On Generalized Nano \mathbb{N}_{α}-Closed and Nano \mathbb{N}_{α}-Open Sets in Nano-Topological Spaces

Abdulaziz S. Hameed1, Layla Hindi2, Nabila I. Aziz3, Faeyda Yaseen Taha4

1Ministry of Education-General directorate for breeding Baghdad Third Karkh
azizsaad201357@gmail.com

2Department of Mathematics, Faculty of Computer Science and Mathematics, University of Kufa, Al-Najaf 54001, Iraq
laylah.algharrawi@uokufa.edu.iq

3Department of Physics, College of Education -Tuzkhrumatu, Tikrit University
nabila.be@tu.edu.iq

4Samarra University, College of Education, Department of Chemistry
faedayaseen@uosamarra.edu.iq

Article History:

Received: 25-04-2024
Revised: 10-06-2024
Accepted: 21-06-2024

Abstract:

This work aims to define a new class of sets in nano topological spaces called Nano ($\mathbb{N}_{\alpha}^\cdot$)-closed and (N$\alpha$)-open sets, and to prove its verifiable properties and theorems.

Subject Classification: 54A05, 54A10

Keywords: nano topology, (Nα)-closed set and Nano (Nα)-open Set.

1. Introduction

In 2021, \mathbb{N}_{α} regular closed sets in nano topological spaces were presented by Narmatha S., Harshitha S., and others [3]. Within micro topological spaces, $\pi g\beta$-closed sets are studied by Rajasekaran I. and others [4]. In nano topological spaces, $ng^*\alpha$-closed sets were first presented by Rajendran V. and colleagues [5]. Crossley and Hildebrand [7] conducted research on semi-closure in 1971. Dunham [14] provided a definition of the closure operator C^* notion along with various attributes. Operator of regular closed sets was first defined by S. Bhattacharya [6] in 2011. Soft W-int. and soft W-CI. in Soft topological spaces are studied by Savita R. [8]. Soft g^* closed in Soft topological spaces are studied by Kalavathi, A. and Krishnan, G.[2]. Regular generalized* in topological spaces, closure regular generalized* Closure Regular Generalized*, and regular generalized closed sets are new classes of operators introduced by Siham I. Aziz and Nabila I. Aziz [9, 10, 11] and, respectively. 2014 saw the introduction of Nano closure and Nano Interior operator in Nano topological spaces by Thivagar M. Lellis and Carmel Rechard [12], a novel class of operators Open and Closed Nano operators $N^\cdot(\bar{A})$ and $N^\cdot(\bar{A})$ introduced by ABDULAZIZ S.[1]. The aim of this work is to investigate and characterize a new class of operators in nano topological spaces called Nano \mathbb{N}_{α}-closed and \mathbb{N}_{α}-open sets, and to establish their verifiable characteristics and theorems.

2. Preliminaries

Definition 2.1 [2]: Suppose Ω be the world, $\psi \subseteq \Omega$, and Π be an equivalence relation on Ω. With regard to Ψ, $\tau \phi(\Psi) = \{ \psi, \emptyset, LR(\psi), \emptyset \Phi(\psi), B\Phi(\psi) \}$ and $(\emptyset, \tau \Phi(\Psi))$ define the Nano topology on U.

https://internationalpubls.com
Definition 2.2 [1]: Assume \(A \subseteq \emptyset \) and \((U, \tau R(\Psi))\) be a Nano topological space. Next, we established
1. \(\emptyset(A) = \cap \{G : A \subseteq G, G \in \mathbb{N}(\emptyset, \Psi)\} \)
2. \(2^{-N}(A) = U \{G : G \subseteq A, G \in \mathbb{N}(\emptyset, \Psi)\} \).

Definition 2.3 [2]: Assuming \(\Psi, \Psi \subseteq \emptyset \), let \((U, \tau R(\Psi))\) be a Nano topological space. If \(A \) is not equal to \(\emptyset \), then: The union of all of \(A \)'s open subsets is \(A \)'s nanointerior, and it is represented by \(\text{Nint}(A) \). \text{Ncl}(A) \) represents the Nano closure of \(A \), which is the intersection of all Nano closed subsets containing \(A \).

Definition 2.4 [13]: When \(M \subseteq \text{Nint}(\mathbb{N}(\text{Nint}(M))) \), a subset \(M \) of \((\emptyset, \tau R(\Psi))\) is referred to as a nano \(\alpha \)-open set (briefly, Nano \(\alpha \)-o.s.). In \((U, \tau R(\Psi))\), the complement of a Nano \(\alpha \)-closed set is referred to as a nano \(\alpha \)-closed set (briefly, Nano \(\alpha \)-c.s.). Nano \(\alpha \)-(\emptyset, \Psi) \) (resp. Nano \(\alpha \)-(\emptyset, \Psi \)) represents the family of all Nano \(\alpha \)-o.s. (resp. Nano \(\alpha \)-c.s.) of \(U \).

