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Abstract 

This article explains the concept of (1, 2)*D** semi- pre-open sets based on the concepts 

of semi- preopen sets and semi- pre- continuity in topological space. In addition to that 

the concept of (1,2)*D**Sp generalized continuous maps and generalized 

homeomorphisms are also discussed. 
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1. Introduction 

Bhattacharya and Lahiri [1] introduced a new class of semi generalized open sets by means of 

semi open sets introduced by Levine [5]. In view of that we introduce a new class of open sets namely 

(1, 2)*-D**Spopen sets and their properties are also studied.. Also (1, 2)*-D**SpContinuous maps, 

irresolute maps, (1, 2)*-D**SpConnected sets, homeomorphism are also studied with their 

characterizations. 

2. Preliminaries 

Entire area of this paper, (X, 1, 2) X will denote bitopological space (briefly, BTPS). 

Definition 2.1: Let H be a subset of X. Then H is said to be 1,2-open [7] if H = A  B where A 

 1 and B   

The complement of 1,2-open set is called 1,2-closed. 

Notice that 1,2-open sets need not necessarily form a topology 

Note; 1,2-open sets need not necessarily form a topology. 

Definition 2.2 [7]: Let H be a subset of a bitopological space X. Then 

(i) the τ1,2-closure of H, denoted by τ1,2-cl(H), is defined as {F : H  F and F is τ1,2-closed} 

(ii) the τ1,2-interior of H, denoted by τ1,2-int(H), is defined as {F : F  H and F is τ1,2-open}
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Definition 2.3: A subset H of a BTPS X is called: 

(i) (1, 2)*-semi-open set [8] if H  1,2-cl(1,2-int(H)); 

(ii) (1, 2)*-preopen set [6] if H  1,2-int(1,2-cl(H)); 

(iii) (1, 2)*--open set [3] if H  1,2-int(1,2-cl(1,2-int(H))); 

(iv) regular (1, 2)*-open set [6] if H = 1,2-int(1,2-cl(H)). 

(v) (1, 2)*-gsp-closed [10, 11] if (1,2)*-cl(A)  U whenever A  U and U is (1, 2)*-open. Then 

complement of (1, 2)*-gsp-closed set is called (1, 2)*-gsp-open set. 

The complements of the above-mentioned open sets are called their respective closed sets. 

3. Definition 2.4: [2] A subset H of a space (X, 𝜏) is called -cld if it contains all its condensation 

points. The complement of -cld set is called -open. 

4. Definition 2.5. A bijection f : X → Y is called (1, 2)*-homeomorphism [4] if f is bijection, (1,2)*-

continuous and (1,2)*-open. 

5. Definition 2.6: A subset A of X is called (1, 2)*-D*-cld (briefly, (1,2)*-D*-cld) if (1, 2)*- scl*(A) 

 (1, 2)*-int(U) whenever A  U and U is (1, 2)*-ω-open. The complement of (1, 2)*-D*-cld set is 

called (1, 2)*-D*-open. 

6. Definition 2.7: (1, 2)*-D**-closed (briefly, (1, 2)*-D**-cld) if (1, 2)*-spcl(A)  U whenever A  

U and U is (1,2)*-D*-open. The complement of (1, 2)*-D**-closed set is called (1, 2)*-D**-open. 

The class of all (1, 2)*-D**-cld in X is denoted by (1, 2)*-D**-C(X). 

The complements of the above mentioned open sets are called their respective closed sets. 

3   (1, 2)*-D**spOpen Sets 

Definition 3.1 

For S ⊆ X ,  (1, 2)*-spcl**(S) = ∩{K/S ⊆ K , K is  (1, 2)*gspClosed}. 

Remark 3.2 

(1, 2)*-spcl**(S)  = Kuratowski closure operator on X . 

Definition 3.3 

S ⊆ X, (1, 2)*-D**spOpen iff there exists an τ1,2OS  

U Such that U⊆S ⊆ (1, 2)*- spcl**(U). in X. 

Example 3.4 

Let G = {1, 2, 3}, τ1 = { G, φ, {1} } and τ2 = {G, φ, {1}, {1, 2}}. Then (1, 2)*-D**spOS of 

(X, τ1, τ2) are X, φ, {1}, {1,2} and {1,3}. 

