$(1,2)^{*}-D^{* * S p O p e n ~ S e t s ~ i n ~ B i t o p o l o g i c a l ~ S p a c e s ~}$

P. Devi Prabha ${ }^{1}$, R. Asokan ${ }^{2}$
$1 \& 2$ Department of Mathematics School of Mathematics Madurai Kamaraj University
Madurai-625021, Tamil Nadu, INDIA
Email: ${ }^{1}$ deviprabhaponnusamy @gmail.com, ${ }^{2}$ asokan.maths@mkuniversity.org

Article History:

Received: 08-04-2024
Revised: 20-05-2024
Accepted: 07-06-2024

Abstract

This article explains the concept of $(1,2)^{*} \mathrm{D}^{* *}$ semi- pre-open sets based on the concepts of semi- preopen sets and semi- pre- continuity in topological space. In addition to that the concept of $(1,2) * D^{* *}$ Sp generalized continuous maps and generalized homeomorphisms are also discussed.

Keywords: (1, 2)*-Open map, (1, 2)*-D**SpOS, (1, 2)*-D**SpContinuous map.

1. Introduction

Bhattacharya and Lahiri [1] introduced a new class of semi generalized open sets by means of semi open sets introduced by Levine [5]. In view of that we introduce a new class of open sets namely $(1,2)^{*}$-D**Spopen sets and their properties are also studied.. Also (1, 2)*-D**SpContinuous maps, irresolute maps, $(1,2)^{*}-D^{* *}$ SpConnected sets, homeomorphism are also studied with their characterizations.

2. Preliminaries

Entire area of this paper, (X, 1, 2) X will denote bitopological space (briefly, BTPS).
Definition 2.1: Let H be a subset of X. Then H is said to be $\tau 1,2$-open [7] if $H=A \cup B$ where A
$\in \tau 1$ and $B \in \tau$
The complement of $\tau 1,2$-open set is called $\tau 1,2$-closed.
Notice that $\tau 1,2$-open sets need not necessarily form a topology
Note; 1,2-open sets need not necessarily form a topology.
Definition 2.2 [7]: Let H be a subset of a bitopological space X . Then
(i) the $\tau 1,2$-closure of H , denoted by $\tau 1,2-\mathrm{cl}(\mathrm{H})$, is defined as $\{\mathrm{F}: \mathrm{H} \subseteq \mathrm{F}$ and F is $\tau 1,2$-closed \}
(ii) the $\tau 1,2$-interior of H , denoted by $\tau 1,2-\mathrm{int}(\mathrm{H})$, is defined as $\{\mathrm{F}: \mathrm{F} \subseteq \mathrm{H}$ and F is $\tau 1,2$-open $\}$

Definition 2.3: A subset H of a BTPS X is called:
(i) $(1,2)^{*}$-semi-open set [8] if $\mathrm{H} \subseteq \tau 1,2-\mathrm{cl}(\tau 1,2-\operatorname{int}(\mathrm{H}))$;
(ii) $(1,2)^{*}$-preopen set [6] if $\mathrm{H} \subseteq \tau 1,2-\operatorname{int}(\tau 1,2-\mathrm{cl}(\mathrm{H})$);
(iii) $(1,2)^{*}-\alpha$-open set $[3]$ if $\mathrm{H} \subseteq \tau 1,2-\operatorname{int}(\tau 1,2-\mathrm{cl}(\tau 1,2-\operatorname{int}(\mathrm{H}))$);
(iv) regular $(1,2)^{*}$-open set [6] if $\mathrm{H}=\tau 1,2-\operatorname{int}(\tau 1,2-\mathrm{cl}(\mathrm{H}))$.
(v) $\quad(1,2)^{*}$-gsp-closed $[10,11]$ if $(1,2)^{*}$-cl $(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}$-open. Then complement of $(1,2) *$-gsp-closed set is called $(1,2)^{*}$-gsp-open set.
The complements of the above-mentioned open sets are called their respective closed sets.
3. Definition 2.4: [2] A subset H of a space (X, τ) is called ω-cld if it contains all its condensation points. The complement of ω-cld set is called ω-open.
4. Definition 2.5. A bijection $f: X \rightarrow Y$ is called (1,2)*-homeomorphism [4] if f is bijection, (1,2)*continuous and (1,2)*-open.
5. Definition 2.6: A subset A of X is called (1, 2)*-D*-cld (briefly, (1,2$)^{*}$ - D^{*}-cld) if $(1,2)^{*}$ - $\mathrm{scl}^{*}(\mathrm{~A})$ $\subseteq(1,2)^{*}-\operatorname{int}(\mathrm{U})$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $(1,2)^{*}$ - ω-open. The complement of $(1,2)^{*}$ - D^{*}-cld set is called (1, 2)*-D*-open.
6. Definition 2.7: $(1,2)^{*}-D^{* *}$-closed (briefly, $(1,2)^{*}-D^{* *}$-cld) if $(1,2)^{*}-\operatorname{spcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq$ U and U is $(1,2)^{*}$ - D^{*}-open. The complement of $(1,2)^{*}$ - $\mathrm{D}^{* *}$-closed set is called $(1,2)^{*}$ - $\mathrm{D}^{* *}$-open. The class of all $(1,2)^{*}-\mathrm{D}^{* *}$-cld in X is denoted by $(1,2)^{*}-\mathrm{D}^{* *}-\mathrm{C}(\mathrm{X})$.
The complements of the above mentioned open sets are called their respective closed sets.

