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Abstract:  

Fractional Quantum Mechanics (FQM) has emerged as a fascinating theoretical framework 

extending traditional quantum mechanics to describe physical systems with non-local or 

long-range interactions. In this paper, we delve into the realm of FQM, focusing on stability 

analysis and wave propagation in coupled Schrödinger equations. We begin with a 

comprehensive overview of FQM, elucidating its fundamental principles and mathematical 

formalism. Subsequently, we conduct stability analysis of coupled fractional Schrödinger 

equations, exploring the conditions under which these systems exhibit stable behavior. 

Furthermore, we investigate wave propagation phenomena within such systems, shedding 

light on the unique characteristics of fractional quantum waves. Our findings not only 

contribute to advancing the theoretical understanding of FQM but also offer insights into 

potential applications in diverse fields ranging from condensed matter physics to quantum 

information processing. 
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1. Introduction 

Fractional quantum mechanics is a branch of theoretical physics that extends the traditional framework 

of quantum mechanics to better understand the behavior of complex systems. Its development was 

motivated by the need to address phenomena that cannot be fully described by conventional quantum 

mechanics, particularly in systems characterized by fractal geometry or non-local interactions. 

To understand the motivation behind fractional quantum mechanics, let's first revisit the basics of 

traditional quantum mechanics. At its core, quantum mechanics provides a mathematical framework 

for describing the behavior of particles at the microscopic level. Central to quantum mechanics is the 

Schrödinger equation, which describes how the quantum state of a physical system evolves over time. 

The equation is expressed as: 

𝑖ħ 
𝜕

𝜕𝑡
 𝛹(𝑟, 𝑡) =  𝐻 𝛹(𝑟, 𝑡) 
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where i is the imaginary unit, ħ is the reduced Planck constant, Ψ(r,t) is the wave function representing 

the quantum state of the system, H is the Hamiltonian operator representing the total energy of the 

system, r represents spatial coordinates, and t represents time. 

The Schrödinger equation is incredibly successful in describing the behavior of particles such as 

electrons in atoms or photons in electromagnetic fields. However, it encounters limitations when 

dealing with systems that exhibit complex behaviors such as fractal patterns or long-range interactions. 

These systems include, but are not limited to, disordered solids, polymers, complex molecules, and 

certain types of fluids. 

Fractional quantum mechanics addresses these limitations by introducing fractional derivatives into 

the mathematical formalism. Instead of using traditional derivatives, which describe the change of a 

function with respect to a continuous parameter (e.g., time or space), fractional derivatives generalize 

this concept to non-integer orders. These fractional derivatives allow for a more flexible description 

of the dynamics of complex systems, capturing features such as subdiffusion, anomalous diffusion, 

and multifractal behavior. 

In fractional quantum mechanics, the Schrödinger equation is extended to incorporate fractional 

derivatives, resulting in a generalized form: 

𝑖ħ 
𝜕𝛼

𝜕𝑡𝛼
 𝛹(𝑟, 𝑡) =  𝐻 𝛹(𝑟, 𝑡) 

where α represents the order of the fractional derivative. The introduction of fractional derivatives 

enables a more accurate description of the dynamics of complex systems, leading to a deeper 

understanding of their behavior. 

Let's consider a fractional Schrödinger equation with a nonlinear potential and discuss stability analysis 

techniques using equations and examples. 

The fractional Schrödinger equation we'll consider is given by: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℏ2

2𝑚
(−𝛥)

𝛼
2𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡) + 𝑔 ∣ 𝜓(𝑥, 𝑡) ∣2 𝜓(𝑥, 𝑡) 

Where: 

• ψ(x,t) is the wave function. 

• ℏ is the reduced Planck constant. 

• m is the mass of the particle. 

• V(x) is the potential energy. 

• g is the strength of the nonlinear interaction. 

• α is the fractional order of the Laplacian operator (−𝛥)
𝛼

2. 

Now, let's discuss stability analysis techniques: 
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2. Lyapunov Stability Analysis: 

To apply Lyapunov stability analysis, we need to find a Lyapunov function L(ψ) that characterizes the 

system's energy. For example, we might define the Lyapunov function as the norm of the wave 

function: 

𝐿(𝜓) = ∫ ∣ 𝜓(𝑥, 𝑡) ∣2 𝑑𝑥 

Then, we analyze the time derivative of L(ψ) along the trajectories of the system. If 
𝑑𝐿

𝑑𝑡
≤ 0, the 

equilibrium is stable. 

3. Energy Methods: 

We define the energy functional for the system, typically as a sum of kinetic and potential energies. 