Remark 3.5 

If  C ⊆ X, D ⊆ X  ∋  C ⊆ D, then we have (1, 2)*-spcl**(C) ⊆ (1, 2)*-spcl**( D ). 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 31 No. 2s (2024) 

 

720 
https://internationalpubls.com 

Theorem 3.6 

For S ⊆ X. we have S is (1, 2)*- D**spOpen  

iff S  (1, 2)*-spcl**(τ1,2Int(S)). 

Proof. 

Assume S is (1, 2)*- D**spOpen in X . U  S implies U ⊆ τ1,2int(S). hence from Remark 

3.5 and by defn 3.3, (1, 2)∗-spcl**(U)  

(1, 2)*spcl**(τ1,2-Int(S)). So S ⊆ (1,2)*-spcl**(τ1,2-Int(S)). 

To prove the converse let S ⊆ (1, 2)*-spcl**(τ1,2Int(S)). substitute U = τ1,2-Int(S). finally 

by defn 3.3. S in X is (1, 2)*- D**spOS . 

Theorem 3.7 In BTS X 

τ1,2-OS(R) ⇒  (1 ,2)*-D**spOS(R) 

Proof. 

Assume R be a τ1,2OS in X  let 

R = τ1,2Int(R) ⊆ (1, 2)*-spcl**(τ1,2Int(R)). We have S is (1 ,2)*-D**spOS in X . 

Example 3.8 

Reverse of theorem 3.7 is proved by this example 

S = {1,3} is a (1 ,2)*-D**sp-OS in X but not an τ1,2-OS in X. 

Definition 3.9 In BTS X 

(1, 2)*-D**spT1/2 space for every (1 ,2)*-D**spOS is τ1,2OS 

Remark 3.10 In 

(1, 2)*T1/2 space, Every (1, 2)*SpOS is (1 ,2)*-D**spOS. 

Remark 3.11 

(1 ,2)∗-spcl**(A) ⊆ τ1,2spcl(A) for a subset A in X. 

Theorem 3.12 In BTS X. 

S is (1, 2)*-D**spOS ⇒ S  i s  (1, 2)*-spOS . 

Proof  In X , Suppose S is (1, 2)*- D**spOS and By defn 3.3 and. By Remark 3.11, (1 ,2)*- 

spcl**(U) ⊆ τ1,2-spcl(U) . Hence U ⊆ S ⊆ τ1,2-spcl(U) 

⇒ S is (1,2)*-spOS. 

Example 3.13 

To prove the reverse of thm 3.12 is not true assume G = {1, 2, 3}, t1 = {G, φ, {2}} and t2 = {G, 

φ }. 
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Then S = {2, 3} is ( 1, 2)*spOS but not a (1, 2)*-D**spOS. 

Remark 3.14  

In BTS X  

Consider 

C ⊆ X, D ⊆ X 

we have (1, 2)*-spcl** (C∪D) = (1, 2)*-spcl**(C)∪ (1, 2)*-spcl**(D) . 

Theorem 3.15 

In BTS X Consider 

C ⊆ X, D ⊆ X  

We have 

(1, 2)*-D**spOS 

⇒ CunionD is also a  (1, 2)*-D**spOS . 

Proof.  

In BTS X 

Suppose C and D are (1, 2)*-D**spOS in X. By defn & Remark3.14, (1, 2)*-spcl**(S) ⊆ 

(1, 2)*-spcl** (T) 

⇒  (1, 2)*-spcl** (S ∪ T). 

⇒ S ∪ T is also (1, 2)*-D**spOS . 

Example 3.16 In BTS X 

Suppose C , D are (1 ,2)*-D**spOS ⇒ 

C ∩ D may not (1, 2)*-D**spOS . 

Let X = {1, 2, 3, 4}, t1 = { X, φ, {1, 2}, {1 ,2, 3}, {1, 2, 4}} , t2 = { X, φ, { 1, 2 }, {3, 4} }. 

Then the set A = {1,2,3} and B = {3,4} are (1,2)*- D**spOS in X and A ∩ B = {3} is not a (1,2)*- 

D**spOS. 

