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1. Introduction 

   In 2021, Ą regular closed sets in nano topological spaces were presented by Narmatha S., Harshitha 

S., and others [3]. Within micro topological spaces, πgβ-closed sets are studied by Rajasekaran I. and 

others [4]. In nano topological spaces, ng∗α− closed sets were first presented by Rajendran V. and 

colleagues [5]..Crossley and Hildebrand [7] conducted research on semi-closure in 1971. Dunham [14] 

provided a definition of the closure operator C* notion along with various attributes.  Operator of 

regular closed sets was first defined by S. Bhattacharya [6] in 2011. Soft W -int. and soft W -Cl. in 

Soft topological spaces are studied by Savita R. [8]. Soft g* closed in Soft topological spaces are 

studied by Kalavathi, A. and Krishnan, G.[2]. Regular generalized* in topological spaces, closure 

regular generalized* Closure Regular Generalized*, and regular generalized closed sets are new 

classes of operators introduced by Siham I. Aziz and Nabila I. Aziz [9, 10, 11] and, respectively. 2014 

saw the introduction of Nano closure and Nano Interior operator in Nano topological spaces by 

Thivagar M. Lellis and Carmel Rechard [12], a novel class of operators Open and Closed Nano 

operators Ɲ ̂ (Ᾱ) and Ɲ ̌ (Ᾱ) introduced by  ABDULAZIZ .S.[ 1 ].  The aim of this work is to investigate 

and characterize a new class of operators in nano topological spaces called Nano ℕα̌- closed and ℕα̂-

open sets , and to establish their verifiable characteristics and theorems. 

2. Preliminaries      

Definition 2.1 [2] :   Suppose ϑ be the world, ψ ⊆ ϑ, and Π be an equivalence relation on ϑ. With 

regard to Ψ, τ ϕ(Ψ) ={ ϑ, ∅, LR(Ψ), ϑ Φ(Ψ), BΦ(Ψ)} and (ϑ, τ Φ(Ψ) ) define the Nano topology on U.  
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Definition 2.2 [ 1 ]:   Assume A ⊆ ϑ and (U, τ R(Ψ) ) be a Nano topological space. Next, we established 

1- ℵ(A) = ∩ {G : A⊆ G, G ∈ N O(ϑ, Ψ)} and 2-N ̌ (A) = ∪ {G : G⊆ A, G ∈ NC (ϑ, Ψ)}.  

Definition 2.3 [2]:   Assuming Ψ, Ψ ⊆ ϑ, let (U, τ R(Ψ) ) be a Nano topological space. If A is not equal 

to ϑ, then: The union of all of A's open subsets is A's nanointerior, and it is represented by Nint(A).  

Ncl(A) represents the Nano closure of A, which is the intersection of all Nano closed subsets 

containing A. 

Definition 2.4 [13] : When M ⊆ Nint (NCl (Nint M )), a subset M of (ϑ, τ R(Ψ) ) is referred to as a 

nano α open set (briefly, N𝛼-o-s.). In (U, τ R(Ψ) ), the complement of a N𝛼-o-s. is referred to as a nano 

𝛼-closed set (briefly, N𝛼-c-s.). N𝛼-o-( ϑ, Ψ) (resp. N𝛼-c-( ϑ, Ψ)) represents the family of all N𝛼-o-s. 

(resp. N𝛼-c-s.) of U.   

3 - On Generalized Nano  ℕ𝛂̌- closed and Nano ℵ𝛅̂- open Sets in Nano- Topological Spaces 

Definition 3.1Assume that A ⊆ U and that (U, τ R(Ψ)) is a Nano topological space. If A ⊆ ℵ (( N) ̌ 

(ℵ(A))), then a subset A is referred to as an open set (Nα) ̂.The closed set Nano (ℵδ) - is the complement 

of the open set Nano (Nα) ̂ and is defined as [A ⊇ ( N) ̌ (ℵ( (( N) ̌ (A)))] 

Example 3.2:  Assuming U/R = {{r, p}, { q}} and Ψ = {r, q}, let U = {r, μ, q}.  

Assuming τR(ψ)={∅,U, { q},{r, p}}, we get τcR(Ψ) = {∅,U, { q},{r, p}}.  

