Analytical Study of Coupled Schrödinger Equations with Fractional Damping: Decay Solutions and Stability Analysis

Dr. Eric Howard¹, Vikas Kumar², Dr Nand Kumar³

¹ Department of Physics and Astronomy, Macquarie University, Australia. Email id - eric.howard@mq.edu.au. Orcid: 0000-0002-8133-8323.

² Assistant Professor, School of Applied and Life Sciences, Uttaranchal University, Dehradun, 248007, India, Orcid: 0000-0003-3170-7933.

³ Assistant Professor, Department of Physics, Jawaharlal Nehru Memorial PG College, Barabanki, UP, India. Email: nandkumar350@gmail.com Orcid: 0009-0004-3139-3385.

Abstract:
Coupled Schrödinger equations with fractional damping represent a complex yet fascinating area of study in quantum mechanics. This research paper delves into the analytical investigation of such systems, focusing on deriving decay solutions and conducting stability analysis. By combining theoretical frameworks with numerical methods, we explore the behavior of these coupled equations under varying parameters and conditions. Through a thorough analysis, we aim to deepen our understanding of the dynamics and stability properties of quantum systems subject to fractional damping, with potential implications for diverse fields ranging from quantum mechanics to condensed matter physics.

Keywords: Coupled Schrödinger Equations, Equations with Fractional Damping, quantum mechanics.

1. Introduction
Coupled Schrödinger equations arise in many areas of physics, describing the evolution of quantum systems composed of multiple interacting particles. When coupled with fractional damping, these equations present intriguing challenges and opportunities for study. In this paper, we embark on an analytical journey to investigate the decay solutions and stability properties of such systems. By elucidating the dynamics of coupled quantum systems under fractional damping, we aim to contribute to the broader understanding of quantum phenomena and their practical implications.

2. Literature Review
The study of coupled Schrödinger equations with fractional damping has garnered significant attention in recent years, drawing upon a rich body of literature spanning various disciplines within physics and applied mathematics. This section provides a synthesis of key findings from previous research, highlighting methodologies, theoretical frameworks, and experimental observations, while also identifying gaps and opportunities for further investigation.

2.1. Fractional Calculus in Quantum Mechanics: Fractional calculus has emerged as a powerful tool for modeling complex systems exhibiting non-local or memory-dependent behavior. In the context of quantum mechanics, fractional derivatives offer a means to incorporate non-local effects into the
Schrödinger equation, allowing for a more comprehensive description of physical phenomena. Several studies have explored the application of fractional calculus in quantum mechanics, elucidating its utility in addressing phenomena such as anomalous diffusion and fractional quantum mechanics.

Equation 1:

\[i\hbar \frac{\partial \psi}{\partial t} = H\psi - \gamma (-\Delta)^a \psi \]

Equation 2:

\[(-\Delta)^a \psi = \int_0^x (x - t)^{a-1} \frac{\partial^2 \psi}{\partial t^2}(t) \, dt \]

2.2. Coupled Schrödinger Equations and Quantum Systems: The study of coupled Schrödinger equations is central to understanding the behavior of quantum systems composed of multiple interacting particles. Such systems arise in various contexts, including atomic and molecular physics, quantum optics, and condensed matter physics. Previous research has investigated diverse aspects of coupled quantum systems, ranging from the formation of bound states to the emergence of quantum entanglement and collective phenomena.

Equation 3:

\[i\hbar \frac{\partial \psi_1}{\partial t} = H_1\psi_1 - \gamma_1 (-\Delta)^{\alpha_1} \psi_1 + g_{12}\psi_2 \]

\[(-\Delta)^{\alpha_2} \psi_2 = \int_0^x (x^2 - t^2)^{\alpha_2 - 1} \frac{\partial^2 \psi_2}{\partial t^2}(t) \, dt \]

\[i\hbar \frac{\partial \psi_2}{\partial t} = H_2\psi_2 - \gamma_2 (-\Delta)^{\alpha_2} \psi_2 + g_{21}\psi_1 \]

2.3. Fractional Damping and Dissipative Dynamics: The introduction of fractional damping into quantum mechanical systems has provided insights into dissipative dynamics and decoherence phenomena. Fractional damping models, which generalize traditional damping terms, offer a framework for studying the influence of environmental interactions on quantum coherence and the emergence of classical behavior from quantum systems. Previous studies have investigated the effects of fractional damping on various quantum processes, including relaxation dynamics, energy transfer, and decoherence.

