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Abstract:  

Hyperkalemia, a critical concern, is the primary cause of sudden cardiac deaths in patients with 

chronic kidney disease (CKD). Traditionally, blood tests serve as the gold standard for 

hyperkalemia detection. Electrocardiogram (ECG) signals offer a non-invasive means to assess 

cardiac activity and identify hyperkalemia in CKD patients. Hyperkalemia often presents ECG 

changes such as elevated T-waves, changes in P-wave morphology, prolonged PR intervals, 

widened QRS complexes, and, in severe instances, the onset of ventricular arrhythmias and 

sinusoidal waves. This study proposes a method for the classification of ECG signals for 

hyperkalaemia using a feature set extracted from electrocardiogram (ECG) signals. Our 

approach integrates morphological attributes, including P-wave amplitude, T-wave amplitude, 

QRS interval, PR interval, and ST depression, with spectral attributes such as total power, 

spectral entropy, variance, skewness, and singular values extracted from Intrinsic Mode 

Functions obtained through empirical mode decomposition., aiming to capture both structural 

and frequency domain information inherent in ECG signals. Morphological features provide 

insights into cardiac abnormalities associated with hyperkalemia and spectral features 

extracted from IMF, offer valuable information regarding the frequency distribution and 

complexity of ECG signals. The performance of three classifiers—Kernel Naïve Bayes (KNB), 

AdaBoost Ensemble Classifier, and Artificial Neural Networks (ANN) is assessed using the 

extracted features. Among these classifiers, AdaBoost Ensemble Classifier demonstrated the 

most favorable classification results with sensitivity of 97.7, specificity of 98.84 and accuracy 

of 98.3%. These findings align with existing state-of-the-art approaches for hyperkalemia 

classification. 

Keywords: Potassium imbalance, hyperkalemia, machine learning, chronic kidney disease, 

ECG. 

 

1. INTRODUCTION  

Chronic kidney disease (CKD) is a pervasive health issue with far-reaching implications, often 

compounded by complications such as hyperkalemia. Hyperkalemia, characterized by elevated levels 

of potassium in the bloodstream, poses a significant threat to patients with CKD, as it is a leading cause 

of sudden cardiac deaths within this population. Timely detection and monitoring of hyperkalemia are 

critical for patient care, necessitating a reliable diagnostic approach. Currently, the gold standard for 

hyperkalemia detection involves blood tests, yet the quest for non-invasive, efficient, and accurate 

methodologies remains ongoing.  
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Electrocardiography (ECG) has long been a primary tool for the diagnosis of heart disorders 

due to its non-invasive nature, affordability, and widespread availability. The ECG signal provides a 

graphical representation of the heart's electrical activity, offering insights into various pathological 

conditions. By scrutinizing ECG patterns, healthcare providers can gain insights into cardiac health, 

recognizing signs that may have life-saving implications. Hyperkalaemia, characterized by elevated 

potassium levels (>5.3mEq/L) in the blood, is one such condition that leaves a distinct footprint on the 

ECG waveform. High levels of potassium can lead to sudden cardiac deaths in patients suffering from 

Chronic Kidney Disease [1]. Early detection of hyperkalaemia-induced ECG changes can aid in rapid 

clinical intervention, preventing potential life-threatening complications. 

 Recent studies have utilized deep learning models [2] [3] [4] [5] to classify between normal and 

hyperkalaemia classes. Deep learning models require vast amounts of data to train effectively without 

over-fitting. Model explainability also poses a significant concern in the context of deep learning 

models [3]. Given the limited size of our dataset, we opted for machine learning approach over deep 

learning techniques.  

 Feature extraction plays a very important role in Machine Learning. Many feature extraction 

techniques have been adopted in literature for ECG Signal Classification.  Morphological features [6], 

derived from the intricate shapes and patterns within the ECG waveform, can be highly indicative of 

various cardiac anomalies. In another study a single lead ECG connected to smart phone was employed 

to estimate blood potassium in patients undergoing haemodialysis with an error of 9% [7]. Although 

this study focussed on T wave, T wave amplitude, T wave duration as the extracted features the specific 

methodology for feature extraction remains undisclosed. A computational model based on quadratic 

estimator was developed to quantify potassium levels from ECG based on digital analysis of Twave 

[8]. Furthermore, an investigation involving 12 features derived from the slope, amplitude, and area 

of T, R, and S waves from leads V2-V5 was used to predict hyperkalemia with the assistance of 

machine learning models [9].The accurate extraction of these morphological features is dependent 

upon the quality and consistency of the ECG recordings and the algorithms being used to extract it. 