3 (1,2)*-D**spOpen Sets

Definition 3.1

For $S \subseteq X,(1,2)^{*}-\operatorname{spcl}^{* *}(S)=\cap\left\{K / S \subseteq K, K\right.$ is $\left.(1,2)^{*} \operatorname{gspClosed}\right\}$.

Remark 3.2

$(1,2)^{*}$-spcl** ${ }^{*}$ (S) Kuratowski closure operator on X.

Definition 3.3

$\mathrm{S} \subseteq \mathrm{X},(1,2)^{*}-\mathrm{D}^{* *}$ spOpen iff there exists an $\tau 1,2 \mathrm{OS}$
U Such that $\mathrm{U} \subseteq \mathrm{S} \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\mathrm{U})$. in X .

Example 3.4

Let $G=\{1,2,3\}, \tau 1=\{G, \varphi,\{1\}\}$ and $\tau 2=\{G, \varphi,\{1\},\{1,2\}\}$. Then $(1,2)^{*}-D^{* *} \operatorname{spOS}$ of $(\mathrm{X}, \tau 1, \tau 2)$ are $\mathrm{X}, \varphi,\{1\},\{1,2\}$ and $\{1,3\}$.

Remark 3.5

If $\mathrm{C} \subseteq \mathrm{X}, \mathrm{D} \subseteq \mathrm{X} \ni \mathrm{C} \subseteq \mathrm{D}$, then we have $(1,2)^{*}-\operatorname{spcl}^{* *}(\mathrm{C}) \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\mathrm{D})$.

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2s (2024)

Theorem 3.6

For $S \subseteq X$. we have S is $(1,2)^{*-} \mathrm{D}^{* *}$ spOpen
iff $S \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\tau 1,2 \operatorname{Int}(S))$.

Proof.

Assume S is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen in $\mathrm{X} . \mathrm{U} \subseteq \mathrm{S}$ implies $\mathrm{U} \subseteq \tau 1,2 \operatorname{int}(\mathrm{~S})$. hence from Remark
3.5 and by defn $3.3,(1,2) *-$ spcl $^{* *}(\mathrm{U}) \subseteq$
$(1,2)^{*} \operatorname{spcl}^{* *}(\tau 1,2-\operatorname{Int}(\mathrm{S}))$. So $\mathrm{S} \subseteq(1,2)^{*}-\mathrm{spcl}^{* *}(\tau 1,2-\operatorname{Int}(\mathrm{S}))$.
To prove the converse let $\mathrm{S} \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{~S}))$. substitute $\mathrm{U}=\tau 1,2-\operatorname{Int}(\mathrm{S})$. finally by defn 3.3. S in X is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$.

Theorem 3.7 In BTS X

$\tau 1,2-\mathrm{OS}(\mathrm{R}) \Rightarrow(1,2)^{*}-\mathrm{D}^{*} * \operatorname{spOS}(\mathrm{R})$
Proof.
Assume R be a $\tau 1,2 \mathrm{OS}$ in X let
$\mathrm{R}=\tau 1,2 \operatorname{Int}(\mathrm{R}) \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{R}))$. We have S is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$ in X.

Example 3.8

Reverse of theorem 3.7 is proved by this example
$S=\{1,3\}$ is a $(1,2)^{*}-D^{* *}$ sp-OS in X but not an $\tau 1,2-O S$ in X.

Definition 3.9 In BTS X

$(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spT} 1 / 2$ space for every $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$ is $\tau 1,2 \mathrm{OS}$

Remark 3.10 In

$(1,2) * \mathrm{~T} 1 / 2$ space, Every $(1,2)^{*} \operatorname{SpOS}$ is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$.

Remark 3.11

$(1,2) *-\operatorname{spcl}^{* *}(\mathrm{~A}) \subseteq \tau 1,2 \operatorname{spcl}(\mathrm{~A})$ for a subset A in X .
Theorem 3.12 In BTS X.
S is $(1,2)^{*}-D^{* *} \operatorname{spOS} \Rightarrow S$ is $(1,2)^{*}$-spOS .
Proof In X , Suppose S is $(1,2)^{*}-D^{* *}$ spOS and By defn 3.3 and. By Remark 3.11, $(1,2)^{*}-$ $\operatorname{spcl}^{* *}(\mathrm{U}) \subseteq \tau 1,2-\operatorname{spcl}(\mathrm{U})$. Hence $\mathrm{U} \subseteq \mathrm{S} \subseteq \tau 1,2-\operatorname{spcl}(\mathrm{U})$
$\Rightarrow \mathrm{S}$ is $(1,2)^{*}$-spOS.

