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Abstract:    

Bi-isotropic media (chiral and non-reciprocal) present an outstanding challenge 

for the scientific community. Their characteristics have facilitated the emergence of new 

and remarkable applications. In this paper, we focus on the novel effect of chirality, 

characterized through a newly proposed formalism, to highlight the nonlinear effect 

induced by the magnetization vector under the influence of a strong electric field. This 

research work is concerned with a new formulation of constitutive relations. We delve 

into the analysis and discussion of the family of solutions of the nonlinear Schrödinger 

equation, describing the pulse propagation in nonlinear bi-isotropic media, with a novel 

approach to constitutive equations. We apply the extended 𝐺’/𝐺-expansion method with 

varying dispersion and nonlinearity to define certain families of solutions of the nonlinear 

Schrödinger equation in bi-isotropic (chiral and non-reciprocal) optical fibers. This 

clarification aids in understanding the propagation of light with two modes of 

propagation: a right circular polarized wave (RCP) and a left circular polarized wave 

(LCP), each having two different wave vectors in nonlinear bi-isotropic media. Various 

novel exact solutions of bi-isotropic optical solitons are reported in this study. 

 

Introduction: The investigation of exact solutions for nonlinear partial differential 

equations (PDEs) holds significant importance in understanding nonlinear physical 

phenomena. Nonlinear waves manifest across various scientific domains, notably in 

optical fibers and solid-state physics. In recent years, several potent methodologies have 

emerged for identifying solitons and periodic wave solutions of nonlinear PDEs. These 

include the 𝐺’/𝐺 -expansion method [1-6], the new mapping method [9-10], the method 

of generalized projective Riccati equations [11-16], and the 𝐺’/𝐺 expansion method [17]. 

 Consequently, an original mathematical approach is proposed to evaluate 

nonlinear effects in bi-isotropic optical fibers, stemming from magnetization under the 

influence of a strong electric field [19-20]. The extended 𝐺’/𝐺-expansion method 

emerges as a potent technique for deriving solution families of the nonlinear Schrödinger 

equation in bi-isotropic optical fibers. This method employs a perturbation expansion in 

powers of the dimensionless parameter and is applicable for both weak and strong 

nonlinearities. It accommodates varying dispersion and nonlinearity, rendering it suitable 

for modeling a wide array of optical fibers. 

Results and Conclusion: This investigate is concerned with a new formulation 

of constitutive relation linking to the magnetic effect, to understand rigorously the 

physical nature of biisotropic effects and to generalize the main macroscopic models. We 

inferred the nonlinear Schrodinger equation for a bi-isotropic medium term with a 

nonlinear term of magnetizing. In this article, the extended 𝐺’/𝐺-expansion method is a 
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powerful technique for determining a family of solutions of the nonlinear Schrödinger 

equation in bi-isotropic optical fibers.  

This method is based on the use of a perturbation expansion in powers of the 

dimensionless parameter, and it is valid for both weak and strong nonlinearities. The 

method allows for the inclusion of varying dispersion and nonlinearity, making it well-

suited for modeling a wide range of optical fibres. Overall, the extended 𝐺’/𝐺 -expansion 

method is a valuable tool for understanding the dynamics of nonlinear optical systems, 

and it is expected to have a wide range of applications in the field of nonlinear optics. 

Keywords: Nonlinear Bi-isotropic media , Schrödinger equation , Optical fiber ,The 𝐺’/𝐺 

expansion method, chiratity, non-reciprocity. 

1. Introduction 

The investigation of exact solutions for nonlinear partial differential equations (PDEs) holds 

significant importance in understanding nonlinear physical phenomena. Nonlinear waves manifest 

across various scientific domains, notably in optical fibers and solid-state physics. In recent years, 

several potent methodologies have emerged for identifying solitons and periodic wave solutions of 

nonlinear PDEs. These include the 𝐺’/𝐺 -expansion method [1-6], the new mapping method [9-10], the 

method of generalized projective Riccati equations [11-16], and the 𝐺’/𝐺 -expansion method [17]. 