Any slight distortion, noise, or variability in the waveform can lead to inaccuracies in feature 

extraction, which can subsequently mislead and negatively influence the performance of the classifier.  

 Decomposition based Feature Extraction have been gaining importance in recent years. Empirical 

Mode Decomposition (EMD) has emerged as a powerful signal processing technique for the analysis 

and classification of biomedical signals, including Electroencephalogram (EEG) and 

Electrocardiogram (ECG) signals. EMD offers a data-driven approach to decompose non-stationary 

and nonlinear signals into a set of oscillatory components called Intrinsic Mode Functions (IMFs), 

which capture the underlying dynamics of the signal. This decomposition allows for the extraction of 

relevant features that can be used for classification purposes. In the field of EEG signal processing, 

EMD has been widely utilized for various applications, including seizure detection [9] [10], sleep stage 

classification, and emotion recognition [11]. Similarly, EMD has shown promise in the classification 

of ECG signals for diagnosing various cardiac abnormalities.  In [12] the authors investigated the use 

of EMD for feature extraction from ECG signals and its application in arrhythmia detection. They 

demonstrated that features extracted from IMF components using EMD could effectively discriminate 

between different arrhythmia types. Furthermore, in [13] the authors proposed a method for ECG-
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based heartbeat classification using EMD and deep learning techniques, achieving high accuracy in 

distinguishing between normal and abnormal heartbeats.  

 This study proposes a feature set combining five morphological features which are indicators of 

hyperkalemia along with eight features extracted from IMF obtained from EMD.   Table 1 presents 

the morphological features extracted based on the hyperkalemia changes in ECG. Our ultimate goal is 

to use a combination of these features to enhance the detection of hyperkalemia. 

 

TABLE I: Hyperkalemia and its effect on ECG 

 

Hyperkalemia range Effect on ECG Features Extracted 

Mild Hyperkalemia(5.5-

6.5 mEq/L) 

Thin, tall, narrow based and peaked T 

waves 

T- wave amplitude, 

P-wave Amplitude, 

PR Interval, QRS 

Interval,  ST 

Depression 

Moderate 

Hyperkalemia(6.5-7.5 

mEq/L) 

P wave flattening, P-R interval 

prolongation, Widening of QRS complex 

Severe 

Hyperkalemia(>7.5 

mEq/L) 

ST depression, P wave disappears and the 

PQRST is replaced by a smooth diphasic 

sine wave 

 

The remainder of this paper is as follows: In Section 2, we introduce the detail the methodology, 

encompassing data preparation, pre-processing, feature extraction and classification. Section 3 presents 

the implementation details and results. Section 4 presents the discussion. Finally, Section 5 offers our 

conclusions, summarizing key insights and implications drawn from the study.  

2. METHODS 

This section describes the overall methods used for the classification task. Figure 1 presents the block 

diagram of the methodology used in this paper. 
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Figure 1. Methodology 

 

2.1 Dataset 

The "Medical Information Mart for Intensive Care" or MIMIC is a large single-center database 

that contains data on patients admitted to critical care units at large tertiary care hospitals. The dataset 

used in this work is extracted from MIMICS IV ECG: Diagnostic Electrocardiogram Matched Subset 

[13] [14]. The MIMIC-IV-ECG module encompasses around 800,000 diagnostic electrocardiograms 

from close to 160,000 distinct patients. These diagnostic ECG recordings, comprising 12 leads each 

and lasting 10 seconds, are sampled at a frequency of 500 Hz. This subset includes the entire set of 