Example 3.13

To prove the reverse of thm 3.12 is not true assume $G=\{1,2,3\}, \mathrm{t} 1=\{\mathrm{G}, \varphi,\{2\}\}$ and $\mathrm{t} 2=\{\mathrm{G}$, $\varphi\}$.

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2s (2024)
Then $\mathrm{S}=\{2,3\}$ is $(1,2)^{*}$ spOS but not a $(1,2)^{*}-\mathrm{D}^{* *}$ spOS.

Remark 3.14

In BTS X

Consider

$\mathrm{C} \subseteq \mathrm{X}, \mathrm{D} \subseteq \mathrm{X}$
we have $(1,2)^{*}-$ spcl $^{* *}(\mathrm{CUD})=(1,2)^{*}-$ spcl $^{* *}(\mathrm{C}) \cup(1,2)^{*}-\mathrm{spcl}{ }^{* *}(\mathrm{D})$.

Theorem 3.15

In BTS X Consider

$\mathrm{C} \subseteq \mathrm{X}, \mathrm{D} \subseteq \mathrm{X}$
We have
$(1,2) *-\mathrm{D} * * \mathrm{spOS}$
\Rightarrow CunionD is also a $(1,2)^{*}$-D**spOS .

Proof.

In BTS X

Suppose C and D are (1, 2)*-D**spOS in X. By defn \& Remark3.14, (1, 2)*-spcl**(S) \subseteq $(1,2)^{*}-$ spcl $^{* *}(\mathrm{~T})$
$\Rightarrow(1,2)^{*}-$ spcl $^{* *}(\mathrm{~S} \cup \mathrm{~T})$.
$\Rightarrow \mathrm{S} \cup \mathrm{T}$ is also $(1,2)^{*}-\mathrm{D}^{*} *$ spOS.

Example 3.16 In BTS X

Suppose C , D are $(1,2)^{*}$-D**spOS \Rightarrow
$\mathrm{C} \cap \mathrm{D}$ may not $(1,2)^{*}-\mathrm{D}^{* *}$ spOS .
Let $\mathrm{X}=\{1,2,3,4\}, \mathrm{t} 1=\{\mathrm{X}, \varphi,\{1,2\},\{1,2,3\},\{1,2,4\}\}, \mathrm{t} 2=\{\mathrm{X}, \varphi,\{1,2\},\{3,4\}\}$.
Then the set $A=\{1,2,3\}$ and $B=\{3,4\}$ are $(1,2)^{*}-D^{* *}$ spOS in X and $A \cap B=\{3\}$ is not $a(1,2)^{*}-$ D**spOS.

Theorem 3.17

In BTS X
Assume B be a $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}, \mathrm{~B} \subseteq \mathrm{C}$ and $\mathrm{B} \subseteq \mathrm{C} \subseteq\left((1,2)^{*}-\operatorname{spc} l^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{~A}))\right.$. we have C is a $(1,2)^{*}-\mathrm{D}^{* *}$ spOS

Proof

From statement B is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$ and $\mathrm{By} \mathrm{Thm} 3.16 \mathrm{~B} \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{~B}))$, Also B $\subseteq \mathrm{C}$

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2s (2024)
$\Rightarrow \tau 1,2-\operatorname{Int}(\mathrm{A}) \subseteq \tau 1,2-\operatorname{Int}(\mathrm{B})$. Hence, $(1,2)^{*}-\operatorname{spc}^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{~B})) \subseteq(1,2)^{*}-\operatorname{spc}^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{C})) . \mathrm{We}$ have $\mathrm{C} \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{~B})) \subseteq(1,2)^{*}-\operatorname{spcl}^{* *}(\tau 1,2 \operatorname{Int}(\mathrm{C}))$ it proves C is $(1,2)^{*}-$
$\mathrm{D}^{* *} \mathrm{spOS}$.

Remark 3.18

A Map

$\mathrm{h}: \mathrm{L} \rightarrow \mathrm{M}$ is $(1,2)^{*} \mathrm{gspContinuous}$
$\Rightarrow \mathrm{f}\left((1,2)^{*}-\mathrm{spcl}^{*} *(\mathrm{~A})\right) \subseteq 1,2-\mathrm{spCl}(\mathrm{f}(\mathrm{A}))$.

Theorem 3.19

In BTS X
Suppose a map $h: L \rightarrow M$ be $(1,2)^{*}$ gspContinuous and $(1,2)^{*}$ Open $\Rightarrow B$ is $(1,2)^{*}$ D**spOS
$\Rightarrow f(B)$ in Y is $(1,2)^{*}$-spOS .