3. On Generalized Nano \(\overline{\mathbb{N}} \alpha \)-closed and Nano \(\overline{\mathbb{N}} \delta \)-open Sets in Nano-Topological Spaces

Definition 3.1: Assume that \(A \subseteq U \) and that \((U, \tau R(\Psi))\) is a Nano topological space. If \(A \subseteq \emptyset \) (\(\mathbb{N}(\emptyset, \Psi)) \), then a subset \(A \) is referred to as an open set (briefly, Nano \(\alpha \)-open set (briefly, \(\mathbb{N}(\mathbb{N}(\emptyset, \Psi)) \)).

Definition 3.2: Assuming \(U/R = \{\{r, p\}, \{q\}\} \) and \(\Psi = \{r, q\} \), let \(U = \{r, \mu, q\} \).
Assuming \(\tau R(\Psi) = \{\emptyset, U, \emptyset, \{r\}, \{q\}\} \), we get \(\tau \in R(\Psi) = \{\emptyset, U, \emptyset, \{r\}, \{q\}\} \).

(1) \((\mathbb{N}) \alpha-o(x) = \{U, \emptyset, \{r\}, \{q\}\} \).

Theorem 3.3 All subsets of \(U \in R(\Psi) \) are not \((\mathbb{N}) \alpha \)-open sets if \(\tau R(\Psi) \) is not highly disconnected.

Proof

Case 1 in the event that \(\tau R(\Psi) = \{U, \emptyset, U R(\Psi)\} \).

To begin with, assume \(A = U R(\Psi) \Rightarrow \mathbb{N}(A) = U R(\Psi) \Rightarrow (\mathbb{N}) \alpha-(\mathbb{N}(U R(\Psi))) = \emptyset \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).

If \(A \not\subseteq \emptyset \Rightarrow A \not\subseteq \mathbb{N}(\emptyset) \), then \(A \not\subseteq (\mathbb{N}) \alpha \).

2. Take \(A \subseteq U c R(\Psi) \Rightarrow \mathbb{N}(A) \subseteq U c R(\Psi) \Rightarrow (\mathbb{N}) \alpha-(\mathbb{N}(U c R(\Psi))) = \emptyset \Rightarrow A \subseteq \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).

3. If \([U R(\Psi) \text{ and } U c R(\Psi)] \) intersect at \(A \), then \(\mathbb{N}(A) = U \Rightarrow (\mathbb{N}) \alpha-(\mathbb{N}(U)) = \emptyset \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).

Case 2: If \(\tau R(\Psi) = \{U, \emptyset, L R(\Psi), B R(\Psi), U R(\Psi)\} \).

First, suppose that \(A \subseteq L R(\Psi) \Rightarrow \mathbb{N}(A) \subseteq L R(\Psi) \Rightarrow (\mathbb{N}) \alpha-(\mathbb{N}(L R(\Psi))) = \emptyset \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).

\(A \not\subseteq \emptyset \Rightarrow A \not\subseteq \mathbb{N}(\emptyset) \). Afterwards, \(A \not\subseteq (\mathbb{N}) \alpha \).

2. In the event when \(A \subseteq B R(\Psi) \Rightarrow \mathbb{N}(A) \supseteq B R(\Psi) \Rightarrow (\mathbb{N}) \alpha-(\mathbb{N}(B R(\Psi))) = \emptyset \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).

\(A \not\subseteq \emptyset \Rightarrow A \not\subseteq \mathbb{N}(\emptyset) \). Afterwards, \(A \not\subseteq (\mathbb{N}) \alpha \).

3. At the intersection of \(A \) with \([L R(\Psi) \text{ and } B R(\Psi)]\), \(\mathbb{N}(A) = U R(\Psi) \), and \((\mathbb{N}) \alpha-(\mathbb{N}(U R(\Psi))) = \emptyset \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).

4. If \(A \subseteq U c R(\Psi) \Rightarrow \mathbb{N}(A) \Rightarrow U \Rightarrow (\mathbb{N}) \alpha-(\mathbb{N}(U)) \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).

5. In the event when \(A \) intersects \([L R(\Psi) \text{ and } U R(\Psi)]\), \(\mathbb{N}(A) = U \Rightarrow (\mathbb{N}) \alpha-(\mathbb{N}(U)) \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) \Rightarrow \mathbb{N}(\emptyset) = \emptyset \).
6-If \([B \cap R(\Psi) \text{ and } C \cap R(\Psi)]\) intersect \(A\), then \(\tilde{N}(A)=U \Rightarrow (N^{*})(\tilde{N}(U))=U \Rightarrow K((N) \cap (N^{*})(U))=U \Rightarrow A \subseteq N((N) \cap (N^{*})(U))\).