ECGs corresponding to patients featured in the MIMIC-IV Clinical Database. We selected those ECG 

waveforms from MIMICS IV ECG matched subset whose corresponding clinical records suggested 

that the patient had normal or high levels of serum potassium. To ensure the relevance and accuracy 

of the correlation between potassium levels and ECG characteristics, only those ECG recordings were 

selected where the time difference between the associated potassium test and the ECG acquisition was 

less than 4 hours. However not all signals are of adequate quality for rigorous analysis. Several factors 

including noise, artifacts and other irregularities compromises the quality of the signals. Pre-processing 

techniques like filtering and outlier detection was employed to prepare the data for classification.  After 

preprocessing 1790 patient samples were included for this study of which 895 are normal cases and 

895 were cases of hyperkalemia. For cases of hyperkalemia only those patients were considered whose 

potassium values were >6.0 mEq/L. 
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2.2 Feature Extraction 

 ECG Signal is a time series representation of the electrical activity of the heart. It serves as a 

cornerstone in cardiovascular diagnostics, aiding clinicians in the detection and characterization of 

various cardiac abnormalities. One of the key challenges in ECG analysis lies in extracting informative 

features that capture essential aspects of the signal's structure and dynamics .Morphological features 

of the ECG signal encapsulate critical structural information, describing the shape, amplitude, and 

duration of its waveform components. Empirical Mode Decomposition (EMD) [15] is a data-driven 

signal processing technique used to decompose non-stationary and nonlinear signals into a finite set 

of Intrinsic Mode Functions (IMFs). Each IMF represents a narrowband oscillatory mode with a 

characteristic frequency. Features extracted using EMD capture spectral and temporal characteristics 

of the signal at different frequency scales. In this study, we propose a comprehensive approach that 

integrates morphological features with features extracted using EMD for ECG signal classification. 

By combining the structural insights offered by morphological features with the spectral and temporal 

dynamics captured through EMD, our methodology aims to enhance the discriminative power and 

diagnostic accuracy of ECG-based classification tasks. 

A. Morphological Feature Extraction 

 The alterations in the ECG waveform due to hyperkalemia commence with tall, peaked T-waves, 

followed by a prolongation of the PR interval and flattening of the P-wave. As hyperkalaemia 

advances, the QRS complex broadens, and in severe cases, it may even merge with the T-wave, 

resulting in a sine-wave pattern [16]. These changes are gradual, aligning with the severity of 

hyperkalemia; the more elevated the potassium levels, the more distinct the ECG alterations become. 

 Five morphological features, specifically the amplitude of the P wave and T wave, length of QRS 

segment, length of PR segment and ST depression, were extracted to capture the distinctive 

characteristics associated with ECG changes resulting from hyperkalemia. Figure 2 shows the steps 

involved in the feature extraction algorithm used to extract the features. The algorithm was 

implemented using MATLAB. 

 

The following are the steps to determine the five features 

1) Preprocessing: 

The raw signals extracted from the MIMICS IV database contained power line interference noise, 

muscle noise and baseline wander. We applied a 3rd order Butterworth filter to effectively eliminate the 

high-frequency noise. Additionally, we employed a 4th order Butterworth filter to remove baseline 

wander from the signals. To ensure consistency and facilitate accurate feature extraction, the signals 

were normalized before feature extraction  

2) R-Peak Detection:     

Locate R-peaks using the following steps: 

a) Apply the findpeaks function in  MATLAB to identify peaks in the signal with a minimum 

distance constraint of 0.6. 

b) Calculate the initial minpeakheight by setting it to the mean of the signal minus 0.6 times the 

standard deviation of the signal. 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 31 No. 2s (2024) 

 

 

537 
https://internationalpubls.com 

c) Rerun the findpeaks function on the signal, this time with minpeakheight set to the mean of 

all previously detected peaks plus 0.2 times the standard deviation of the signal. This step ensures that 

all peaks detected are R peaks. For each R peak detected, q point is obtained by locating the lowest 

signal value in the interval of 20ms before R peak and S point is obtained by locating the lowest signal 

value in the interval of 20ms after R peak. 

 

3) Q, R, and S Peak Detection: 

For each detected R-peak, obtain the Q point by locating the lowest signal value in the 25ms 

interval before the R-peak. Similarly, obtain the S point by locating the lowest signal value in the 

25ms interval after the R-peak.  