Proof

From statement B is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$ in L. By defn 3.3 and. Remark 3.18, $\mathrm{h}\left((1,2)^{*}-\right.$
$\left.\operatorname{spCl}^{* *}(\mathrm{~V})\right) \subseteq \sigma 1,2-\mathrm{spCl}(\mathrm{h}(\mathrm{B}))$. We have $\mathrm{h}(\mathrm{B}) \subseteq \mathrm{h}\left((1,2)^{*}-\mathrm{spCl}^{* *}(\mathrm{~V})\right) \subseteq \sigma 1,2-\mathrm{spCl}(\mathrm{h}(\mathrm{V}))$. Also given h is $(1,2)^{*}$ Open Map $h(V)$ in M is $\sigma 1,2$-Open. it follows that $h(B)$ in M is $(1,2)^{*}$ spOS.
Theorem 3.20 in BTS X consider
A Map $h: L \rightarrow$ M be a $(1,2) *$ homeomorphism. If B in L is $(1,2)^{*}-D^{*} * \operatorname{spOS}$, then $h(B)$ is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$ in M .

Proof

B is $(1,2)^{*}-\mathrm{D}^{*} * \operatorname{spOS}$ in L.. By definition $3.3 \mathrm{~h}(\mathrm{~V}) \subseteq \mathrm{h}(\mathrm{B}) \subseteq \quad \mathrm{h}\left((1, \quad 2)^{*}-\mathrm{spCl} * *(\mathrm{~V})\right)$.
Also given h is $(1,2)$ *homeomorphism we have $\mathrm{h}\left((1,2)^{*}-\mathrm{spCl}^{*}(\mathrm{~V})\right) \subseteq$ $(1,2)^{*}-\mathrm{spCl}^{* *} \mathrm{~h}(\mathrm{~V})$). it follows $\mathrm{h}(\mathrm{V}) \subseteq \mathrm{h}(\mathrm{B}) \subseteq(1,2)^{*}-\mathrm{spCl}^{* *}(\mathrm{~h}(\mathrm{~V}))$. so that $\mathrm{h}(\mathrm{B})$ in M is $(1,2)$
*-D**spOS
Theorem 3.21
in BTS X Consider A Map h : L $\rightarrow \mathrm{M}$ if
h is $(1,2)^{*}$ homeomorphism. and B in M is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$
then $\exists \tau 1,2-\mathrm{OS}$ such that $\mathrm{h}^{-1}(\mathrm{~B})$ in M is $(1,2)^{*}-\mathrm{D}^{*} \operatorname{spOS}$
Proof
From statement B in L is $(1,2)^{*-} D^{* *} \operatorname{spOS} . B y$ defn 3.3 we have $h^{-1}(\mathrm{~V}) \subseteq h^{-1}(B) \subseteq h^{-1}((1$,

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2s (2024)
$2)^{*}-\mathrm{spCl}^{* *}(\mathrm{~V})$). and Since h is
$(1,2) *$ homeomorphism $\Rightarrow \mathrm{h}^{-1}\left((1,2)^{*}-\mathrm{spCl}^{*} *(\mathrm{~V})\right) \subseteq(1,2)^{*}-\mathrm{spCl}^{* *}\left(\mathrm{~h}^{-1}(\mathrm{~V})\right)$. hence we have $\mathrm{h}^{-1}(\mathrm{~V}) \subseteq \mathrm{h}^{-1}(\mathrm{~B}) \subseteq(1,2)^{*}-\mathrm{spCl}^{* *}\left(\mathrm{~h}^{-1}(\mathrm{~V})\right)$ thus $\mathrm{h}^{-1}(\mathrm{~B})$ is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$
4. $(1,2)^{*}$-D**spClosed and (1,2)*-D**spOpen Mappings

Definition 4. 1

A Map $\mathrm{h}: \mathrm{L} \rightarrow \mathrm{M}$ is $(1,2)^{*}-\mathrm{D}^{*} * \operatorname{spO}-$ map if $\mathrm{h}(\mathrm{V})$ in M is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS} \quad \forall \tau 1,2 \mathrm{OS} \mathrm{V}$ in M .

Theorem 4.2 A map

$\mathrm{h}: \mathrm{L} \rightarrow \mathrm{M}$ is $(1,2)^{*}$-Open map $\Rightarrow(1,2)^{*} \mathrm{D}^{* *}$ spOpen -Map
Proof.
From statement $h: L \rightarrow M$ is $(1,2)^{*}$-Open map and G is $\tau 1,2-O S$ in L. we have $h(G)$ in M is $\sigma 1,2$ Open. From Theorem $3.7, \mathrm{~h}(\mathrm{G})$ is
$(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOS}$ in M.. Henceforth h is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spOpen}$.