Conte and Musette [11] introduced an indirect approach to uncover solitary wave solutions of 

specific nonlinear PDEs expressible as polynomials in two elementary functions satisfying a projective 

Riccati equation [18]. This method has been successfully applied to numerous nonlinear PDEs, with 

resulting solitary wave solutions documented in [12-16]. The 𝐺’/𝐺 -expansion method exhibits broad 

applicability for tackling various other nonlinear evolution equations in mathematical physics. 

In recent years, research endeavors have actively explored novel types of heterogeneous 

absorbent materials, notably bi-isotropic materials. Bi-isotropic materials comprise a random 

dispersion of inclusions within a polymeric or ceramic matrix. Lindman in 1920 and Pickering in 1945 

specifically investigated the interaction of electromagnetic waves with a collection of randomly 

distributed metal helices of the same enantiomorph form [19-23]. They observed polarization plane 

rotation of electromagnetic waves post-interaction with the helices. In 1979, Jaggard, Mickelson, and 

Papas proposed a macroscopic model detailing the interaction of electromagnetic waves with chiral 

structures (bi-isotropic materials) [19-20]. 

The general bi-isotropic medium is chiral and non-reciprocal, involving a complex parameter 

in the general case. The effects of two parameters, nonlinear chirality, and non-reciprocity, are crucial 

for estimating non-linearity in bi-isotropic fibers. This paper examines a direct method to determine 

numerous solution families for the nonlinear Schrödinger equation in bi-isotropic optical fiber, 

alongside 𝐺’/𝐺-expansion. This contributes to a deeper understanding of the interaction between 

electromagnetic waves and nonlinear bi-isotropic media, facilitating the design of potential 

applications in microwave and optical domains. 

Consequently, an original mathematical approach is proposed to evaluate nonlinear effects in 

bi-isotropic optical fibers, stemming from magnetization under the influence of a strong electric field 
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[19-20]. The extended 𝐺’/𝐺 -expansion method emerges as a potent technique for deriving solution 

families of the nonlinear Schrödinger equation in bi-isotropic optical fibers. This method employs a 

perturbation expansion in powers of the dimensionless parameter and is applicable for both weak and 

strong nonlinearities. It accommodates varying dispersion and nonlinearity, rendering it suitable for 

modeling a wide array of optical fibers. The method effectively describes the propagation of optical 

pulses in bi-isotropic fibers and predicts their behavior under diverse conditions. Furthermore, it 

facilitates the study of soliton dynamics, including stability and interactions. Overall, the extended 𝐺’/𝐺 

-expansion method stands as a valuable tool for comprehending the dynamics of nonlinear optical 

systems, with anticipated applications across the field of nonlinear optics [24]. 

2. Description of the (𝐆′/𝐆)-expansion method 

Study a nonlinear PDE in the following form 

 P(u, uz, ut, uzz, utt) = 0 (1) 

 where u = u(t, z) is an new function, P is a polynomial in u = u(t, z) , and its partial derivatives in 

which the highest order derivatives and nonlinear terms are involved. Let us now provide the main 

steps of the extended (G′/G)- expansion method . 

Step 1. We usage the following conversion 

 u(z, t) = u(ξ); ξ = z − vt (2) 

 to reduce Eq.(3) to the next nonlinear ODE: 

 K(u, u′, u′′, . . . ) = 0 (3) 

 where v is velocity of the propagation, K is a polynomial of u(ξ) and its derivatives u′(ξ), 

u 
′′
(ξ), . . . where u′(ξ) =

du

∂ξ
 , u′′(ξ) =

d2u(ξ)

dξ2
,... 