(Nα) -o(x)={U, ϕ,{r},{μ },{q},{r, },{r,q},{μ,q}}.  

Theorem 3.3 All subsets of U R(Ψ) are not (Nα) ̂ open sets if τ R(Ψ) is not highly disconnected. 

Proof 

Case 1 in the event that τ R(Ψ) ={ U, Ø, U R(Ψ) }.  

 

To begin with, assume A = U R(Ψ) ⇒ℵ(A) = U R(Ψ) ⇒ ( N) ̌ (ℵ(U R(Ψ))=∅⇒ℵ( N) ̌(ℵ(∅))=∅. 

If A⊉ ∅ ∅ ⇒ A ⊈ ℵ((N) ̌(ℵ(A)), then A∉ (Nα) ̂.  

 

2-Take A⊆ Uc R(Ψ)⇒ N̂(A)=U· ( N)· (N̂(U)=U· N̂((N)Œ(N̂(U))=U ⇒ A ⊆N̂( (N) ̌(N̂(A)).  

3. If [U R(Ψ) and Uc R(Ψ)] intersect at A, then ℵ(A)= U ⇒ ( N) ̌ (ℵ(U)=U ⇒ ℵ((N) ̌(ℵ(U))=U ⇒ A 

⊆ℵ( (N) ̌(ℵ(A)).  

 Case 2:   If  𝜏 R(Ψ) ={ U, Ø, L R(Ψ), B R(Ψ),U R(Ψ) }.  

First, suppose that A⊆ L R(Ψ) ⇒ℵ(A)= L R(Ψ)⇒ ( N) ̌ (ℵ(L R(Ψ) )=∅ ⇒ℵ( N) ̌(ℵ(∅))=∉.  

A⊈ ∅⍒⇒ A⊈ ℵ((N) ̌(ℵ(A)). Afterwards, A∉ (Nα) ̂  

2. In the event when A ⊆ B R(Ψ) ⇒ ℵ(A)= B R(Ψ) ⇒ ( N) ̌ (ℵ(B R(Ψ) )=∅ ⇒ℵ( N) ̌(ℵ(∅))=∪. 

A⊈_∅_⇒ A⊈_ℵ((N) ̌(ℵ(A)). Afterwards, A∉ (Nα) ̂  

3. At the intersection of A with [L R(Ψ) and B R(Ψ)], ℵ(A)= U R(Ψ) and (N) ̌ (ℵ(U R(Ψ)) = ∅ ⇒ℵ( 

N) ̌(ℵ(∅)) =∅. A⊈ ∅⍒⇒ A⊈ ℵ((N) ̌(ℵ(A)). Afterwards, A∉ (Nα)  

4-If A⊆ Uc R(Ψ) ⇒ N̂(A)= U ⇒ ( N) ̌ (N̂(U)=U ⇒ N̂( (N) ̌(N̂(U))=U ⇒ A ⊆N̂( (N) ̌(N̂(A)).  

5. In the event when A intersects [L R(Ψ) and Uc R(Ψ)] ⇒ ℵ(A)= U ⇒ ( N) ̌ (ℵ(U)=U ⇒ ℵ( 

(N) ̌(ℵ(U))=U ⇒ A ⊆ℵ( (N) ̌(ℵ(A)).  
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6-If [B R(Ψ) and Uc R(Ψ)] intersect A, then N̂(A)= U ⇒ ( ℵ) ̌ (N̂(U)=U ⇒ ℵ( (ℵ) ̌(N̂(U))=U ⇒ A 

⊆ℵ( (N) ̌(ℵ(A)).  

Theorem 3.4:   All subset of  Uc  R(Ψ)  is ℕα̂ open set. 

Proof:   Case 1- If  τ R(Ψ) ={ U, Ø, U R(Ψ)  }. 

If A⊆ Uc R(Ψ)  ⇒ ℕ̂(A)=U  ⇒  ℕ̌ (ℕ̂(U) = U ⇒  ℕ̂ (ℕ̌(ℕ̂(U))=U ⇒  A ⊆ ℕ̂ (ℕ̌(ℕ̂(A)). Then A∈ ℕα̂. 

Case 2 :   when τ R(Ψ) ={ U, Ø, L R(Ψ), B R(Ψ) ,U R(Ψ) }.  

