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1. Introduction

Fourier Series in orthogonal functions e™ and other orthogonal polynomials like Hermite
polynomials, Jacobi polynomials, etc., has a widespread application in physical sciences. Random
Fourier series(RFS) in orthogonal functions e™ is important in signal processing. For the first time,
the application of RFS in Hermite polynomial is found in image encryption and decryption in the work
of Liu and Liu [11] in 2007, who expected its more application in general signal and image processing.
The RFS they used is an RFT with random coefficients chosen from the unit circle in C randomly.
This motivated us to explore the random Fourier - Hermite series(RFHS) with different random
coefficients. Since stable processes are a better model for white noise, the random coefficients D, (w)
choosen in this article are Fourier - Hermite coefficients(FHC) of a symmetric stable process(SSP)

2

defined as ffoooHn(u)U(u, b) with weights U(u,b) = e%(1+ lu?, b <%. We establish the
existence of these random variables and demonstrate their dependence. It is proved that the random
series Yp-o dx Dy (w)Hy(u) in Hermite polynomials H, (u) convergence in mean to the stochastic
integral ffomg(u)U(u,b)dX(u,w) if the scalars d, are FHC of a function g in the space

L2 (R), defined as dy: =12 [© g(we™ Hy (w)du.

2. Preliminaries
Consider ¢, (u), n € Ny, Ny:={0,1,2,...} to be a sequence of functions orthonormal concerning a
measure F(u) thatis,
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b
Jy W (W dF (W) = Spim,
where, &,,, is the Kronecher’s delta function and let

gW) ~ Y=o andn(uw) (2.1)

be the formal expansion of an arbitrary function in terms of this sequence where a,:=
f: g()o, (v)dF (v). Many researchers have exhaustively explored the convergence characteristics

of series of the form (2.1) for a specific set of functions ¢,,(v). Specifically, the exploration is on the
following question:

For what values of p, 1 < p < oo, does the existence of the integral f: lg(w)|PdF (u) imply,
. b
lim [ ") = Xi-o arpi(w)|PdF (u) = 0? (2.2)
The sequence ¢,,(u) forms a basis for the space of these functions when this equation holds for every
g(w) such that f: |g(W)|PdF (u) exists [25]. If dF(u) = W (uw)du, W(u) is the weight function

1
then the sequence ¢, (u)(W (w))z is orthonormal on the classical sense and one led to the formal
expansion

1
g) ~ Xuzo bpdpn(W(W(w))z,
where b,: = f; g) o, (v)(W (v))zdv. The above question can be read as: for what values of p, 1 <
p < oo, does the measurability of g(u) and the relation f: lg(w)|Pdu < o (i.e., g € LP(R)) imply,
. b 1
lim [ '1g(w) = Xk=o b W) (W (W))2[Pdu = 0?
M. Riesz [19]was the first to look into this kind of issue, focussing on the case of trigonometric

functions. Later, Schauder [21], Kober [9], Caton and Hille [3] looked at other sets of functions.
In this article the sequence of functions ¢, (u) are considered to be the orthogonal Hermite

polynomials H,(u) with weight e~*" satisfy

1% (W Hy (e~ du = VT221! Sy, 2.3)
The n'™ degree Hermite polynomials defined as H,(u) = (—1)"e*’ (%)”{e‘“z} [23]. The
normalized Hermite functions of degree n € N, [4, 5, 6, 16] defined as,

2

U (W): = T H,(We T,n > 0,u € R, 2.4)
where 7, = 2;\/_ meet the orthonormal condition

"nWr

S bm WP (W dut = Sy (2.5)

These ¥, (u) forma basis in LP(R), p = 2 [24, 13].
Pollard [18] in 1948 showed that, if g(u)e_Tu2 € L2(R), then
[ lsn@Pe™ du < € [ |gw)|?e™ du,
where, s, isthe nt"* partial sum of the Hermite polynomial series Y5, dyxHy(w) for
di: =1 [, g H We ™,
k € N,. This suggests that
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Il s,—gll,—0 (2.6)
as n — oo with |I.|l, denoting the usual L? norm on R.
This conclusion was extended to a larger class of functions LP (R), g < p < 4 by Askey and

2

Wainger [1] in 1965. For measurable function g such that g(u)e% € LP(R), g < p < 4, they
proved the inequality