Step 2. We adopt that the solution of  Eq.(1) has the form: 

 u(ξ) = a0(z) + ∑
N
i=1 ai (

G′

G
)
i

+ bi(z) (
G′

G
)
i−1
√1 +

1

μ
(
G′

G
)
2

 (4) 

 where ai = ai(z), bi = bi(z) (i = 1,2, . . N) are functions of z to be determined. G = G(ξ) 

satisfies the resulting second order ODE equation: 

 G′′(ξ) + μG(ξ) = 0 (5) 

Where G′ =
dG

dξ
, G′′ =

d2G

dξ2
. We describe the degree of u(ξ) as D[u(ξ)] = M , then  

 D[
dpu(ξ)

dξp
] = M + p  ;   D[up (

dqu(ξ)

dξq
)
s

] = Mp + (M + q)s (6) 

 

The parameter N can be start by balancing the highest order derivative term and nonlinear terms 

in Eq.(3). N is typically a positive integer. Substituting Eq.(1) along with Eq.(2) into Eq.(4),  

collecting all terms with the same power of (
G′(ξ)

G(ξ)
)i(i = 0; 1; 2;...N) , and setting each 

coefficients to zero, we get a system of algebraic equations for ai and bi.The solution of Eq.(5) 

are given as 
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3.  
G′(ξ)

G(ξ)
=

{
 
 

 
 √−μ(

A1sinh√−μξ+A2cosh√−μξ

A1cosh√−μξ+A2sinh√−μξ
) ; μ < 0

√μ (
A1sin√μξ+A2cos√μξ

A2sin√μξ−A1cos√μξ
) ; μ > 0

A2

A1+A2ξ
; μ = 0

 (7) 

 which can be written in the following simplified form  

 
G′(ξ)

G(ξ)
=

{
  
 

  
 √−μtanh(√−μξ + ξ0); μ < 0, tanhξ0 =

A1

A2
  ; |

A2

A1
| > 1

√−μcoth(√−μξ + ξ0); μ < 0, cothξ0 =
A1

A2
  ; |

A2

A1
| < 1

√μcot(√μξ + ξ0); μ > 0, cosξ0 = −
A2

A1
A2

A1+A2ξ
; μ = 0

 (8) 

4.  By solving the over-determined algebraic system with the help of Mathematica, we obtain the 

values of a0; ai and bi. Substituting these results into Eq.(1), and combining with the solution 

of Eq.(5), we obtain some exact solutions of Eq.(1).  

3. Application of the (𝐆′/𝐆)-expansion method in bi-isotropic fiber 

The nonlinear Schrödinger equation (ESNL) is an equation that occurs in several fields of wave 

physics [1-24]. Among other things, it can be obtained from an asymptotic expansion of the Korteweg-

de Vries (KdV) equation for weakly nonlinear wave packets [1-5]. The Schrödinger equation then 

follows from a first order approximation and gives the evolution of the wave packet envelope [1-5]. 

The characterization of the bi-isotropic nonlinear medium is achieved through an electromagnetic 

approach utilizing a novel formulation of constitutive relations [22]. This formulation enables the 

derivation of the nonlinear Schrödinger equation for a chiroptic fiber, obtained through a first-order 

approximation, providing insight into the evolution of the wave packet envelope. 

This endeavor promises a deeper understanding of the interplay between electromagnetic waves and 

bi-isotropic nonlinear mediums, paving the way for potential applications in optics and microwaves, 

exemplified by our case study on chiroptic fibers. 

Within this section, our focus lies on the analysis and modeling of light pulse propagation within a bi-

isotropic fiber, leveraging our newly formulated constitutive equations [22]. Hence, we have employed 

the extended 𝐺’/𝐺 -expansion method as our chosen approach for solving the nonlinear Schrödinger 

equation, facilitating the acquisition of precise solutions for bi-isotropic fiber nonlinearities. As 

delineated in our formalism expounded in [19-23], the constitutive equations governing the bi-

anisotropic nonlinear effects are delineated as follows: 

D⃗⃗ = ε̅ E⃗⃗ + ζ̅𝐸𝐻 H⃗⃗                                             (9) 

B⃗⃗ = μ̅H⃗⃗ + ζ̅HE
g
E⃗⃗ 

                                             
(10) 

The medium effects are contained in the dyadic: ε̅ , μ̅, ζ̅𝐸𝐻 and ζ̅HE
g

 due to anisotropy. 