Equation 4:

\[\gamma_{eff} = \gamma (-\Delta)^a \]

2.4. Numerical and Analytical Techniques for Fractional Equations: Analyzing coupled Schrödinger equations with fractional damping often necessitates a combination of numerical and analytical techniques. Numerical methods such as finite difference, spectral, and Monte Carlo simulations are commonly employed to solve fractional differential equations numerically, allowing for the investigation of complex quantum systems beyond analytical solutions. Furthermore, analytical approaches such as perturbation theory, asymptotic analysis, and integral transforms provide valuable insights into the qualitative behavior and stability properties of fractional systems.

Numerical Methods:

Finite Difference Method: The finite difference method discretizes fractional derivatives, providing an approximation that enables numerical solutions. Through the use of weighted sums, the method effectively captures the fractional behavior:
\[
\frac{\partial^\alpha \psi}{\partial t^\alpha} \approx \frac{1}{\Delta t^\alpha} \sum_{k=0}^{n} w_k \psi(tk)
\]

Spectral Methods:
Spectral methods exploit Fourier transforms to handle fractional differential equations. By transforming the equations into the frequency domain, spectral methods render the problem tractable in algebraic terms:

\[
F - 1[(\omega i)^\alpha F[\psi(t)]] = \psi(t)
\]

Monte Carlo Simulations:
Monte Carlo simulations introduce randomness into the computational process. These simulations, while computationally intensive, provide a stochastic approach for tackling fractional systems:

\[
\psi(t_{n+1}) = \psi(t_n) + \Delta t H(t_n)\psi(t_n) + \Delta W
\]

Analytical Approaches

Perturbation Theory:
Perturbation theory offers a systematic framework for analyzing coupled systems by treating the coupling terms as perturbations. It provides an approximate solution that elucidates the impact of perturbations:

\[
\psi(t) = \psi_0(t) + \epsilon \psi_1(t) + O(\epsilon^2)
\]

Asymptotic Analysis:
Asymptotic analysis explores the long-term behavior of systems by deriving asymptotic expansions. These expansions unveil dominant trends and stability properties:

\[
\psi(t) \sim e^{\lambda t}
\]

Integral Transforms:
Integral transforms, such as Laplace transforms, facilitate the conversion of fractional differential equations into algebraic forms. This transformation simplifies the solution process and enables analytical insights:

\[
L[\psi(t)] = \int_0^\infty e^{-st} \psi(t) \, dt
\]

These methodologies provide a comprehensive toolkit for investigating the behavior and stability properties of fractional quantum systems. Their combined application ensures a thorough exploration of the complex dynamics inherent in coupled Schrödinger equations with fractional damping.

2.5. Experimental Observations and Quantum Technologies: Experimental studies play a crucial role in validating theoretical models and exploring the implications of fractional damping in real-world quantum systems. Advances in experimental techniques, such as cold atom systems, trapped ions, and superconducting circuits, have enabled researchers to probe the effects of fractional damping on quantum coherence, quantum transport, and quantum information processing. These experimental observations provide valuable feedback for refining theoretical models and advancing our understanding of coupled quantum systems under fractional damping.
This literature review underscores the multifaceted nature of research on coupled Schrödinger equations with fractional damping, encompassing theoretical developments, numerical simulations, experimental observations, and their interplay in advancing our understanding of quantum dynamics and its applications. While significant progress has been made, there remain ample opportunities for further investigation, particularly in elucidating the intricate interplay between fractional damping, quantum coherence, and complex quantum phenomena.

3. Theoretical Background: The theoretical foundation of the research revolves around coupled Schrödinger equations with fractional damping, combining principles from quantum mechanics and fractional calculus. This section provides an overview of the key theoretical concepts necessary for understanding the dynamics of such systems.

3.1. Schrödinger Equation: Central to quantum mechanics is the Schrödinger equation, which describes the time evolution of quantum states. For a single particle, the time-dependent Schrödinger equation is given by:

\[i\hbar \frac{\partial}{\partial t} \psi = H\psi \]

where \(\hbar \) is the reduced Planck constant, \(\psi \) is the wave function of the particle, \(t \) is time, and \(H \) is the Hamiltonian operator representing the total energy of the system.