2 2

I sp(we z l,<Cllg(we 2 llp,
where s, = Yr-o axr(w) and a; = ffooof(v)lpk(v)dv. This implies the mean Convergence
g () — Xk=0 arr(w) l,— 0 (2.7)

as n — oo where Il g ll,={J .. |g|pdu}%.
In 1970, Muckenhoupt [14] generalized the Askey and Wainger [1] result for p € [1, o). He
proved inequalities of the form
I's,(W)U) llp=C Il g)W (u) llp,
where U(u), W (u) are suitable weight functions. It lead to prove
I (sn(w) —gW)HU@) ll,~ 0,
2

forevery g € ngu) e, gwW@) e LlP. If Ulw) =W(u) = e%, he obtained the result of Askey
2 2

and Wainger [1] for £ <p < 4.1f U(u,b) = e (1+ [u])? and W (w, B) = ez (1 + [u])? for
different suitable numbers b and B such that b < B, he obtained this result for 1 < p S% and p >
4. U(u,b) and W (u, B) are dense in LP(R)[14].
The random series considered in this article is expressed as
k=0 Ak Ry (w)H (u) (2.8)
where d,, represents scalars and R, denotes random variables.

The work of Nayak et al. [15] and Pattanayak and Sahoo[17] are followed to choose the
random variables R, (w), k € N, and to study the convergence of the random series (2.8). Suitable
real numbers b and B are chosen such that b < B, which implies,

I (sn(w) — g(W))U(w, b) 2= 0,
by the result of Muckenhoupt (Theorem 6, [14]). In the first step, the existence of the stochastic
integral

2o 9W (u, BYdX (1, @)
is established for g € L%,V(u,B)(lR%). Since W (u, B) is continuous for —% < B, H,(wWW(u,B) €

L?(R) and the integral [* H, (W)W (u, B)dX(u, ) exists. This integral is a random variable.

Denote it as Dy (w). Choose these D, (w) as the random coefficients in the series (2.8). The
convergence of the series (2.8) in mean if the scalars

di:=12 [ gwe™ He(w)du.
are the FHC of a function g in the weighted L%,,(u,B) (R) space with weights W (u, B) of the form

2

ez (1+ |u|)B forasuitable B. The stochastic integral
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—p2
IZ gwv)ez (1+ [v))PdX(v, w), (2.9)
IS seen to be the sum function of this series.
Throughout the sections 3 and 4 below, X (u, w) is considered to be the SSP of index u = 2

and the weight functions U(u,b) = exp(—;u?)(1+ [ul)?, W (u,B) = exp(—5u)(1 + [u])®
where b <% and B > —% such that b < B.

3. Existence of the stochastic integral
The following result is required to prove the existence of the integral ffooo gWW(u, B)dX (u, w).

Lemma 1: [17] Suppose X (u, w) isofindex u, u € (1,2] and g € LP[a,b], p = u, s € R then

E(|f, g)dX(w )]) < —— [ |g@)|“du+= [ |

4
m(u—1)

b
1—exp(=Is|* [, 1gw)|*du) ds

s2

Theorem 2: If X(u,w) is of index 2, and g(u)EL%/V(u,B)(R)’ then the integral
f_mmg(u)W(u,B)dX(u, w) exists in mean .

Proof: We are aware that C.(R) is dense in L?(R). So for g € L%/V(u,B) there exist a sequence of
functions {h,} in C.(R) such that (g(w)W(u,B)—hy) € L*(R) and |l gW (u,B) — hy ll,
approachesto 0 as k — 0.

Consider two functions h,, and h,, from this sequence {h;}.

Without loss of generality assume that the compact support of h,, and h,, can bein [a, b] and [c, d]
respectively. So h,,, and h,, can be considered to be in L?[a, b] and L?[c,d].

Let [p, q] be the smallest closed sub-interval of R which contains [a, b] U [c, d].

Now both h,, and h,, can be considered to be in L?[p, q]. Since h,, and h,, can be continuous, the
stochastic integrals

[ ()X (u, ) = [} A (W) dX (1, )
= [ hm(WdX (u, w)

and
[ (WX (u, @) = [2 B (W) dX (1, w)
= 2 hn(WdX (u, @)

exists in the sense of mean[17].
Denote

Y (w): = f: hop (W) dX (u, )
and

Y, (w): = f; R (W) dX (u, w).
Now applying Lemma 1 for u = 2, we get

EYp(w) = Yim(w)]
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= E(| [} hn(w)dX (w, ) = [ hn (W) dX (w, )])
= E(| fp" (hn(W) = hin (1))dX (u, w)|)
<2 [T 1) — hnPdu + 2

4 ~00 2
< = [ 1hn(w) = by (W) [2du + =

1—exp(=|s|? [T |hp (W) —hm W) |2d
I 2(u) W 2du) s
S
1-exp(—c|s|? [, 1hn (W) ~hmw)|>du)
f|S|>1 s2

ds.