The bi-isotropic medium has a Kerr type nonlinearity characterized by [19- 23]: 
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εg = ε + εKerr|E
2|                                      (11) 

ζHE
g
= ζEH

∗ + ζHE
Kerr|E2|                                (12) 

 ζEH
∗  is the linear bi-isotropy coefficient , and the term ζHE

Kerr|E2|corrects the bi-isotropic coefficient 

with a quantity proportional to the field intensity [19-23].  

The linear bi-isotropy factors are written as follows [19-23]: 

ζEH = γ − jκ                                             
(13) 

γ is the non-reciprocity parameter, and κ is the linear chirality parameter.
    

γKerr is the nonlinear non-reciprocity parameter, and κKerr is the nonlinear chirality parameter.
  

There exist three distinct cases for the biisotropic medium: 

1. The chiral medium, which is reciprocal (purely imaginary), denoted by κ≠0 and γ=0. 

2. The Tellegen medium, which is non-reciprocal (purely real), indicated by κ=0 and γ≠0. 

3. The biisotropic medium, characterized by both chirality and non-reciprocity (complex 

numbers), with κ≠0 and γ≠0. 

In this study, our focus centers on the third case. A biisotropic fiber refers to an optical fiber featuring 

a chiral core enveloped by an optical cladding. The core of the biisotropic fiber possesses a slightly 

higher refractive index compared to the sheath. This variation in refractive index induces total internal 

reflection of light within the chiral core, enabling the propagation of light with two distinct modes: a 

right circular polarized wave (RCP) and a left circular polarized wave (LCP), each exhibiting different 

wave vectors. 

From Maxwell's equations, which serve as the cornerstone of electromagnetism and locally describe 

the evolution and properties of electric and magnetic fields, we specifically consider Maxwell's first 

equation, known as the Maxwell-Faraday equation. This equation elucidates the phenomenon of 

electromagnetic induction first discovered by Faraday: 

∇⃗⃗ × E⃗⃗ = −
∂B⃗⃗ 

∂t
                                                             (14) 

As for the second equation, which is the Maxwell-Ampere equation, and which stems from Ampère's 

theorem, it links the evolution of the electric field as a function of the magnetic field. It is given by: 

∇⃗⃗ × H⃗⃗ =
∂D⃗⃗ 

∂t
                                                                 (15) 

What allowed us to deduce the equation of propagation in a Kerr-biisotropic medium our result is 

also a generalization: 

∇⃗⃗ 2. E⃗⃗ − (με − μ0ε0|ζEH
2 |)

∂2E⃗⃗ 

∂t2
−√μ0ε0(ζEH

∗ − ζEH)
∂∇⃗⃗ ×E⃗⃗ 

∂t
=

(μεKerr − μ0ε0ζEHζHE
Kerr)|E⃗⃗ |

2 ∂2E⃗⃗ 

∂t2
+ √μ0ε0ζHE

Kerr|E⃗⃗ |
2 ∂∇⃗⃗ ×E⃗⃗ 

∂t
+ μσ

∂E⃗⃗ 

∂t

    (16) 

σ is the absorption coefficient.  
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The electric field in the bi-isotropic fiber can be represented by wave propagating in the z direction:  

 E±⃗⃗ ⃗⃗  = (ex⃗⃗  ⃗ ± iey⃗⃗  ⃗)Ψ±(r, t)e
−i(k±z−ω0t)                (17) 

  E±⃗⃗ ⃗⃗  = Ψ±⃗⃗ ⃗⃗  ⃗(r, t)e
−i(k±z−ω0t)                                  (18) 

 where the wave numbers k+ (RCP) and k− (LCP) can be written as: 

 k+ = k√μ0ε0 +√με − γ2μ0ε0                           (19) 

k− = −k√μ0ε0 +√με − γ2μ0ε0                              (20) 