3.2. Fractional Calculus: Fractional calculus extends the concepts of differentiation and integration to non-integer orders, allowing for the description of systems with memory and non-local effects. The fractional derivative of order \(\alpha \) of a function \(f(t) \) is defined as:

\[\frac{d^\alpha}{dt^\alpha} f(t) = \Gamma(n - \alpha) \int_0^t \frac{1}{\Gamma(n - \alpha)} f(s) ds \]

3.3. Coupled Schrödinger Equations: When considering systems composed of multiple interacting particles, coupled Schrödinger equations are employed. For two particles, the coupled system can be described by the following set of equations:

\[i\hbar \frac{\partial}{\partial t} \psi_1 = H_1\psi_1 - \gamma_1(-\Delta)^{\alpha_1}\psi_1 + g_{12}\psi_2 \]
\[i\hbar \frac{\partial}{\partial t} \psi_2 = H_2\psi_2 - \gamma_2(-\Delta)^{\alpha_2}\psi_2 + g_{21}\psi_1 \]

3.4. Physical Interpretation: Each term in the coupled Schrödinger equations has a physical interpretation. The first term represents the evolution of the particle's wave function under its own Hamiltonian, while the second term accounts for fractional damping effects. The last term captures the interaction between the particles, mediated by the coupling coefficients.

Understanding these theoretical concepts is essential for formulating and analyzing the dynamics of coupled quantum systems with fractional damping. In the subsequent sections, we will delve into the formulation of the coupled equations and explore analytical and numerical techniques for investigating their behavior.
4. Formulation of Coupled Schrödinger Equations with Fractional Damping:

In this section, we outline the derivation and formulation of the coupled Schrödinger equations with fractional damping. We detail the physical interpretation of each term in the equations and discuss any assumptions made during the formulation process. Through a systematic approach, we present a rigorous mathematical description of the coupled system under investigation.

<table>
<thead>
<tr>
<th>Term</th>
<th>Physical Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i \hbar \frac{\partial \psi_1}{\partial t}$</td>
<td>Evolution of the wave function ψ_1 under the Hamiltonian H_1</td>
</tr>
<tr>
<td>$-\gamma_1 (-\Delta)^{\alpha_1} \psi_1$</td>
<td>Fractional damping effect on ψ_1 due to external influences</td>
</tr>
<tr>
<td>$g_{12} \psi_2$</td>
<td>Interaction term representing the influence of particle ψ_2 on ψ_1</td>
</tr>
<tr>
<td>$i \hbar \frac{\partial \psi_2}{\partial t}$</td>
<td>Evolution of the wave function ψ_2 under the Hamiltonian H_2</td>
</tr>
<tr>
<td>$-\gamma_2 (-\Delta)^{\alpha_2} \psi_2$</td>
<td>Fractional damping effect on ψ_2 due to external influences</td>
</tr>
<tr>
<td>$g_{21} \psi_1$</td>
<td>Interaction term representing the influence of particle ψ_1 on ψ_2</td>
</tr>
</tbody>
</table>

Assumptions:
1. Linear coupling between particles, neglecting higher-order interaction terms.
2. Isotropic and homogeneous fractional damping affecting both particles equally in all directions.

Mathematical Description:

The coupled Schrödinger equations with fractional damping constitute a set of partial differential equations (PDEs) governing the system's dynamics. These equations can be solved numerically or analytically to explore the behavior of the coupled quantum system under various conditions.

This tabular format provides a clear overview of the physical interpretation of each term in the coupled Schrödinger equations with fractional damping, as well as the underlying assumptions made during the formulation process.

5. Analytical Solutions for Decay: In this section, we explore analytical techniques for deriving decay solutions of the coupled Schrödinger equations with fractional damping. We analyze the behavior of solutions over time, considering various parameters and initial conditions. Through mathematical rigor and analytical insights, we uncover the underlying decay mechanisms governing the dynamics of the coupled quantum system.

Example 1: Consider a system of coupled Schrödinger equations with fractional damping:

$$i \hbar \frac{\partial \psi_1}{\partial t} = (H_1 - i \hbar \gamma_1 D^{\alpha_1}) \psi_1 + g_{12} \psi_2$$

$$i \hbar \frac{\partial \psi_2}{\partial t} = (H_2 - i \hbar \gamma_2 D^{\alpha_2}) \psi_2 + g_{21} \psi_1$$

where:
- ψ_1 and ψ_2 are the wave functions of two coupled particles,
- H_1 and H_2 are the corresponding Hamiltonians,
- γ_1 and γ_2 are fractional damping coefficients,
- α_1 and α_2 are fractional orders of the damping,
- g_{12} and g_{21} are coupling coefficients,
6. Numerical Methods: In this section, we describe the numerical methods employed to solve the coupled equations numerically. We discuss implementation details, computational considerations, and validation strategies. By leveraging numerical simulations, we complement our analytical findings and provide insights into the behavior of the system beyond analytical solutions.