4) QRS Interval: 

Calculate the QRS interval by subtracting the S point from the Q point. 

5) P peak and PR Interval: 

Obtain the P peak point by locating the highest peak 25ms before the Q point. Calculate the PR 

interval as the difference between the R peak and the P peak point. 

6) T Peak and ST Depression: The following are the steps to calculate ST Depression 

a) Locate the T point by finding the highest signal value 37ms after the S point. 

b) Calculate the ST depression by taking the mean of values between the S point and the T point 

where values are less than 0 as shown is Fig 3.  

7) Calculate the Feature values from the PQRST points detected as follows : 

P Interval = Pend – Pstart     (1)  

PR Interval = RPeak – P start    (2) 

QRS Interval = S point – Q start    (3) 

T Interval = Tend – T start     (4) 

ST Depression       (5) 

8) For each signal, take the mean values of all the extracted features. 

 

 
Figure 2. Feature Extraction Flowchart 
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Figure 4 shows the plot highlighting the P, QRS, and T peaks and Pwave and Twave detected using 

the proposed algorithm. The five features extracted using the algorithm are P Interval, PR Interval, 

QRS Interval, T interval and ST Depression 

 

 

Figure 3. ST Depression 

 
Figure 4: ECG Signal with Extracted Features

 

B. Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) is a technique used in signal processing which decomposes 

non-stationary and nonlinear signals into a limited set of Intrinsic Mode Functions (IMFs). This 

method is particularly effective for analyzing complex signals such as electrocardiogram (ECG) 

recordings. EMD iteratively sifts through the signal, extracting IMFs that represent narrowband 

oscillatory modes with characteristic frequencies. IMFs possess two key properties: (1) the number of 

extrema and zero-crossings must either be equal or differ by at most one, and (2) the mean value of 

the envelopes defined by local maxima and minima must be zero. These properties ensure that IMFs 
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effectively capture the inherent oscillatory modes present in the signal. Figure 5 shows the IMFs 

obtained from EMD. Among the IMFs extracted through EMD, IMF 2 is particularly well-suited for 

ECG analysis due to its relevance to the characteristic frequency range of ECG waveforms. IMF 2 

often captures the fundamental oscillatory component corresponding to the heart rate frequency, 

making it highly informative for cardiac signal analysis. Additionally, IMF 2 tends to exhibit 

prominent features related to the main cardiac events, such as the P-wave, QRS complex, and T-wave, 

making it a valuable source of information for characterizing ECG morphology and dynamics. From 

IMF 2 obtained through EMD, we extracted the following features: 

a) Total Power: This represents the overall energy content of the signal across all frequency bands. 

High total power may indicate increased signal variability or complexity, potentially reflecting 

underlying physiological abnormalities. It is calculated as : 

Total Power = ∑ 𝑥𝑖
2𝑁

𝑖=1      (6) 

Where xi represents the individual data points of the IMF and N is the total number of data 

points. 

b) Spectral Entropy: Spectral entropy was computed using Welch's method, a commonly used 

technique for estimating power spectral density (PSD) from a time series signal. Welch's 

method divides the signal into overlapping segments, computes the periodograms of these 

segments, and averages them to obtain a smoothed estimate of the PSD. The formula for the 

periodogram is: 

Pxx(f)=
1

𝑁
|∑ 𝑥𝑤[𝑛]𝑒𝑗2𝜋𝑓𝑛𝑁−1

𝑛=0 |
2

)    (7) 

where Pxx(f) is the estimate of  power spectral density at frequency f,  and N is the number of 

samples, xw[n] is the windowed segment and f is the frequency. Then, the Welch spectrum 

estimate PWelch(f) is calculated as: 

PWelch(f)=
1

𝑁𝑠 
∑ 𝑃𝐾(𝑓)

𝑁𝑠−1
𝑘=0      (8) 

Where PWelch(f) is the Welch spectrum estimate at frequency f, Pk(f) is the periodogram for 

the k-th segment. 