The conditions of slowly variant envelope are given by [12, 13]:  

 |
∂2

∂z2
Ψ±| ≪ |2ik±|  ;   |

∂

∂z
Ψ±| ≪ |iω0Ψ±|        (21) 

 |
∂2

∂z2
|Ψ±|

2
Ψ±| ≪ |iω0

∂

∂t
|Ψ±|

2
Ψ±| ≪ |iω0|Ψ±|

2
Ψ±|    (22) 

 
A±(z,t)

2k±
⋅ ez⃗⃗  ⃗ = Ψ±⃗⃗ ⃗⃗  ⃗                               (23) 

The phenomenon of dispersion is included in heuristic form through the relation  

 Δk =
1

v
                                             (24) 

After algebraic manipulations, within the slowly varying amplitude approximation of 

Maxwell’s equations [18-23], signals’ propagating through bi-isotropic fiber is described using the 

following equation:  

(
∂

∂z
A±(z, t) + (β1

∂

∂t
+ i

1

2
β2

∂2

∂t2
−
1

6
β3

∂3

∂t3
) A±(z, t)) = iδA±(z, t)iρ|A±(z, t)|

2
A±(z, t)         (25) 

Where the chromatic dispersion coefficients associated with β1, β2 and β3, and α is the 

attenuation coefficient and fiber nonlinearity related to coefficient ρ .When setting the variable t̃ =

t − β1z, we obtain the nonlinear Schrödinger equation as follows:  

∂

∂z
A±(z, t̃) + (i

1

2
β2

∂2

∂t̃2
−
1

6
β3

∂3

∂t̃3
) A±(z, t̃) = (

−α

2
+ iδ) A±(z, t̃) − iρ|A±(z, t̃)|

2
A±(z, t̃)        (26) 

In this step the bi-isotropic fiber is operattin in the third optical windows, where β3 = 0 and 

neglecting absorption α = 0 the Eq.(26) becomes  

∂

∂z
A±(z, t̃) + (i

1

2
β2

∂2

∂t̃2
) A±(z, t̃) = iδA±(z, t̃) − iρ|A±(z, t̃)|

2
A±(z, t̃)                      (27) 

Since A± = A±(z, t̃) is a complex function , we assume that travelling wave transformation is 

in the form  

A±(z, t̃) = v±(z, t̃)exp(iθ±(z, t̃))                                                                                 (28) 

where v±(z, t̃) and θ±(z, t̃) are amplitude and phase functions respectively.Substituting the 

wave transformation Eq.(17)  into Eq.(18) and separating the real and imaginary parts , we have  
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−v±θ±z −
1

2
β2(z)(v±t̃t̃ − v±θ±z

2) − ρ±v±
3 = 0                                                         (29) 

v±z − β2(z)(2θ±zv±z + v±θ±zz) − v± = 0                                                                 (30) 

where θ±z =
dθ±

dz
, θ±zz =

d2θ±

dz2
 and v±z =

dv±

dz
, v±t̃ =

dv±

dt̃
 

Considering the homogenous balance in Eq.(29) and Eq.(30), we assume that Eq.(29) and 

Eq.(30) have the following solutions form  

{
 

 
v±(z, t̃) = v±(ξ) = a0 + a1 (

G±
′

G±
) + b1√1 +

1

μ
(
G±

′

G±
)
2

ξ± = p±(z)t̃ + q±(z)

                                            (31) 

 

θ±(z, t̃) = a±(z)t̃
2 + b±(z)t̃ + c±(z)                                                                      (32) 

where G± = G±(ξ) satifies 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
−a0a±