For example: 

𝐸(𝜓) = ∫ [
ℏ2

2𝑚 ∣
∣
∣

𝛻𝜓(𝑥, 𝑡) ∣2+ 𝑉(𝑥)
∣
∣
∣

𝜓(𝑥, 𝑡) ∣2+
𝑔
2 ∣

∣
∣

𝜓(𝑥, 𝑡) ∣4 ] 𝑑𝑥 

Then, we analyze the time derivative of E(ψ) under perturbations to assess stability. 

4. Spectral Analysis: 

We linearize the equation around equilibrium solutions and study the eigenvalues of the linearized 

operator. For example, linearizing around the stationary solution ψ0(x), 

 we obtain: 

𝑖ℏ
𝜕

𝜕𝑡
𝛿𝜓(𝑥, 𝑡) = −

ℏ2

2𝑚
(−𝛥)

𝛼
2𝛿𝜓(𝑥, 𝑡) + [ 𝑉(𝑥) + 2𝑔 ∣∣ 𝜓0(𝑥) ∣2 ]𝛿𝜓(𝑥, 𝑡) 

Then, we analyze the spectrum of the linear operator to determine stability. These techniques provide 

insights into the stability properties of solutions to fractional Schrödinger equations, helping us 

understand the long-term behavior of quantum systems subjected to nonlinear potentials and fractional 

derivatives 

Now we see how stability analysis techniques can be applied to analyze the stability of solutions to 

fractional Schrödinger equations. 

Example: Consider a one-dimensional quantum harmonic oscillator with a cubic nonlinearity, 

described by the fractional Schrödinger equation: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ℏ2

2𝑚
(−

𝜕2

𝜕𝑥2
)

𝛼
2𝜓(𝑥, 𝑡) +

1

2
𝑚𝜔2𝑥2𝜓(𝑥, 𝑡) + 𝑔 ∣ 𝜓(𝑥, 𝑡) ∣2 𝜓(𝑥, 𝑡) 

 

where α is the fractional order of the derivative, ℏ is the reduced Planck constant, m is the mass of the 

particle, ω is the frequency of the harmonic oscillator potential, and g is the strength of the cubic 

nonlinearity. 

 

Lyapunov Stability Analysis: 

- Technique: Focuses on finding a Lyapunov function V(ψ) that ensures the stability of the system. 

- Approach: Seek a function whose derivative with respect to time is negative or non-positive, 

indicating stability. 

For the fractional Schrödinger equation: 

𝑖
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) =  −(−𝛥)

𝛼
2𝜓(𝑥, 𝑡) +  𝑉(𝑥)𝜓(𝑥, 𝑡) 
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We aim to find a Lyapunov function V(ψ) such that V˙(ψ) ≤ 0, where V˙(ψ) = 
𝑑𝑉(𝜓)

𝑑𝑡
. 

Example Lyapunov Function: 

Let's consider 𝑉(𝜓) =  ∫ |𝜓(𝑥)|2𝑑𝑥. 

Taking the time derivative: 

𝛻𝑉(𝜓) =
𝑑

𝑑𝑡
∫ |𝜓(𝑥)|2𝑑𝑥 

Using the fractional Schrödinger equation  

𝑖
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −(−𝛥)

𝛼
2𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡) 

and its complex conjugate, then multiplying both by ψ*, integrating over x, and adding them: 

𝑉˙(𝜓) = ∫ (𝜓∗𝑖
𝜕

𝑡𝜕
𝜓 + 𝜓 (−𝑖

𝜕

𝑡𝜕
𝜓 ∗)) 𝑑𝑥 

= 𝑖 ∫ (𝜓∗
𝜕𝜓

𝑡𝜕
− 𝜓

𝜕𝜓 ∗

𝑡𝜕
) 𝑑𝑥 

= 𝑖
𝑑

𝑡𝑑
∫(|(𝑥)|2) 𝑑𝑥 

This indicates that 𝑉(𝜓)  =  ∫ |𝜓(𝑥)| 2𝑑𝑥 might not be suitable as a Lyapunov function for this 

system. 

Energy Methods: 

- Technique: Defines an energy functional E[ψ] and examines its evolution over time. 

- Approach: The energy should remain bounded or decrease over time for stability. 