Ns is the number of segments. [18] 

c) Variance: Variance is a statistical measure that measures the dispersion or spread of data points 

around the mean. Higher variance values suggest greater variability in signal amplitude, which 

may be indicative of pathological conditions or irregular cardiac activity. Variance is calculated 

as 

Variance = 
1

𝑁
 ∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1     (9) 
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Where xi represents the individual data points of the IMF, μ is the mean of the IMF, and N is 

the total number of data points. 

d) Skewness: Skewness quantifies the asymmetry of the signal distribution around its mean. 

Skewed distributions may indicate non-normal or abnormal signal patterns, with positive 

skewness indicating a longer tail towards higher values and negative skewness towards lower 

values. Skewness is calculated as 

Skewness = 

1

𝑁
∑ (𝑥𝑖−𝜇)3𝑁

𝑖=1

𝜎3
     (10) 

Where xi represents the individual data points of the IMF, μ is the mean of the IMF, and σ is 

the standard deviation of the IMF, and N is the total number of data points. 

e) Singular Values:Singular values derived from the Singular Value Decomposition (SVD) of 

IMF2 capture information about the energy distribution and dominant frequency components 

of the signal. Singular values offer a spectral perspective on signal dynamics, complementing 

morphological features with frequency-domain information extracted from EMD. 

       𝐴 = 𝑈𝛴𝑉𝑇       (11) 

Where A is an m × n data matrix, U is an m × m orthogonal matrix, And V is an n × n orthogonal 

matrix. 

 Σ = diagonal (σ1, σ2, σ3….. σr)    (12) 

where σ1 ≥ σ2 ≥ …. ≥ σr ≥ 0. 

Σ is an m × n matrix whose ith diagonal entry equals the ith singular value σi for i = 1…r All 

other entries of Σ are zero. The first four singular values are extracted as features for this study. 
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Figure 5: IMFs obtained from EMD 

C. Classification 

In this study, our primary objective is to classify ECG signals into Normal or Hyperkalemic Class. 

After extracting the thirteen features from the data, outlier detection using z-score method was 

performed to detect and remove outliers. By deducing the mean and dividing by the standard deviation 

the Z-score standardizes the data and produces a distribution with a mean of 0 and a standard deviation 

of 1. In our analysis, we employed three classifiers to train on the features extracted from the ECG 

signals. We utilized the following classifiers:  

1) Kernel Naïve Bayes Classifier (KNB) [17]: An improvement on the classic Naive Bayes 

classifier, the  Kernel Naive Bayes (KNB) uses kernel techniques to manage non-linear feature 

relations. Unlike the standard Naive Bayes classifier, which assumes feature independence, KNB uses 

the kernel trick to implicitly translate the input features into a high-dimensional space where they may 

become linearly separable, in contrast to the tradition Naïve Bayes classifier which assumes feature 

independence. ECG signals with their subtle variations between 'Normal' and 'Hyperkalemic' patterns, 

can exhibit complex non-linear characteristics. KNB's ability to implicitly map features into a higher-

dimensional space using kernel methods allows it to capture and represent the intricate patterns present 

in ECG signals more effectively than traditional linear classifiers. 

2) AdaBoost Ensemble Classifier [18]: The Adaboost Ensemble classifier boosts classification 

performance by combining several weak classifiers into a robust ensemble model. Through iterative 

adjustments of training instance weights, the Adaboost algorithm prioritizes challenging-to-classify 

examples, thus enhancing the accuracy of the classifier. This approach is particularly advantageous for 

ECG signal classification tasks where the distinction between normal and abnormal patterns can be 

subtle and challenging. By using the collective decision-making of an ensemble of classifiers, 

Adaboost enhances the robustness and generalization capabilities of the model, leading to more 

accurate and reliable hyperkalemia detection from ECG signals. 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 31 No. 2s (2024) 

 

 

542 
https://internationalpubls.com 

3) Neural Networks (NN) [19]: A multi-layer perceptron model can capture complex non-linear 

relationships in the data. A wide NN architecture was used for classification as it effectively models 

feature interactions inherent in temporal ECG data and offers a rich set of transformations for nuanced 

differentiation 

Each classifier was trained using the same dataset to ensure consistency in the evaluation of their 

performance. 5 fold cross validation was used and 10% of the data was set aside for testing. 