′(z) + 2a0a±
2(z)β±2(z) = 0

−a1a±
′(z) + 2a1a±

2(z)β±2(z) = 0

−b1a±
′(z) + 2b1a±

2(z)β±2(z) = 0

b1b±
′(z) + 2b1a±

2(z)b±(z)β±2(z) = 0

−a1β±2(z) − a1
3ρ± −

3a1b1
2ρ±

μ
= 0

3a0a1
2 +

3a0b1
2

μ
= 0

−
1

2
μb1β±2(z)p

2(z) − ρ±b1
3 − b1c±

′(z) − 3a0b1ρ± +
1

2
b1β±2(z)b

2 = 0

−a1c±
′(z) − a1μβ±2(z)p±

2(z) − 3ρ±a0
2a1 − 3a1b1

2ρ± +
1

2
a1b

2β±2(z) = 0

p±
′(z) − 2p±(z)ρ±β±2(z)

q±
′(z) + p±(z)β±2(z)b = 0

−ρ±β±2(z) = 1

           (33) 

Solving the algebric system with the help of Mathematica , we get the following cases. 

Case 1  

 a0 = 0, b1 = 0, a1 = a1, p±(z) = c2a±(z), q±(z) =
1

2
c1c2a±(z) + c3              (34) 

 b±(z) = c1a±(z), c±(z) =
1

4
(c1
2 − 2μc2

2)a±(z) + c4                                            (35) 

 ρ±(z) =
c2
2β±(z)a±

2(z)

a1
2                                                                                              (36) 

where ci(i = 1,2, … ,5) are arbitry constants and a±(z) is given by  

 a±(z)[−2∫ β±2(z)dz + c5] = 1                                                                           (37) 

The exact solution of  Eq.(26) is given by,  
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A±(z, t̃) =

{
 
 

 
 √−μa1 (

A1sinh√−μξ+A2cosh√−μξ

A1cosh√−μξ+A2sinh√−μξ
) . exp(iθ±(z, t̃)); μ < 0

√μa1 (
A1sin√μξ+A2cos√μξ

A2sin√μξ−A1cos√μξ
) . exp(iθ±(z, t̃)); μ > 0

A2

A1+A2
  ;   μ = 0

                      (38) 

The dark solitary of Eq.(27) are given in the form  

A±1(z, t̃) = √−μa1tanh(√−μξ + ξ0) ⋅ exp{ia±(z, t)[t̃
2 + c1t̃ + (c1

2 − 2μc2
2]}            (39) 

The hyperbolic function solution of Eq.(27) are written as  

A±2(z, t̃) = √−μa1coth(√−μξ + ξ0) ⋅ exp{ia±(z, t)[t̃
2 + c1t̃ + (c1

2 − 2μc2
2]}            (40) 

And the triangular periodic wave solution of Eq.(27) are written as  

A±3(z, t̃) = √−μa1cot(√−μξ + ξ0) ⋅ exp{ia±(z, t)[t̃
2 + c1t̃ + (c1

2 − 2μc2
2]}              (41) 

 

Fig.1. Numerical simulation of  RCP Amplitude A+1(z, t̃) for the first case of solutions 

where: c1=3 , c2=4 , c3=5 ξ0 =1; μ=-1/2 , a1 =3 , b1=3, μr = 1.4, εr = 5.2, γ = 0.5,  κ = 0.5,γKerr =

2.58 × 10−17 κKerr = 3.58 × 10−17. 
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Fig.2. Numerical simulation of  LCP Amplitude A−1(z, t̃)  for the first case of solutions 

where: c1=3 , c2=4 , c3=5 ξ0 =1; μ=-1/2 , a1 =3 , b1=3, μr = 1.4, εr = 5.2, γ = 0.5,  κ = 0.5,γKerr =

2.58 × 10−17 κKerr = 3.58 × 10−17. 