The integrand in the 2"¢ integral is dominated by the integrable function iz over (—oo,—1] and
S

[1,00). Since || h,(w) — hy, (W) ll,= ffooo |hy, (W) — hyp(w)|?du approaches 0 as m,n — oo, the
2nd integral converges to 0 by DCT and we obtained
lim E|Y,(w) —Y,(w)| =0.
m,n—-oo

Y, (w) is a Cauchy sequence in the sense of mean. Hence there exists a random variable Y (w) such
that E|Y,(w) — Y (w)| = 0. This Y(w) is independent of the choice of the sequence of functions h,,.
In fact, if another sequence f,, in Cc(RR) convergesto g i.e.

lim [ () — g@W (w,B)]’du=0 as n - oo.
Then

lim [ 1) = by (W) |*du

= lim [T, 1fn(0) = gGOW (. B) + g@W (u, B) = hy (w) P du

= lim [ 1fu() = g@OW (w, B)Pdu + lim [ |gQOW (u, B) = hn () *du
which converges to 0. Thus we obtain

lim E(] Lo fr@dX (w, ) = Y (w)])

= im E(| [°, fu()dX (w,w) = [ k) dX (u, @) + [ o, hy(WdX (1, w) =
Y(w))

= im E(| [, fu(WdX (u, ) = [°, hp(WdX (u, w)]) +
lim E(] 2 hn(wydX (u, ) = Y (@)])

=0 by Lemma 1.
Hence the stochastic integral f_mm h,(w)dX (u, w) converges uniquely to Y (w), in the sense of mean.
Define this random variable Y (w) to be the stochastic integral, Y (w) = f_oooo gW(u, B)dX (u, w).

This theorem implies the existence of the integral ffooo Hi, (W)W (u,B)dX(u,w) for B > _71

The random variables Dy (w) = f_oooon(u)W(u,B)dX(u, w) are found to be dependent. It is

established by showing the fact that the characteristic function(CF) of (Dy(w) + D;(w)) is not equal
to the product of CF of D, (w) and the CF D,;(w). The CF of D, (w) is computed in the following
theorem.
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Theorem 3 The CF of fjooog(u)W(u,B)dX(u, w) is exp(—c|s|? fjooo |lg(W)W (u, B)|%du) for
g(u) € L%/V(u,B)(R)'

Proof: As we know Cc(R) isdense in L?(R), there exist a sequence of functions {h,} in Cc(R) for
g € L*(R) such that || h, — gW (u,B) ll,— 0. Further it is known that the stochastic integrals

J2 hedX(w ) and [° g)W(u, B)dX(uw, ) exists by Theorem 2. Denote these random
variables as Vi = [ h,(w)dX(u, ) and Y:= [ gw)W (u, B)dX (w, w) in mean.

Y, converges to Y in mean = Y, converges to Y in law = distribution of Y, weakly
converges to distribution of Y[12].

Now the CF of Y,: = exp(—c|s|? [ |he(w)|?duw).

For 1 < p < oo, itis true that ([20], page no. 75)

L2 e @2 = |g)|?|du < 4R [ |hi(w) — g(w)|?du - 0,
and since W (u, B) are dense in L?(R), this implies

ffooo |h, (W) |?du approaches to ffooo lgW)W (u, B)|*du

=
exp(—c|s|2f_°°oo|hk(u)|2du) approaches to exp(—c|s|? ffooo|g(u)W(u,B)|2du).
LHS is the CF of Y}, which converges to the continuous function on the RSH.

By continuity theorem([12], Theorem 1.3.7, page no. 15), RHS is the CF of the limiting
function of Y., which is Y . This proves that the CF of fjomg(u)W(u,B)dX(u, w) is
exp(—c|s|2f_°°oo lg)W (u,B)|?du) , implies the pointwise convergence of Cy(s) to
exp(—cls|? [~ |gw)W (u, B)|?du) as k - w[2].

The following theorem proves that the random variables D,,(w) are dependent.

Theorem 4 The random variables D, (w) = ffooo H, (W)W (u,B)dX(u, w) are dependent.

Proof: By Theorem 3, the CF of D, (w) is
exp(—cls|? [, |Hy(COW (u, B)|*du).
Hence, the CF of (D,(w) + D, (w)) is
exp(—c|s|? [_ [Ha(WW (u, B) + Hp )W (u, B)|du),
whereas the product of CF of D,,(w) and the CF of D,,(w) is
exp(—c|s|® [, [H,WW (u, B)|*dwexp(~cls|* [, |Hn(WW (w, B)|*dw)
= exp(—cls|? [, (IHy (W (u, B)|? + |Hp (X)W (u, B)|?)dw).
Since CF of (D, (w) + D,,(w)) is not equal to the product of CF of D,(w) and CF of D,,(w),
D, (w) are dependent random variables.
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4. Convergence of random Fourier - Hermite series };-o dxDx(w)Hy (1)
To prove the convergence of RFHS, we employ the following inequality.