Example 4.3

Reverse ofTheorem 4.2 is not true. by this example
Let $\mathrm{L}=\mathrm{M}=\{\mathrm{a} 1,, \mathrm{~b} 1, \mathrm{c} 1\}, \tau 1=\{\mathrm{L}, \varphi,\{\mathrm{a} 1\}\}, \tau 2=\{\mathrm{L}, \varphi,\{\mathrm{a} 1, \mathrm{c} 1\}\} . \operatorname{Let} \sigma 1=\{\mathrm{L}, \varphi,\{\mathrm{a} 1\}\}, \sigma 2$ $=\{\mathrm{L}, \varphi,\{\mathrm{a} 1\},\{\mathrm{a} 1, \mathrm{~b} 1\}\}$.

Let $\mathrm{h}: \mathrm{L} \rightarrow \mathrm{M}$ is an identity map. we have h is
$(1,2)^{*}-\mathrm{D}^{* *}$ spOpen but h is not $(1,2)^{*}$-Open. map

Definition 4.4 The map

$$
\begin{gathered}
\mathrm{h}: \mathrm{L} \rightarrow \mathrm{M} \text { is }(1,2)^{*-} \mathrm{D}^{* *} \text { spClosed Map if For every } \tau 1,2-\mathrm{CS} \mathrm{~V} \text { in } \mathrm{L}, \mathrm{~h}(\mathrm{~V}) \text { in } \mathrm{M} \\
\text { is }(1,2)^{*-} \mathrm{D}^{* *} \text { spClosed }
\end{gathered}
$$

Remark 4.5

$\mathrm{h}: \mathrm{L} \rightarrow \mathrm{M}$ is $(1,2)^{*}$ Closed $\Rightarrow \mathrm{h}$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spClosed but conversely not true

Proof.

From Theorem 4.2. proof is clear

5. $(1,2)^{*}-\mathrm{D}^{* *}$ spContinuous Mappings

Definition 5.1 A map

$\mathrm{h}: \mathrm{K} \rightarrow \mathrm{L} \quad$ is called $(1,2)^{*}-\mathrm{D}^{* *}$ spContinuous $\quad \forall \sigma 1,2-\mathrm{OS}$ in L its inverse image of h is $(1,2)^{*}-D^{* *}$ spOpen in K..

ISSN: 1074-133X
Vol 31 No. 2s (2024)

Theorem 5.2

A map

$$
\mathrm{h}: \mathrm{K} \rightarrow \mathrm{~L}
$$

h is $(1,2)^{*}$ Continuous $\Rightarrow h$ is $(1,2)^{*}-D^{* *}$ spContinuous.

Proof

Assume R as a $\sigma 1,2 \mathrm{OS}$ in L . Also h is $(1,2)^{*}$ Continuous, $\mathrm{h}^{-1}(\mathrm{R})$ is $\tau 1,2 \mathrm{Open}$ in X . From
Theorem 3.7, $\mathrm{h}^{-1}(\mathrm{R})$ is $(1,2)^{*}-\mathrm{D} * *$ spOpen in X . Thus h is $(1,2)^{*}-\mathrm{D} * *$ spContinuous.

Example 5.3 This example proves reverse of thm 5.2 Consider A map

$\mathrm{h}: \mathrm{K} \rightarrow \mathrm{L}$ let the two sets $\mathrm{L}=\mathrm{K}=\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3\}, \tau 1=\{\mathrm{L}, \varphi,\{\mathrm{a} 1\}\}, \tau 2=\{\mathrm{L}, \varphi,\{\mathrm{a} 1\},\{\mathrm{a} 1$, $\mathrm{a} 2\}\}, \sigma 1=\{\mathrm{K}, \varphi,\{\mathrm{a} 1\}\}$ and $\sigma 2=\{\mathrm{K}, \varphi,\{\mathrm{a} 1, \mathrm{a} 3\}\}$. Suppose $\mathrm{h}: \mathrm{K} \rightarrow \mathrm{L}$ be the identity map we have h is $(1,2)^{*}-\mathrm{D}^{* *}$ spContinuous but h is not $(1,2)^{*}$ Continuous.

Remark 5.4

In $(1,2)^{*}-\mathrm{D}^{* *}$ sp-T1/2 space, every $(1,2)^{*}-\mathrm{D}^{* *}$ spContinuous map is $(1,2) *$ Continuous.

Theorem 5.5

$\mathrm{h}: \mathrm{K} \rightarrow \mathrm{L}$ is a map. we have the below implications are true.

- $\quad 1 \mathrm{~h}$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spContinuous.
- 2. For each $\sigma 1,2 \mathrm{CS}$ in L its inverse image is (1, 2)*-D**spClosed in K .

Proof.