Theorem 3.4: All subset of \(U_{c_{R(\Psi)}}\) is \(\tilde{N}r\) open set.

Proof: Case 1- If \(\tau_{R(\Psi)} = \{U, \emptyset, U_{R(\Psi)}\}\).

If \(A \subseteq U_{c_{R(\Psi)}} \Rightarrow \tilde{N}(A)=U \Rightarrow \tilde{N}(\tilde{N}(U))=U \Rightarrow A \subseteq \tilde{N}(\tilde{N}(A))\). Then \(A \subseteq \tilde{N}r\).

Case 2 : when \(\tau_{R(\Psi)} = \{U, \emptyset, L_{R(\Psi)}, B_{R(\Psi)}, U_{R(\Psi)}\}\).

If \(A \subseteq U_{c_{R(\Psi)}} \Rightarrow \tilde{N}(A)=U \Rightarrow \tilde{N}(\tilde{N}(U))=U \Rightarrow A \subseteq \tilde{N}(\tilde{N}(A))\). Then \(A \subseteq \tilde{N}r\).

Theorem 3.5: All subset of \(U\) which intersect \([U_{R(\Psi)} \text{ and } U_{c_{R(\Psi)}}]\) is \(\tilde{N}r\) open set.

Proof: Case 1- If \(\tau_{R(\Psi)} = \{U, \emptyset, U_{R(\Psi)}\}\)

Let \(A \subseteq U\) such that \(A\) intersect \([U_{R(\Psi)} \text{ and } U_{c_{R(\Psi)}}]\)

\(\tilde{N}(A)=U \Rightarrow \tilde{N}(\tilde{N}(U))=U \Rightarrow A \subseteq \tilde{N}(\tilde{N}(A))\). Then \(A \subseteq \tilde{N}r\) open set.

Case 2: \(\tau_{R(\Psi)} = \{U, \emptyset, L_{R(\Psi)}, B_{R(\Psi)}, U_{R(\Psi)}\}\).

1- Let \(A \subseteq U\) such that \(A\) intersect \([L_{R(\Psi)} \text{ and } U_{c_{R(\Psi)}}]\).

\(\tilde{N}(A)=U \Rightarrow \tilde{N}(\tilde{N}(U))=U \Rightarrow A \subseteq \tilde{N}(\tilde{N}(A))\). Then \(A \subseteq \tilde{N}r\) open set.

2- Let \(A \subseteq U\) such that \(A\) intersect \([B_{R(\Psi)} \text{ and } U_{c_{R(\Psi)}}]\).

\(\tilde{N}(A)=U \Rightarrow \tilde{N}(\tilde{N}(U))=U \Rightarrow A \subseteq \tilde{N}(\tilde{N}(A))\). Then \(A \subseteq \tilde{N}r\) open set.

3- Let \(A \subseteq U\) such that \(A\) intersect \([L_{R(\Psi)} \text{ and } B_{R(\Psi)} \text{ and } U_{c_{R(\Psi)}}]\).

\(\tilde{N}(A)=U \Rightarrow \tilde{N}(\tilde{N}(U))=U \Rightarrow A \subseteq \tilde{N}(\tilde{N}(A))\). Then \(A \subseteq \tilde{N}r\) open set.

Theorem 3.6: When the Nano space \(U\) is extremely disconnected then all subset of \(U\) is \(\tilde{N}r\) — open set.

Proof: \(\tau_{R(\Psi)} = \{U, \emptyset, L_{R(\Psi)}, B_{R(\Psi)}\}\).

Assuming that \(A \subseteq L_{R(\Psi)} \Rightarrow (N(A) \subseteq L_{R(\Psi)} \Rightarrow \tilde{N}(N(L_{R(\Psi)})) \Rightarrow \tilde{N}(N(L_{R(\Psi)}))\) \(\tilde{N}(N(L_{R(\Psi)}))\) \(\tilde{N}(N(L_{R(\Psi)}))\)

A \subseteq \(N^{*}(N(A)).\) A \(\subseteq \tilde{N}(N^{*}(N(A)))\) if \(A \subseteq L_{R(\Psi)} \Rightarrow A\). After that, \(A \subseteq \tilde{N}(N^{*}(N(A)))\) is thus an open set. When \(A\) crosses across \([L_{R(\Psi)} \text{ and } B_{R(\Psi)}]\)

\(N(A)=U \Rightarrow (N(\tilde{N}(U))=U \Rightarrow \tilde{N}((N)(\tilde{N}(U)))=U \Rightarrow A \subseteq \tilde{N}(N(A))\).

4.**Conclusion**

The purpose of this study is to define a novel class called \((\tilde{N}r\) - closed and \(\tilde{N}r\) - open) sets in Nano-Topological Spaces and to demonstrate its verifiable characteristics and theorems. The \((\beta', b, \text{ regular, and semi})\) sets can be included in the future generalization of the new concept.
References