Theorem 3.17 

In BTS X  

Assume B be a (1, 2)*-D**spOS , B ⊆ C and B ⊆ C ⊆ ( (1, 2)*- spcl**(τ1,2Int(A)). we 

have C is a (1, 2)*-D**spOS 

Proof 

From statement B is (1, 2)*-D**spOS and By Thm 3.16 B ⊆ (1, 2)*-spcl**(τ1,2Int(B)), Also B 

⊆ C 
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⇒ τ1,2-Int(A) ⊆ τ1,2- Int(B). Hence, (1, 2)*-spcl**(τ1,2Int(B)) ⊆ (1, 2)*-spcl**(τ1,2Int(C)). We 

have C ⊆ (1, 2)*-spcl**(τ1,2Int(B)) ⊆ (1, 2)*-spcl**(τ1,2Int(C)) it  proves C is (1, 2)*- 

D**spOS . 

Remark 3.18  

A Map 

h : L → M is (1, 2)*gspContinuous 

⇒ f((1, 2)*-spcl**(A))   1,2-spCl( f(A)). 

Theorem 3.19  

In BTS X 

Suppose a map h : L → M be (1, 2)*gspContinuous and (1, 2)*Open ⇒ B is (1, 2)*- 

D**spOS 

⇒ f(B) in Y is (1, 2)*-spOS . 

Proof 

From statement B is (1, 2)*-D**spOS in L. By defn 3.3 and. Remark 3.18, 

h((1, 2)*- 

spCl**(V)) ⊆ σ1,2-spCl(h(B)). We have h(B) ⊆ h((1, 2)*- spCl**(V)) ⊆ σ1,2-spCl(h(V)). Also 

given h is (1, 2)*Open Map  h(V) in M is σ1,2-Open . it follows that h(B) in M is (1, 2)*- 

spOS. 

Theorem 3.20 in BTS X consider 

A Map h : L → M be a (1, 2)*homeomorphism. If B in L is (1, 2)*-D**spOS , then h(B) 

is (1, 2)*- D**spOS in M. 

Proof 

B is (1, 2)*-D**spOS in L.. By definition 3.3 h(V) ⊆ h(B) ⊆ h((1, 2)*-spCl**(V)). 

Also given h is (1, 2)*homeomorphism we have h((1, 2)*-spCl**(V)) ⊆ 

(1, 2)*- spCl**h(V)). it follows  h(V) ⊆ h(B) ⊆(1, 2)*- spCl**( h(V)). so that h( B) in M is (1, 2) 

*-D**spOS 

Theorem 3.21  

in BTS X Consider A Map h : L → M if 

h is  (1, 2)*homeomorphism.and B in M is  (1, 2)*-D**spOS 

then  ∃ τ1,2-OS  such  that h−1(B) in M is  (1, 2)*- D**spOS 

Proof 

From statement B in L is (1, 2)*-D**spOS . By defn 3.3 we have h−1(V) ⊆ h−1(B) ⊆ h−1((1, 
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2)*-spCl**( V)). and Since h is 

(1, 2)*homeomorphism ⇒ h−1((1, 2)*-spCl**(V)) ⊆ (1, 2)*-spCl**(h−1(V)). hence we have 

h−1(V) ⊆ h−1(B) ⊆ (1, 2)*-spCl**(h−1(V)) thus h−1(B) is (1, 2)*-D**spOS 

4.  (1, 2)*-D**spClosed and  (1, 2)*-D**spOpen  Mappings 

Definition 4. 1 

A Map h : L → M  is  (1, 2)*-D**spO- map if h(V) in M is (1, 2)*-D**spOS  ∀ τ1,2OS  V 

in M. 

Theorem 4.2 A map 

h : L →M is (1, 2)*-Open map ⇒ (1, 2)*D**spOpen -Map 

Proof. 

From statement h : L →M is (1, 2)*-Open map .and  G is τ1,2-OS in L. we have h(G) in 

M  is  σ1,2Open. From Theorem3.7, h(G) is 

(1, 2)*-D**spOS in M.. Henceforth h is (1, 2)*-D**spOpen . 