(1) \Rightarrow (2) Let R is $\sigma 1,2 \mathrm{CS}$ in L . Then $\mathrm{L}-\mathrm{R}$ is $\sigma 1,2 \mathrm{Open}$ in L . Also h is (1, 2)*- D^{*} *spontinuous, $\mathrm{f}^{-1}(\mathrm{~L}-\mathrm{R})$ is $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spOpen in K . so that we have $\mathrm{K} / \mathrm{f}^{-1}(\mathrm{R})$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen in $\mathrm{K} \Rightarrow$ $\mathrm{f}^{-1}(\mathrm{R})$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spClosed in K .
(ii) \Rightarrow (i) Let S is a $\sigma 1,2 \mathrm{OS}$ in L . Then L-S is $\sigma 1,2 \mathrm{Open}$ in $\mathrm{L} . \Rightarrow \mathrm{f}^{-1}(\mathrm{~L} \backslash \mathrm{~S})$ is $(1,2)^{*}$ $\mathrm{D}^{*} *$ spClosed in $\mathrm{K}, \Rightarrow \mathrm{L} \backslash \mathrm{f}^{-1}(\mathrm{~S})$ is $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spClosed in L. So that $\mathrm{h}^{-1}(\mathrm{~S})$ is $(1,2)^{*}-$ $\mathrm{D}^{* *}$ spOpen in L. Hence h is $(1,2)^{*}-\mathrm{D}^{* *}$ spContinous.

Theorem 5.6

Assume $h: K \rightarrow L$ is a map
If h is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spContinuous~Map,~Then~} \mathrm{~h}(\tau 1,2-\mathrm{D} * * \operatorname{spcl}(\mathrm{~B})) \subseteq \sigma 1,2-\operatorname{spcl}(\mathrm{h}(\mathrm{B}))$.

Proof.

Given $\quad h(B) \subseteq \sigma 1,2-\operatorname{spCl}(h(B)), \Rightarrow B \subseteq h^{-1}(\sigma 1,2-\operatorname{spCl}((B))$.
Then $\sigma 1,2-\mathrm{spCl}(\mathrm{h}(\mathrm{B}))$ is a $\sigma 1,2 \mathrm{CS}$ in L and

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2s (2024)
h is $(1,2)^{*}-\mathrm{D}^{* *}$ spContinuous map $\Rightarrow \mathrm{h}^{-1}\left(\sigma 1,2-\operatorname{spCl}(\mathrm{h}(\mathrm{B}))\right.$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spClosed in L. Hence $\tau 1,2-D^{* *} \operatorname{spcl}(\mathrm{~B}) \subseteq \mathrm{h}^{-1}\left(\sigma 1,2-\operatorname{scl}\left(\mathrm{f}(\mathrm{B})\right.\right.$. it proves $\mathrm{h}\left(\tau 1,2-\mathrm{D}^{* *} \operatorname{spcl}(\mathrm{~B})\right) \subseteq \sigma 1,2-\operatorname{spcl}(\mathrm{h}(\mathrm{B}))$.
$(1,2) *-D^{* *}$ spContinuous and $(1,2) *-D^{* *}$ spIrresolute Mappings Definition 6.1 Consider a $\operatorname{map} h: K \rightarrow L$
$\mathrm{H} \quad$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spirresolute if for every $(1,2)^{*}-\mathrm{D} * * \operatorname{spOS}$ of L its inverse image of h is $(1,2)^{*}-D^{* *}$ spOpen in K

Remark 6.2

Consider a map $\mathrm{h}: \mathrm{K} \rightarrow \mathrm{L}$
For every $(1,2)^{*-} \mathrm{D}^{* *} \operatorname{spCS}$ of L by defn of $6.1(1,2)^{*}-\mathrm{D}^{* *}$ spClosed in K..

Theorem 6.3

Consider a map

Proof.

$\mathrm{h}: \mathrm{K} \rightarrow \mathrm{L}$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spirresolute implies h is $(1,2)^{*}-\mathrm{D}^{* *}$ spContinuous
Suppose R is a $\tau 1,2 \mathrm{OS}$ in K . Also h is $(1,2)^{*}-\mathrm{D}^{* *}$ spirresolute proves $\mathrm{h}^{-1}(\mathrm{R})$ is $(1,2)^{*}$ $\mathrm{D}^{*} *$ spOpen in K . Thus h is $(1,2)^{*}-\mathrm{D}^{*} *$ spContinuous.

Example 6.4

Reverse part of the Theorem 6.3 Can be proved by the following example to show it is not true

Let $X=Y=\{a 1, a 2, a 3\}, \tau 1=\{X, \varphi,\{a 1\},\{a 2\},\{a 1, a 2\}\}, \tau 2=\{X, \varphi,\{a 1, a 2\}\}, \sigma 1=\{X$, $\varphi,\{\mathrm{a} 1\}\}, \sigma 2=\{\mathrm{X}, \varphi,\{\mathrm{a} 1\},\{\mathrm{a} 1, \mathrm{a} 2\}\} . \quad$ Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Hence f is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{sp}-C o n t i n u o u s ~ b u t ~ \mathrm{f}$ is not $(1,2)^{*}-\mathrm{D}^{* *}$ spirresolute.