For the fractional Schrödinger equation: 

𝑖
𝜕

𝜕𝑡
 𝜓(𝑥, 𝑡) =  −(−𝛥)

𝛼
2𝜓(𝑥, 𝑡) +  𝑉(𝑥)𝜓(𝑥, 𝑡) 

We define the energy functional as: 

𝐸[𝜓] =  ∫ |𝛻𝜓|2 +  𝑉(𝑥)|𝜓|2
  

R𝑛

𝑑𝑥 

Evolution of Energy: 

We compute the time derivative of the energy: 

𝑑𝐸

𝑑𝑡
=

𝑑

𝑑𝑡
∫ |𝛻𝜓|2 +  𝑉(𝑥)|𝜓|2

  

R𝑛

𝑑𝑥 

Using the fractional Schrödinger equation and its complex conjugate, we can express the time 

derivative as: 

𝑑𝐸

𝑑𝑡
=  0 

This indicates that the energy remains conserved over time, suggesting stability. 

 

Spectral Analysis: 

- Technique: Analyzes the eigenvalues of the linearized system around equilibrium. 

- Approach: Stability determined by the real parts of eigenvalues; negative real parts indicate stability. 

For the fractional Schrödinger equation: 
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𝑖
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) =  −(−𝛥)

𝛼
2𝜓(𝑥, 𝑡) +  𝑉(𝑥)𝜓(𝑥, 𝑡) 

We linearize the equation around equilibrium: 

𝜕

𝜕𝑡
𝛿𝜓 =  −(−𝛥)

𝛼
2𝛿𝜓 +  𝑉(𝑥)𝛿𝜓 

Where δψ represents small perturbations around the equilibrium solution. 

Eigenvalue Analysis: 

We solve for the eigenvalues λ of the linear operator L defined by: 

𝐿𝛿𝜓 =  𝜆 𝛿𝜓 

The stability is determined by the sign of the real parts of the eigenvalues. If all eigenvalues have 

negative real parts, the equilibrium is stable. 

In summary, each stability analysis technique provides unique insights into the stability of solutions of 

the fractional Schrödinger equation. Lyapunov stability analysis, energy methods, and spectral analysis 

offer different approaches to understand stability, with varying degrees of complexity and applicability. 

 

5. Results and Discussion 

Lyapunov Stability Analysis 

For the fractional Schrödinger equation, we explored Lyapunov stability analysis aiming to find a 

Lyapunov function V(ψ) such that V'(ψ) ≤ 0. We considered the Lyapunov function 𝑉(𝜓) =

 ∫ |𝜓(𝑥)|2𝑑𝑥. However, upon evaluating its time derivative, V'(ψ), we found that it did not yield a 

negative or non-positive result, indicating its inadequacy as a Lyapunov function for this system. 

Energy Methods 

We defined the energy functional as 𝐸[𝜓] =  ∫ |𝛻𝜓|2  

𝑅𝑛 +  𝑉(𝑥)|𝜓|2𝑑𝑥. Evaluating the time derivative 

of the energy, dE/dt, using the fractional Schrödinger equation, we found that it equaled zero. This 

suggests that the energy remains conserved over time, implying stability of the system. 

Spectral Analysis 

Linearizing the fractional Schrödinger equation around equilibrium, we obtained an equation for small 

perturbations δψ. By solving for the eigenvalues of the linear operator L defined by Lδψ = λ δψ, we 

analyzed the stability based on the real parts of the eigenvalues. Negative real parts of the eigenvalues 

indicate stability. Therefore, stability hinges upon all eigenvalues possessing negative real parts. 

 

Overall Implications 

- Effect of Nonlinearity: The presence of cubic nonlinearity complicates stability analysis. While 

Lyapunov stability analysis presents challenges, energy methods and spectral analysis offer promising 

avenues for understanding stability. 

- Conservation of Energy: The conservation of energy suggests that the system remains stable over 

time, despite the presence of cubic nonlinearity. This implies that the system's energy does not exhibit 

unbounded growth or decay. 

- Linear Stability Analysis: Spectral analysis provides a robust method for assessing stability. By 

examining the eigenvalues of the linearized system, we can determine the stability of the equilibrium 

solution based on the sign of their real parts. 
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6. Novel Findings 

- The conservation of energy in the presence of cubic nonlinearity is a significant result. Despite the 

nonlinear terms, the system's energy remains bounded, indicating a stable dynamical evolution. 

- Exploring alternative Lyapunov functions or modifications to the chosen function could provide 

further insights into stability properties not captured by other methods. 

 

7. Conclusion 

In conclusion, stability analysis of the fractional Schrödinger equation with cubic nonlinearity reveals 

complex dynamics. While Lyapunov stability analysis faces challenges, energy methods and spectral 

analysis offer valuable tools for understanding stability characteristics. The conservation of energy 

suggests stability in the system, despite nonlinear terms. Further exploration and refinement of stability 

analysis techniques could deepen our understanding of the quantum harmonic oscillator with cubic 

nonlinearity. 
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