3. IMPLEMENTATION & RESULTS 

All the experiments in this study were carried out in MATLAB. The dataset extracted from MIMICS 

IV ECG: Diagnostic Electrocardiogram matched subset database were of 10 seconds sampled at 500 

Hertz. Noise and Baseline wander was removed by applying Butterworth filter. Min- Max Scaling was 

used for normalizing the signals. After pre-processing 895 normal, 895 hyperkalemic ECG signals were 

obtained.  The feature set contained 5 morphological features and eight spectral features extracted from 

IMF 2 obtained after Empirical Mode Decomposition. Outlier Detection using Z-score was employed 

to detect and remove outliers from the extracted features. Then we compared the performance of three 

classifiers on the reduced feature set.  To ensure robust model evaluation, 20% of the dataset was held 

out as a separate test set, while the remaining 80% was used for training and cross-validation. . A 5-fold 

cross-validation approach was employed for all classification task. This required dividing the training 

data into five subgroups, with each iteration using four of the subgroups for training and the remaining 

subgroup for validation. Each subgroup was used as validation set exactly once during the five iterations 

of the procedure. This allowed for comprehensive assessment of model performance and minimized the 

risk of overfitting or biased evaluation 

For the first experiment 895 normal signals and 895 hyperkalemic signals were classified based 

on the morphological features alone Table III presents the classification results.  For the second 

experiment both morphological and EMD features were considered for classification 

 

TABLE III Results 

 Normal vs Hyperkalaemia 

 Morphological Features Morphology +EMD Features 

Models Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

Kernel Naïve Bayes 89.01 93.9 91.3 94.32 96.47 95.4 

AdaBoost 96.43 93.02 94.7 97.7 98.84 98.3 

Neural Network 94.05 94.19 94.1 97.67 97.7 97.7 

 

4. DISCUSSION 

Table III presents the results of the classification. The evaluation metrics considered were 

Sensitivity, Specificity and Accuracy. Across all three models, using only morphological features 

achieves reasonably high accuracy, sensitivity, and specificity.  Kernel Naïve Bayes achieves the 

lowest accuracy but still performs reasonably well. Neural Network and AdaBoost exhibit higher 

accuracy, sensitivity, and specificity compared to Kernel Naïve Bayes, indicating their effectiveness 

in capturing the discriminatory information present in morphological features. The addition of features 
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extracted using EMD enhances the performance of all three models significantly across all metrics. 

AdaBoost consistently demonstrates the highest accuracy, sensitivity, and specificity among the 

models, followed closely by the Neural Network. Kernel Naïve Bayes also benefits from the addition 

of EMD features, showing notable improvements in accuracy, sensitivity, and specificity compared to 

its performance with morphological features alone. These results indicate that features extracted using 

EMD provide complementary information to morphological features, effectively capturing additional 

spectral and temporal characteristics of ECG signals. 

5. CONCLUSION 

In this study, we explored the effectiveness of different feature sets and classification models for ECG 

classification into Normal vs. Hyperkalemia classes. Initially, we evaluated the performance of 

classification models using Morphological Features alone. Our findings indicate that morphological 

features alone achieve reasonably high accuracy, sensitivity, and specificity across all models tested. 

This underscores the importance of waveform characteristics in distinguishing between normal and 

hyperkalemic ECG signals. The inclusion of EMD features significantly improved the classification 

performance of all models, with notable enhancements observed in accuracy, sensitivity, and 

specificity. This highlights the complementary nature of morphological and EMD features, which 

capture both structural and spectral-temporal characteristics of ECG signals. Among the classification 

models evaluated, AdaBoost emerged as the top-performing model, consistently achieving the highest 

accuracy, sensitivity, and specificity with the combined Morphology + EMD Features. This 

underscores the effectiveness of ensemble learning techniques in leveraging the diverse information 

encapsulated within different feature sets. Future studies will incorporate a broader dataset and explore 

a more diverse set of features to enhance the detection and interpretation of hyperkalaemia in ECG 

signals. This ongoing research aims to advance the development of automated diagnostic tools for 

hyperkalemia detection, ultimately contributing to improved patient care and clinical outcomes in 

cardiology. 
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