Theorem 6.5

Consider a map

$h: K \rightarrow L$
$\mathrm{h} \quad$ is $(1,2)^{*}$ Continuous and L is $(1,2)^{*}-\mathrm{D}^{* *}$ sp-T1/2-space implies h is $(1,2)^{*}-\mathrm{D}^{* *}$ spirresolute.

Proof
Assume $\quad \mathrm{B}$ be $(1,2)^{*}-\mathrm{D}^{* *}$ spOS in L. Also L is $(1,2)^{*}-\mathrm{D}^{* *}$ sp-T1/2-space, implies B is an $\sigma 1,2 \mathrm{OS}$ in L and also h is $(1,2)^{*}$ Continuous proves $h^{-1}(B)$ is $(1,2)^{*}-\mathrm{D}^{* *} \mathrm{spOS}$
in K . Thus h is $(1,2)^{*}-\mathrm{D}^{* *}$ spirresolute.

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2s (2024)

Theorem 6.6

Consider a map

$h: K \rightarrow L$
h is $(1,2)^{*}-\mathrm{D} * *$ spirresolute and $\mathrm{k}: \mathrm{L} \rightarrow \mathrm{M}$ be an $(1,2)^{*}-\mathrm{D} *$ spirresolute maps. Then $\mathrm{hok}: \mathrm{K} \rightarrow$ M is $(1,2)^{*}-\mathrm{D}^{* *}$ spirresolute.

Proof.

Suppose V be a $(1,2)^{*}-\mathrm{D} * *$ spOS in M . so $\mathrm{h}^{-1}(\mathrm{~V})$ is $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spOpen in L implies $\mathrm{h}^{-1}\left(\mathrm{k}^{-1}(\mathrm{~V})\right)$ is $(1,2)^{*-} \mathrm{D}^{* *}$ spOpen in K . Thus (hok) ${ }^{-1}(\mathrm{~V})$ is $(1,2)^{*}-\mathrm{D} * *$ spOpen in K. Hence hok is $(1,2)^{*}-\mathrm{D} *$ spirresolute.

7. $(1,2) *-D * *$ spConnected Sets

Definition 7.1

A space X is $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spdisConnected if it is the Union of two disjoint non empty (1,2)*D**spOS otherwise it is said to be $(1,2) *-\mathrm{D}^{* *}$ spConnected

Theorem 7.2

IN BTS X, the following statements are true.

- $\quad \mathrm{X}$ is $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spConnected.
- $\quad \varphi, \mathrm{X}$ are the subsets which are both $(1,2)^{*}-\mathrm{D} * *$ spOpen and $(1,2)^{*}-\mathrm{D} * *$ spClosed .

Proof.

$\mathrm{i} \Rightarrow \mathrm{ii}$ Let $\mathrm{U} \subseteq \mathrm{X}$ which is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen \& $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spClosed.
Then X / U is also $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen $\&(1,2)^{*}-\mathrm{D}^{* *}$ spClosed by defn of 7.1 .
U and X / U implies either
$\mathrm{U}=\varphi$ or $\mathrm{X} / \mathrm{U}=\varphi$.
ii $\Rightarrow \mathrm{i}$ Suppose A, B in X such that $\mathrm{AUB}=\mathrm{X}$ where A, B not equal to empty
$(1,2)^{*}$-D**spOS .
So $\mathrm{A}-\mathrm{X} / \mathrm{B}$ is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spCS} \Rightarrow \mathrm{~A}$ is(1,2)*-D**spO X and $(1,2)^{*}$ -
$\mathrm{D}^{* *} \mathrm{spCS} \subseteq \mathrm{X}$
as we assumed $\mathrm{A}=\varphi$ or X proves X is $(1,2)^{*}-\mathrm{D}^{* *}$ spConnected.
Theorem 6.3 suppose a mapping $\mathrm{j}: \mathrm{K} \rightarrow \mathrm{L}$ is
i) $(1,2)^{*}-\mathrm{D} * *$ spContinuous and onto, K is $(1,2)^{*}-\mathrm{D} * *$ spConnected
$\Rightarrow \mathrm{L}$ is $(1,2)^{*}$ Connected.

Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2s (2024)
(ii) If $\mathrm{j}: \mathrm{K} \rightarrow \mathrm{L}$ is $(1,2)^{*}-\mathrm{D}^{*} *$ spirresolute surjection map and K is $(1,2)^{*}-\mathrm{D}^{* *}$ spConnected $\Rightarrow \mathrm{L}$ is $(1,2)^{*}-\mathrm{D}^{* *}$ spConnected.

Proof.

Assume L is not $(1,2)^{*}$ Connected. We have $\mathrm{L}=\mathrm{C} \cup \mathrm{D}$ is not empty where C and D are disjoint $\sigma 1,2-\mathrm{OS}$ in L .