7. Stability Analysis: This section focuses on the stability analysis of solutions obtained from both analytical and numerical approaches. We examine stability criteria, stability regions in parameter space, and the influence of system parameters on stability properties. Through rigorous analysis, we elucidate the stability characteristics of the coupled quantum system under fractional damping.

Example 2: Consider the stability analysis of the coupled Schrödinger equations presented earlier. We analyze the eigenvalues of the linearized system to determine the stability of the equilibrium points. The stability criteria can be expressed as:

\[\text{Re}(\lambda i) < 0, \text{ for all } i \]

By computing the eigenvalues for various parameter values, we determine the stability regions in the parameter space, providing valuable insights into the system's behavior under different conditions.

Example 3: Dissipation Effects on Quantum Tunneling

In this example, we examine the influence of fractional damping on quantum tunneling phenomena in coupled Schrödinger equations. Quantum tunneling is a fundamental quantum mechanical process where a particle penetrates through a classically forbidden energy barrier. Fractional damping can significantly affect tunneling probabilities and dynamics.

Consider a coupled system with two particles described by the Schrödinger equations:

\[
\begin{align*}
 i\hbar \frac{\partial \psi_1}{\partial t} &= H_1 \psi_1 - \gamma_1 (-\Delta)^\alpha \psi_1 + g_{12} \psi_2 \\
 i\hbar \frac{\partial \psi_2}{\partial t} &= H_2 \psi_2 - \gamma_2 (-\Delta)^\alpha \psi_2 + g_{21} \psi_1
\end{align*}
\]

where \(\psi_1, H_1\) and \(\psi_2, H_2\) are the Hamiltonians, \(\gamma_1\) and \(\gamma_2\) are the fractional damping coefficients, \(\alpha_1\) and \(\alpha_2\) are the fractional orders, and \(g_{12}\) and \(g_{21}\) are the coupling coefficients.

We analyze how fractional damping affects the tunneling behavior of the particles through a potential barrier. By varying the damping coefficients and fractional orders, we observe changes in tunneling...
probabilities and tunneling rates. This analysis provides insights into the interplay between dissipation and quantum tunneling in coupled quantum systems.

Example 4: Nonlinear Coupling Effects

In this example, we explore the impact of nonlinear coupling terms on the dynamics of coupled Schrödinger equations with fractional damping. Nonlinear couplings arise in many physical systems and can lead to rich and complex behavior, including chaos and pattern formation.

Consider the coupled Schrödinger equations with nonlinear coupling terms:

\[
i\hbar \frac{\partial \psi_1}{\partial t} = H_1\psi_1 - \gamma_1(-\Delta)^{\alpha_1}\psi_1 + g_{12}\psi_2
\]

\[
i\hbar \frac{\partial \psi_2}{\partial t} = H_2\psi_2 - \gamma_2(-\Delta)^{\alpha_2}\psi_2 + g_{21}\psi_1
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_1, ψ_2</td>
<td>Wave functions of the coupled particles</td>
</tr>
<tr>
<td>H_1, H_2</td>
<td>Hamiltonians of the particles</td>
</tr>
<tr>
<td>γ_1, γ_2</td>
<td>Fractional damping coefficients</td>
</tr>
<tr>
<td>α_1, α_2</td>
<td>Fractional orders</td>
</tr>
<tr>
<td>g_{12}, g_{21}</td>
<td>Coupling coefficients</td>
</tr>
</tbody>
</table>

We investigate how nonlinear coupling terms affect the stability and dynamics of the coupled system. Through numerical simulations and stability analysis, we analyze the emergence of nonlinear phenomena such as self-trapping, soliton formation, and modulational instability. This example highlights the importance of considering nonlinear effects in the study of coupled quantum systems with fractional damping.

9. Applications and Implications: Here, we discuss potential applications of our research findings and their implications for diverse fields. We explore how the insights gained from our study contribute to advancements in quantum mechanics, condensed matter physics, and related disciplines. By highlighting practical implications, we underscore the significance of our research in advancing scientific knowledge and technological innovation.

10. Conclusion: In the final section, we summarize the key findings and contributions of our research. We reflect on the implications of our findings, discuss limitations, and propose directions for future research. By synthesizing our findings within the broader context of existing knowledge, we emphasize the significance of our research in advancing the understanding of coupled quantum systems with fractional damping.

References

https://internationalpubls.com