Example 4.3 

Reverse ofTheorem 4.2 is not  true. by this example 

Let L= M= {a1, ,b1 ,c1} , τ1 = {L, φ, {a1}}, τ2 = { L, φ, {a1, c1}}. Let σ1 = {L, φ, {a1}}, σ2 

= {L, φ, {a1}, {a1,b1}}. 

Let h : L → M is an identity map. we have h is 

(1, 2)*- D**spOpen but h is not (1, 2)*-Open. map 

Definition  4.4 The map 

h : L → M is (1, 2)*- D**spClosed Map if For every τ1,2-CS V in L, h(V) in M

 is (1, 2)*- D**spClosed 

Remark 4.5 

h : L → M is (1 ,2)*Closed  ⇒ h is (1, 2)*- D**spClosed  but conversely not true 

Proof. 

From Theorem 4.2. proof is clear 

5. (1, 2)*-D**spContinuous  Mappings 

Definition 5.1 A map 

h : K →L is called (1, 2)*-D**spContinuous ∀ σ1,2-OS in L its inverse 

image of h is (1, 2)*-D**spOpen in K.. 
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Theorem 5.2  

A map 

h : K →L  

h is (1, 2)*Continuous ⇒ h is (1, 2)*-D**spContinuous. 

Proof 

Assume R as a σ1,2OS in L. Also h is (1, 2)*Continuous, h−1(R) is τ1,2Open in X. From 

Theorem 3.7, h−1(R) is (1, 2)*-D**spOpen in X . Thus h is (1, 2)*-D**spContinuous. 

Example 5.3 This example proves reverse of thm 5.2 Consider A map 

h : K →L let the two sets L = K = { a1 ,a2 ,a3}, τ1 = { L, φ, {a1}}, τ2 = { L, φ, {a1}, {a1, 

a2}}, σ1 = {K, φ, {a1}} and σ2 = {K, φ, {a1 ,a3}}. Suppose h : K → L be the identity map 

we have h is (1, 2)*- D**spContinuous but h is not (1, 2)*Continuous . 

Remark 5.4 

In (1, 2)*-D**sp-T1/2 space,  every (1, 2)*-D**spContinuous map is (1, 2)*Continuous. 

Theorem 5.5 

h : K → L is a map. we have the below implications are true. 

• 1  h is (1, 2)*- D**spContinuous. 

• 2. For each σ1,2CS in L its inverse image is (1, 2)*-D**spClosed in K . 

Proof. 

(1) ⇒ (2) Let R is σ1,2CS in L. Then L - R is σ1,2Open in L. Also h is (1, 2)*-D**spContinuous, 

f−1 
(L - R) is (1, 2)*-D**spOpen in K. so that we have K / f−1(R) is (1, 2)*-D**spOpen in K ⇒ 

f−1(R) is (1, 2)*- D**spClosed in K. 

(ii) ⇒ (i) Let S is a σ1,2OS in L. Then L-S is σ1,2Open in L. ⇒ f−1(L \ S) is (1, 2)*- 

D**spClosed in K, ⇒L \f−1(S) is  (1, 2)*-D**spClosed in L .So that h−1(S) is (1, 2)*- 

D**spOpen in L. Hence h is (1, 2)*-D**spContinous. 

Theorem 5.6    

A s s u m e  h : K → L is a map 

If h is (1, 2)*-D**spContinuous Map, Then h (τ1,2-D**spcl(B)) ⊆ σ1,2-spcl(h(B)). 

Proof. 

Given h(B) ⊆ σ1,2-spCl(h(B)), ⇒ B ⊆ h−1(σ1,2-spCl((B)). 

Then σ1,2-spCl(h(B)) is a σ1,2CS in L and 
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h is (1, 2)*-D**spContinuous map ⇒ h−1(σ1,2-spCl(h(B)) is (1, 2)*-D**spClosed in L. Hence 

τ1,2-D**spcl(B) ⊆ h−1(σ1,2-scl(f(B).it proves h (τ1,2-D**spcl (B)) ⊆ σ1,2-spcl(h(B)). 