Also j is $(1,2)^{*}-D^{* *}$ spContinuous, onto $K=f^{-1}(C) \cup f^{-1}(D)$ where
$\mathrm{f}^{-1}(\mathrm{C})$ and $\mathrm{f}^{-1}(\mathrm{D})$ are disjoint but not empty $(1,2)^{*}-\mathrm{D}^{*} * \operatorname{spOS}$ contradicts X is $(1,2)^{*_{-}}$ $\mathrm{D}^{* *}$ spConnected. So that L is $(1,2)^{*}$ Connected.
ii proof obvious from 7.1.

8. $(1,2) *-D^{* *}$ spHomeomorphisms

Definition 8.1 $f: X \rightarrow Y$ is a bijection map called (1,2)*-D**sphomeomorphism if
the mapping is $(1,2)^{*}-\mathrm{D}^{*}$ spContinuous,$(1,2)^{*}-\mathrm{D}^{* *}$ spOpen.

Remark 8.2

Every $(1,2)^{*}$ homeomorphism is $(1,2)^{*}-\mathrm{D}^{*}$ sphomeomorphism but conversely not true
Theorem 8.3 consider
The mapping $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$, is $1-1$ and onto we have the following statements are true.

- (i) $h^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$ is $(1,2)^{*-} \mathrm{D}^{* *}$ spContinuous.
- (ii)The mapping is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen .
- (iii)the mapping is $(1,2)^{*} \mathrm{D}^{* *}$ spClosed .

Proof.

- (i) \Rightarrow (ii) Let K be any $\tau 1,2-O S$ in X. Since f^{-1} is $(1,2)^{*}-D^{* *} \operatorname{spContinuous,~}$
$\mathrm{f}(\mathrm{K})$ in Y is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen. Thus the mapping is $(1,2)^{*} \mathrm{D}^{* *} \operatorname{spOpen}$.
- (ii)Implies iii In X
suppose $\quad F$ is $\tau 12 C S$, Then X / F is $\tau 12 \mathrm{OS}$
and Also the mapping is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen ,
$\mathrm{f}(\mathrm{X} / \mathrm{F})$ in Y is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen in $\mathrm{Y} .$. But in $\mathrm{Y}, \mathrm{f}(\mathrm{X} / \mathrm{F})=\mathrm{Y} / \mathrm{f}(\mathrm{F})$
where $\mathrm{f}(\mathrm{F})$ is $(1,2)^{*}-\mathrm{D}^{*} *$ spClosed. Thus the mapping is $(1,2)^{*}-\mathrm{D}^{*} * \operatorname{spClosed}$ Map (iii) implies (i)

Suppose R is $\tau 1,2-\mathrm{CS}$ in X , We have $\mathrm{f}(\mathrm{R})$ in Y is $(1,2)^{*}-\mathrm{D}^{* *}$ spClosed. Also the mapping f is $(1,2)^{*}-\mathrm{D}^{* *}$ spClosed its inverse mapping is $(1,2)^{*}-\mathrm{D}^{* *} \operatorname{spContinuous.~}$

Theorem 8.4

Suppose the mapping f is $1-1$, onto and $(1,2)^{*}-\mathrm{D} * *$ spContinuous Then the implications are true. To prove the mapping f is

- i) $(1,2)^{*}$-D**spOpen .
- ii) $(1,2)^{*}$-D**sphomeomorphism .
- iii)(1,2$)^{*}-\mathrm{D}^{* *}$ spClosed

Proof

Assume i) f is $(1,2)^{*}-\mathrm{D}^{* *}$ spOpen also the mapping is $1-1$ and onto,$(1,2)^{*}-\mathrm{D} * *$ spContinuous From the definition8.1, the mapping is $(1,2)^{*}-\mathrm{D}^{* *}$ sphomeomorphism. (ii) is proved. assume (ii) the mapping is $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spOpen , $1-1$ and onto it is $(1,2)^{*}$ $\mathrm{D}^{* *}$ spClosed from thm 7.8 . (iii) proved
assume iii f is $(1,2)^{*}$ - $\mathrm{D}^{* *}$ spClosed and bijective. F is (1, 2)*-D**spOpen map. By Theorem 8.3 (i), proved

REFERENCES

[1] Bhattacharya, P. and Lahiri, B. K., Semi-Generalized closed sets in a topology, Indian J. Math., 1987, 29(3), 375.
[2] Hdeib, H.Z., -closed mappings, Rev. Colomb. Mat., 1982, 16(3-4) 65-67.
[3] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
[4] Lellis Thivagar, M., Ravi, O., Joseph Israel, M. and Kayathri, K. Decompositions of (1,2)*-rg-continuous maps in bitopological spaces, 2009, 6(1), 13-21.
[5] Levine, N., Generalized closed sets in Topology, Rend. Circ. Mat. Paleroma, 1970, 19, 89-96.
[6] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of (1, 2)*-continuity and (1,2)*--continuity, Miskolc Mathematical Notes., 10(2) (2009), 163-171.
[7] Ravi, O. and Lellis Thivagar, M.: A bitopological (1,2)*-semi- generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1) (2006), 79-88.
[8] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11) (2010), 543-557.