If A⊆ Uc R(Ψ)  ⇒ ℕ̂(A)=U  ⇒  ℕ̌ (ℕ̂(U) = U ⇒  ℕ̂ (ℕ̌(ℕ̂(U))=U ⇒  A ⊆ ℕ̂ (ℕ̌(ℕ̂(A)). Then A∈ ℕα̂. 

Theorem 3. 5:   All subset of U which intersect [U R(Ψ) and Uc R(Ψ) ] is ℕα̂ open set.    

Proof: Case 1- If  τ R(Ψ) ={ U, Ø, U R(Ψ)  } 

Let A ⊆ U Such that A intersect [ U R(Ψ) and Uc R(Ψ) ] 

ℕ̂(A)=U  ⇒  ℵ̌ (ℕ̂(U) = U ⇒  ℵ̂ (ℕ̌(ℵ̂(U))=U ⇒  A ⊆ ℵ̂ (ℕ̌(ℵ̂(A)). Then A∈ ℕα̂ open set. 

Case 2:    𝜏 R(Ψ) ={ U, Ø, L R(Ψ), B R(Ψ) ,U R(Ψ) }. 

1- Let A⊆  U such that A intersect [L R(Ψ) and Uc R(Ψ)]. 

ℕ̂(A)=U  ⇒  ℕ̌ (ℵ(U) = U ⇒  ℵ̂ (ℕ̌(ℵ̂(U))=U ⇒  A ⊆ ℵ̂ (ℕ̌(ℵ̂(A)). Then A∈ ℕα̂ open set.   

2- Let A⊆  U such that A intersect [B R(Ψ)  and Uc R(Ψ)].     

ℕ̂(A)=U  ⇒  ℕ̌ (ℕ̂(U) = U ⇒  ℵ̂ (ℕ̌(ℵ̂(U))=U ⇒  A ⊆ ℵ̂ (ℕ̌(ℵ̂(A)). Then A∈ ℕα̂ open set.   

3- Let A⊆  U such that A intersect [L R(Ψ) and B R(Ψ)  and Uc R(Ψ)].  

ℕ̂(A)=U  ⇒  ℕ̌ (ℕ̂(U) = U ⇒  ℵ̂ (ℕ̌(ℕ̂(U))=U ⇒  A ⊆ ℵ̂ (ℕ̌(ℕ̂(A)). Then A∈ ℕα̂ open set.   

Theorem 3.6:   When the Nano space U is extremely disconnected then all subset of U is ℕα̂ −open 

set. 

Proof:   𝜏 R(Ψ) ={ U, Ø, L R(Ψ), B R(Ψ) }. 

Assuming that A ⊆ L R(Ψ) ⇒ℵ(A)= L R(Ψ)⇒ ( N) ̌ (ℵ(L R(Ψ)) = L R(Ψ)⇒ ℵ ( N) ̌ (ℵ(L R(Ψ) )= L 

R(Ψ)A ⊆ ℵ((N) ̌(ℵ(A)) if A⊆ L R(Ψ) ⇒ A. After that, A∈(Nα) ̂ open set. In the event that A ⊆ B 

R(Ψ) ⇒ ℵ(A)= B R(Ψ) ⇒ ( N) ̌ (ℵ(B R(Ψ) )= B R(Ψ) ⇒ ℵ ( N) ̌ (ℵ(B R(Ψ))= B R(Ψ) ⇒\ A⊆ B R(Ψ) 

⇒ A ⊆ B R(Ψ) ⇒ B R(Ψ) ⇒ A ⊆ ℵ((N) ̌(ℵ(A)). A∈(Nα) ̂ is thus an open set.When A crosses across 

[L R(Ψ) and B R(Ψ)].N (A)=U  ⇒ (N) (N̂(U) = U· N̂((N)(N̂(U))=U· A ⊆N̂((N)(ℵ(A)). A∈(Nα) ̂ is 

thus an open set.  

4.Conclusion 

The purpose of this study is to define a novel class called ( ℕα̌- closed and ℕα̂- open)  Sets in Nano-

Topological Spaces and to demonstrate its verifiable characteristics and theorems. The (𝛽 , b, regular, 

and semi) sets can be included in the future generalization of the new concept. 
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