 (1, 2)*-D**spContinuous and (1, 2)*-D**spIrresolute Mappings Definition 6.1 Consider a 

map h : K → L 

H is (1, 2)*-D**spirresolute if for every (1, 2)*-D**spOS of L its inverse 

image of h is (1, 2)*-D**spOpen in K 

Remark 6.2  

Consider a map h : K → L 

For every (1, 2)*-D**spCS of L by defn of 6.1  (1, 2)*-D**spClosed  in K.. 

Theorem 6.3  

Consider a map 

Proof. 

h : K → L is (1, 2)*-D**spirresolute implies h is (1, 2)*-D**spContinuous . 

Suppose R is a τ1,2OS in  K. Also h  is (1, 2)*-D**spirresolute proves h−1(R) is  (1, 2)*- 

D**spOpen in K. Thus h is (1, 2)*-D**spContinuous. 

Example 6.4 

Reverse part of the Theorem 6.3 Can be proved by the following example to show it is 

not true 

Let X = Y = {a1 ,a2 ,a3}, τ1 = {X, φ, {a1}, {a2}, { a1,a2}}, τ2 = {X, φ, {a1,a2}} , σ1 = {X, 

φ, {a1}}, σ2 = { X, φ, {a1}, {a1,a2}}. Let f : X → Y be the identity map. Hence f is 

(1, 2)*- D**sp-Continuous but f is not (1, 2)*-D**spirresolute. 

Theorem 6.5  

Consider a map 

h : K → L 

h is (1, 2)*Continuous and L is (1, 2)*-D**sp-T1/2-space implies h is

 (1, 2)*- D**spirresolute. 

Proof 

Assume B be (1, 2)*-D**spOS in L. Also L is (1,2)*-D**sp-T1/2-space, implies

 B is an σ1,2OS in L and also h is (1, 2)*Continuous proves h−1(B) is 

(1, 2)*-D**spOS 

in K. Thus  h is (1, 2)*-D**spirresolute. 
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Theorem 6.6  

Consider a map 

h : K → L 

h is (1, 2)*-D**spirresolute and k : L → M be an (1, 2)*-D**spirresolute maps. Then h o k : K → 

M is (1, 2)*- D**spirresolute. 

Proof. 

Suppose V be a (1, 2)*-D**spOS in M. so h−1(V) is (1, 2)*-D**spOpen in L implies 

h−1(k−1(V)) is (1, 2)*-D**spOpen in K. Thus (hok)−1(V) is (1, 2)*-D**spOpen in K. Hence hok 

is (1, 2)*-D**spirresolute. 

7. (1, 2)*-D**spConnected Sets 

Definition 7.1 

A space X is (1, 2)*-D**spdisConnected if it is the Union of two disjoint non empty (1, 2)*- 

D**spOS otherwise it is said to be (1, 2)*-D**spConnected 

Theorem 7.2 

IN BTS X, the following statements are true. 

• X is (1, 2)*-D**spConnected. 

• φ , X are the subsets which are both (1, 2)*-D**spOpen and (1, 2)*-D**spClosed . 

Proof. 

i ⇒ ii  Let U ⊆ X which is (1, 2)*-D**spOpen & (1, 2)*-D**spClosed. 

Then X/U is also (1, 2)*-D**spOpen & (1, 2)*-D**spClosed by defn of 7.1 .  

U and X/U implies either 

U = φ or  X/U = φ. 

ii ⇒ i Suppose A ,B in X such that AUB =X where A, B not equal to empty 

(1, 2)*-D**spOS .  

So A- X/B  is (1, 2)*-D**spCS ⇒  A is(1, 2)*-D**spO⊆  X  and (1, 2)*- 

D**spCS ⊆ X 

as we assumed A = φ or  X proves  X is (1, 2)*- D**spConnected. 

Theorem 6.3 suppose a mapping j : K → L is 

i) (1, 2)*-D**spContinuous and onto ,K is (1, 2)*-D**spConnected 

⇒ L is (1, 2)*Connected. 
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(ii) If j : K → L is (1, 2)*-D**spirresolute surjection map and K is (1 ,2)*-D**spConnected 

⇒  L is (1, 2)*-D**spConnected. 

Proof. 

Assume L is not (1, 2)*Connected. We have L = C ∪ D is not empty where C and D are 

disjoint σ1,2-OS in L. 