Lemmab5 Let g be any function in L2 wap) (R) then
E(1 2., g)W (w, B)dX (u, )])

1—exp(—|s|? [ o, 19 W (u,B)|?du)
<2 19w B)Pdu+2f

s2

ds.

Its proof requires the following two results.

Lemma 6 [22] A stable random variable X (u, w) always satisfies the inequality E|X|* < oo for all
ieO,p), 0<u<2.

Lemma 7 [7] If ¥ is the CF of a random variable X and F(X) is the distribution function of X
then, E|X| = [ |X|dF(X) =2 % =2 s,

oo 52

Proof of Lemma 5: We know that, by Theorem 2, ffooog(u)W(u, B)dX(u, w) exists in mean.
Now using Lemma 6 and 7, we have
E(| [~ g)W (u, BYdX (u, )]) =

_2 1- Re‘}’(s) 1- Re‘P(s)
mY|s|s1 ds + f|s|>1

o 1- Re‘P(s)d

ds.

Here

f 1- Re‘P(s)d _ fl 1—exp(—|s|? f_ g (W)W (u,B)|?>du) ds
|s|=1 s2

1 Isl? f lg(W)W (u,B)|?du
<[, =

= Zfo ds f_oo lg(W)W (u, B)|?du

=2/ |gwW (u, B)|*du
Hence we have

E(1[° g)W (u, B)dX (u, »)])

<20 lg@W@B)Pdu+2f

ds (v 1 —e™ < uforu > 0)

1—exp(-|s|? [ o |9 W (1,B) |2 du)
s2

ds.

The following theorem establishes the convergence of the series Y. d, Dy (w)H;(u), to the
integral

IZ g, v)Uw,b)dX (v, w), (4.1)
in the sense of mean, if
di:=1¢ [* g)H(v)e™ dv (4.2)
are the FHC of g € L3, ww,p) (R). Here Dy (w) are defined as,
Di(w):= f_oo H, (W)W (v, B)dX (v, w). (4.3)
702
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Its proof requires the following lemma, which is the statement of Theorem 1 and Theorem 6 of
Muckenhoupt [14] for p = 2.

Lemma 8 [14] Let g € Liy(,, 5 (R) then,
Io Isa(g, WU, D)Pdu<c [ |g)W (u, B)|*du
and
I (sp,(w) —gw)U(u, b) ll,— 0. (4.4)

Theorem 9 For all measurable functions g € L,Z,V(u’B) (R) , the series Y.p—y diDy(w)H, ()
converges in mean to the integral (4.1).

Proof: For g € L%,V(u,B)(IR), let the Fourier - Hermite series expansion of g be > _ diH,(uw) [1].
Let its partial sum be s, (uw):= Yr_, diHi(w) . Let S, (u, w) = Xr_y diDr(w)H, (w) be the nth
partial sum of the RFHS }.7°_, di Dy (w)H ().
Now,
Sp(u, w) = Xi-p di Dy (w)H (u)
= -0 di(J ", He (W)U (v, b)dX (v, w)) Hy ()
= J7, koo diHi (V) H (W)U (v, b)dX (v, )
Since, the series Y%_, diH,(x)Hy(v) exists, let s, (u,v) be the n* partial sum of the series
Y=o diH (W) Hy (v). This implies,
Sa(ww) = [ s, (w,v)U(v, b)dX (v, w).
By Lemma 2, we know that, [~ g(u, v)U(v,b)dX (v, w) exists in mean.
Now,
E(|Sn(w, @) = [, 9w, v)U (v, b)dX (v, w)|)
=E( [~ sa(w,v)U(v, b)dX (v, w) — [~ g(u,v)U (v, b)dX (v, )|)
= E(J”, (sn(u,v)U(v, b) — g(u,v)U (v, b)dX (v, w)])
< 2 [, (sn(w,v) — 9w, v))U (v, b) |2dv

T v —00

2
+ ; f|s|>1
Lemma 8 and the dominance of slz lead both of these integrals to tend to zero. Thus, the theorem is
established.

1 - exp(=|s|? [, [(sn(u, v)—g(u, v)U(, b)|*dv)
s2

ds
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