 

Case 2 

 a0 = 0; a1 = 0, b1 = b1, p±(z) = c2a(z)  , b±(z) = c1a±(z)                         (42) 

 q±(z) =
1

2
c1c2a±(z) + c3  ; −a±(z)β±(z) = 1                                              (43) 

 c±(z) =
1

4
(c1
2 + μc2

2)a±(z) + c4                                                                     (44) 

 a±(z)[−2∫ β±2(z)dz + c5] = 1                                                                     (45) 

In this case , we have the exact solution of Eq.(27) as follows  

 A±(z, t̃) =

{
 

 b1√1 − (
A1sinh√−μξ+A2cosh√−μξ

A1cosh√−μξ+A2sinh√−μξ
)
2

. exp(iθ±(z, t̃)); μ < 0

b1√1 + (
a1sin√μξ+a2cos√μξ

a2sin√μξ−a1cos√μξ
)
2

. exp(iθ±(z, t̃));   μ > 0

          (46) 

The bright solitary wave solution of  Eq.(27) are given by  

 A±4(z, t̃) = b1sec(√−μξ + ξ0). exp{ia±(z, t̃)[t̃
2 + c1t̃ + (c1

2 − 2μc2
2]}           (47) 

The singular solution of Eq.(27) are given by  

 A±5(z, t̃) = b1csch(√−μξ + ξ0). exp{ia±(z, t̃)[t̃
2 + c1t̃ + (c1

2 − 2μc2
2]}           (48) 

The triangular periodic solution of Eq.(27) are given by  
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 A±6(z, t̃) = b1csch(√−μξ + ξ0) ⋅ exp{ia±(z, t̃)[t̃
2 + c1t̃ + (c1

2 − 2μc2
2]}          (49) 

 

Fig.3. Numerical simulation of RCP Amplitude A+4(z, t̃) for the first case of solutions where: 

c1=3 , c2=4 , c3=5 ξ0 =1; μ=-1/2 , a1 =3 , b1=3, μr = 1.4, εr = 5.2, γ = 0.5,  κ = 0.5,γKerr =

2.58 × 10−17 κKerr = 3.58 × 10−17. 

 .   

Fig.4. Numerical simulation of  LCP Amplitude A−4(z, t̃)   for the first case of solutions 

where: c1=3 , c2=4 , c3=5 ξ0 =1; μ=-1/2 , a1 =3 , b1=3, μr = 1.4, εr = 5.2, γ = 0.5,  κ = 0.5,γKerr =

2.58 × 10−17 κKerr = 3.58 × 10−17. 
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Case 3 

 a0 = 0, a1 = a1, b1 = b1, p±(z) = c2a±(z)                                   (50) 

 q±(z) =
1

2
c1c2a±(z) + c3; b±(z) = c1a±(z)                                  (51) 

 c±(z) =
1

8
(c1
2 − 2μc2

2)a±(z) + c1                                                    (52) 

 −a±(z)β±2(z) = 1  ; ρ±(z) =
c1
2β±2(z)a±

2(z)

4b1
2                                     (53) 

Where a±(z) satisfies the following condition  

 a±(z)[−2∫ β±2(z)dz + c5] = 1                                                     (54) 

In this case we have to type of exact solutions for the Eq.(27)  

    • μ < 0 , the hyperbolic solutions are defined by  

 A±7(z, t̃) = √−μa1 [

A1sinh√−μξ+A2cosh√−μξ

A1cosh√−μξ+A2sinh√−μξ
∓

i√(
A1sinh√−μξ+A2cosh√−μξ

A1cosh√−μξ+A2sinh√−μξ
)
2] . exp[iθ±(z, t̃)]    (55) 

    • If μ < 0, cothξ0 =
A2

A1
, |
A1

A2
| > 1,then the bright-dark soliton of Eq.(27) are derived as,  

A±7,1(z, t̃) = √−μa1[tanh√−μξ + ξ0] = ∓isec(√−μξ + ξ0). exp[iθ±(z, t̃)]    (56) 