Also j is (1, 2)*-D**spContinuous , onto K = f−1(C) ∪ f−1(D) where 

f−1(C) and f−1(D) are disjoint but not empty (1, 2)*-D**spOSs contradicts X is (1, 2)*- 

D**spConnected. So that L is (1, 2)*Connected. 

ii proof obvious from 7.1. 

8. (1, 2)*-D**spHomeomorphisms 

Definition 8.1 f : X →Y is a bijection map called (1, 2)*-D**sphomeomorphism

 if

 the mapping is (1, 2)*-D**spContinuous ,(1, 2)*-D**spOpen. 

Remark 8.2 

Every (1, 2)*homeomorphism is (1, 2)*- D**sphomeomorphism but conversely not true 

Theorem 8.3 consider 

The mapping  h : X →Y, is 1-1 and onto we have the following statements are true. 

• (i)h−1: Y → X is (1, 2)*- D**spContinuous. 

• (ii)The mapping is (1, 2)*-D**spOpen . 

• (iii)the mapping is (1, 2)*- D**spClosed . 

Proof. 

• (i)⇒ (ii) Let K be any τ1,2-OS in X. Since f−1 is (1 ,2)*-D**spContinuous, 

f( K) in Y is (1, 2)*- D**spOpen  . Thus the mapping is (1, 2)* D**spOpen. 

• (ii)Implies iii In X 

suppose F is τ12CS , Then  X/F is  τ12OS 

and  Also the mapping  is (1, 2)*-D**spOpen , 

f (X/F) in Y is (1, 2)*-D**spOpen in Y.. But in Y, f(X/F) = Y /f(F) 

where f (F) is (1, 2)*-D**spClosed . Thus the mapping is (1, 2)*-D**spClosed Map 

(iii) implies  (i) 

Suppose R is τ1,2-CS in X , We have f (R) in Y is (1, 2)*-D**spClosed . Also the 

mapping f is (1, 2)*- D**spClosed its inverse mapping is (1, 2)*-D**spContinuous. 
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Theorem 8.4 

Suppose the mapping f is 1-1 , onto and (1, 2)*-D**spContinuous Then the implications are 

true. To prove the mapping f is 

• i)(1, 2)*-D**spOpen . 

• ii)(1, 2)*-D**sphomeomorphism . 

• iii)(1, 2)*-D**spClosed 

Proof 

Assume i) f is (1 ,2)*-D**spOpen also the mapping is 1-1 and onto , (1, 2)*-D**spContinuous 

From the definition8.1, the mapping is (1, 2)*-D**sphomeomorphism. (ii) is proved. 

assume (ii) the mapping is (1, 2)*-D**spOpen , 1-1 and onto it is (1, 2)*- 

D**spClosed from thm 7.8 . (iii) proved 

 assume iii f is (1, 2)*-D**spClosed and bijective. F is (1, 2)*-D**spOpen map. By Theorem 8.3 ( 

i), proved 

REFERENCES 

[1] Bhattacharya, P. and Lahiri, B. K., Semi-Generalized closed sets in a topology, Indian J. Math., 1987, 29(3), 375. 

[2] Hdeib, H.Z., -closed mappings, Rev. Colomb. Mat., 1982, 16(3-4) 65-67. 

[3] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (l,2)*-quotient mappings, J. 

Egypt Math. Soc., 16(1) (2008), 17-25. 

[4] Lellis Thivagar, M., Ravi, O., Joseph Israel, M. and Kayathri, K. Decompositions of (1,2)*-rg-continuous maps in 

bitopological spaces, 2009, 6(1), 13-21. 

[5] Levine, N., Generalized closed sets in Topology, Rend. Circ. Mat. Paleroma, 1970, 19, 89-96. 

[6] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of (l, 2)*-continuity and (l,2)*--continuity, Miskolc 

Mathematical Notes., 10(2) (2009), 163-171. 

[7] Ravi, O. and Lellis Thivagar, M.: A bitopological (1,2)*-semi- generalized continuous maps, Bull. Malays. Math. 

Sci. Soc., (2), 29(1) (2006), 79-88. 

[8] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (l,2)*-generalized homeomorphisms, Int J. 

Contemp. Math. Sciences., 5(11) (2010), 543-557. 


