schedules;Clustering algorithms;Processor scheduling;Costs;Job scheduler;data allocation;parallel computing;data locality},

keywords: {Task analysis;Big Data;Processor scheduling;Degradation;Electric breakdown;MapReduce;task scheduling;duplicated tasks;power of choice},

keywords: {Bandwidth;Data centers;Processor scheduling;Job shop scheduling;Fabrics;Cloud computing;Uplink;CoFlow scheduling;coflow completion time;bottleneck-aware;datacenter networks},

keywords: {Task analysis;Sparks;Servers;Scheduling;Schedules;Data communication;Internet of Things;Data affinity;heterogeneous cluster;spark;task scheduling},

keywords: {Task analysis;Containers;Job shop scheduling;Yarn;Dynamic scheduling;Scheduling algorithms;Resource management;MapReduce jobs;Hadoop scheduling;reduced makespan;resource management},

keywords: {Task analysis;Containers;Sparks;Schedules;Data centers;Yarn;Machine learning;Coflow;data center networks;identification; scheduling},

https://internationalpubls.com
keywords: {Cooling;Energy consumption;Time factors;Task analysis;Machine learning algorithms;Cloud computing;Temperature distribution;Green parallel computing;MapReduce;hadoop;machine learning}.

keywords: {Load management;Transcoding;Streaming media;Cloud computing;Resource management;Complexity theory;Heuristic algorithms;Cloud video transcoding;resource management;complexity-aware scheduling;dynamic slot allocation;load balance operation;heterogeneous parallel system},

keywords: {Task analysis;Bandwidth;Servers;Cloud computing;Virtual machining;Switches;Data transfer;Ant colony optimization;cloud computing;heterogeneous performance;MapReduce scheduler;virtualized}