    • If μ < 0, cothξ0 =
A2

A1
, |
A1

A2
| < 1,then the solution of Eq.(27) becomes  

A±7,2(z, t̃) = √−μa1[coth√−μξ + ξ0] = ±csch(√−μξ + ξ0). exp[iθ±(z, t̃)]         (57) 

    • μ > 0 the triangular periodic sulution are given by  

 A±8(z, t̃) = √−μa1 [

A1cos√−μξ+A2sin√−μξ

A1cos√−μξ+A2sin√−μξ
∓

i√(
A1cos√−μξ+A2sin√−μξ

A1cos√−μξ+A2sin√−μξ
)
2] . exp[iθ±(z, t̃)]                  (58) 

    • If μ > 0 ,tanξ0 =
A2

A1
,  hen the solution of Eq.(27) becomes as follow  

 A±8,1(z, t̃) = √μa1[cot√μξ + ξ0] = ±csch(√μξ + ξ0). exp[iθ±(z, t̃)]         (59) 

 Where  

 θ±(z, t̃) = a±(z) [t̃
2 + c1t̃ +

c1
2−2μc2

2

8
a±(z) + c4]                                        (60) 

 ξ± = c2a±(z)t̃ +
1

2
c1c2a±(z) + c3                                                                (61) 
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Fig.5. Numerical simulation of RCP Amplitude A+7(z, t̃) for the first case of solutions where: 

c1=3 , c2=4 , c3=5 ξ0 =1; μ=-1/2 , a1 =3 , b1=3, μr = 1.4, εr = 5.2, γ = 0.5,  κ = 0.5,γKerr =

2.58 × 10−17 κKerr = 3.58 × 10−17. 

 

Fig.5. Numerical simulation of  LCP Amplitude A−7(z, t̃)   for the first case of solutions 

where: c1=3 , c2=4 , c3=5 ξ0 =1; μ=-1/2 , a1 =3 , b1=3, μr = 1.4, εr = 5.2, γ = 0.5,  κ = 0.5,γKerr =

2.58 × 10−17 κKerr = 3.58 × 10−17. 

In the following figures 1-6, the different exact families of solutions were obtained and we take 

as an example some graphs for the solutions of case 1, case 2, and case 3 with two modes of 
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propagation (RCP) and (LCP). The extended G'/G-expansion method has been used to present an 

analytic study of the generalized nonlinear Schrödinger equation in bi-isotropic (chiral and non-

reciprocal).  optical fibers. The method is constructed on a perturbation expansion in powers of a 

dimensionless parameter, which allows for the inclusion of varying dispersion and nonlinearity. This 

types the method well-suited for modeling a wide range of optical fibres, including those with complex 

dispersion and nonlinearity profiles. The method was used to find exact different families of solutions 

of the nonlinear Schrödinger equation for a bi-isotropic optical fiber. The method was able to 

accurately describe the propagation of optical pulses in bi-isotropic (chiral and non-reciprocal). fibers 

and can be used to predict the behavior of these pulses under different conditions. The method can also 

be used to study the dynamics of solitons, including the stability and interactions of these localized 

structures.  

5. Results 

This investigate is concerned with a new formulation of constitutive relation linking to the magnetic 

effect, to understand rigorously the physical nature of biisotropic effects and to generalize the main 

macroscopic models. We inferred the nonlinear Schrodinger equation for a bi-isotropic medium term 

with a nonlinear term of magnetizing. In this article, the extended (G'/G)-expansion method is a 

powerful technique for determining a family of solutions of the nonlinear Schrödinger equation in bi-

isotropic optical fibers. This method is based on the use of a perturbation expansion in powers of the 

dimensionless parameter, and it is valid for both weak and strong nonlinearities. The method allows 

for the inclusion of varying dispersion and nonlinearity, making it well-suited for modeling a wide 

range of optical fibres. Overall, the extended (G'/G)-expansion method is a valuable tool for 

understanding the dynamics of nonlinear optical systems, and it is expected to have a wide range of 

applications in the field of nonlinear optics. 
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