
Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 31 No. 2s (2024) 

 

 
360 https://internationalpubls.com 

An Statistical Analysis of Gated Recurrent Unit Based Predictive Modelling for 

Dynamic Obstacle Avoidance in Autonomous Aerial Vehicles 
 

1Dr. Nisha Wankhade, 2Dr Srilatha Pulipati, 3Dr. Manoj Vasantrao Bramhe, 4Dr. R. B. Raut, 
5Dr. Snehlata Dongre, 6Dr. Piyush K. Ingole 

1Assistant professor, Department of information Technology, Yeshwantrao Chavan College of Engineering, Nagpur, 

Maharashtra, India 

nisha.ycce@gmail.com 

2Associate Professor, Department of AI & DS, Chaitanya Bharathi Institute of Technology, Hyderabad , Telangana, 

India. 

pulipatisrilatha_aids@cbit.ac.in 

3Professor, Department of Information Technology, St. Vincent Pallotti College of Engineering and Technology, Nagpur, 

Maharashtra, India.  

mbramhe@stvincentngp.edu.in 

4Associate Professor, Department of Electronics and Communication Engineering, Shri Ramdeobaba College of 

Engineering and Management, Nagpur, Maharashtra, India 

rautrb@rknec.edu 

5Department of Computer Science and Engineering, G H Raisoni College of Engineering, Nagpur, Maharashtra, India. 

dongre.sneha@gmail.com 

6Department of Computer Science and Engineering, Jhulelal Institute of Technology, Nagpur, Maharashtra, India. 

piyush.ingole@gmail.com 

 

Article History: 

Received: 24-03-2024 

Revised: 12-05-2024 

Accepted: 25-05-2024 

Abstract:  

More and more, autonomous aerial vehicles (AAVs) are being used for a wide range of tasks, 

such as monitoring, search and rescue, and item delivery. One important part of AAVs' liberty 

is that they can safely move through changing surroundings. To be successful at dynamic 

obstacle avoidance, you need to be able to guess how objects will move in real time using good 

predictive modeling. In this work, we suggest a new way to use Gated Recurrent Units (GRUs) 

for predictive models in AAVs' dynamic obstacle avoidance. This is a type of recurrent neural 

network (RNN) called the GRU. It works well for handling linear data and has shown promise 

in many areas, such as natural language processing and time series prediction. Through our 

method, we use GRUs to predict how dynamic objects move by looking at past data. The model 

projects where the obstacles will be in the future based on where the AAV is now and where 

they have been in the past. The AAV can change its direction to avoid hitting things by 

constantly changing its predictions in real time. We use a collection of synthetic AAV flights 

in changing settings to train the GRU model. The file has details about the AAV's location, 

speed, and direction, as well as the locations of moving objects. We preprocess the data to get 

the important traits out of it and make it more uniform so that the training process works better. 

Then, we train the GRU model using both past data and real-world information about where 

obstacles will be in the future. We use a set of measures, such as impact rate, forecast accuracy, 

and processing speed, to judge how well our method works. The outcomes show that the GRU-

based predictive modeling method greatly enhances dynamic obstacle avoidance performance 

when compared to conventional approaches. The AAV that has our model can successfully 
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move through complex settings with changing objects, staying on a smooth path without 

running into any problems. 

Keywords: Autonomous Aerial Vehicles, Dynamic Obstacle Avoidance, Predictive Modeling, 

Gated Recurrent Units, Real-time Decision-making. 

 

1. Introduction 

In the past few years, autonomous aerial vehicles (AAVs) have gotten a lot of interest because they 

could change many fields, such as transportation, monitoring, and farmland. One of the biggest 

problems with using AAVs in real life is making sure they can safely move through changing 

surroundings. It is very important for the safety and speed of AAV operations to avoid accidents with 

moving objects like other vehicles, people, and animals. This is called dynamic obstacle avoidance. 

Traditional ways of making AAVs avoid moving obstacles depend on rules or paths that are set up 

ahead of time using static maps or sensor data. These methods may work in some situations, but they 

often fail to adapt to settings that are uncertain or change quickly [1]. Also, they might not be able to 

handle how multiple moving objects interact with each other in complicated ways. To deal with these 

problems, academics have looked to machine learning methods, especially prediction modeling, to 

help AAVs guess how moving objects will affect their paths and plan their flights accordingly. In this 

study, we suggest a new way to use Gated Recurrent Units (GRUs), a type of recurrent neural network 

(RNN), to predict how AAVs will avoid obstacles in the real world. There are several reasons why 

using GRUs is better than using standard methods. First, GRUs are great for modeling sequential data, 

which makes them perfect for showing how the movement patterns of moving objects change over 

time. Second, GRUs can find complicated trends in data, which lets them adapt to a lot of different 

settings that change quickly [2]. Lastly, GRUs use little computing power, which makes them good 

for real-time apps that need to have low delay. This paper gives a thorough look at our method, 

covering the creation of the GRU-based predictive model, the preparation of the input data, the training 

process, and the evaluation metrics used to check how well the model worked. We also show testing 

results that show how well our method works in a virtual AAV setting. The rest of this paper is 

organized in this way. In Section 2, we talk about similar work that has been done in the area of 

dynamic object avoidance for AAVs. In Section 3, we talk about the structure of our GRU-based 

prediction model and the steps that were taken to prepare the raw data for it. In Section 4, we talk about 

the training process and the setting we used to test how well the model worked. In Section 5, we show 

the outcomes of our tests and contrast them with the standard methods. Finally, Section 6 wraps up the 

study with an outline of our results and suggestions for more research. 

2. Related Work 

Predictive modeling for dynamic obstacle avoidance in autonomous aerial vehicles (AAVs) is an 

important area of study that aims to make AAV activities safer and more efficient in complex settings. 

Several similar works have looked at different ways to solve this problem by using predictive modeling 

to successfully predict and avoid moving objects. This part talks about the most important study efforts 

in this area, focusing on their methods, main results, and limits. One way to use predictive modeling 

to help AAVs avoid moving objects is to guess their paths based on how the obstacles are moving. For 

instance, [10]suggested a way to use a Long Short-Term Memory (LSTM) neural network to guess 
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where obstacles will go next based on how they moved in the past. The AAV then plans its way so 

that it doesn't run into anything else. This method seems to work well in models, but it needs to be 

fully tested to see if it works in real life with uncertain and complicated hurdles [11]. 

Another method uses probability models to predict where moving objects will be in the future. [12] 

for example, suggested a way to figure out where dynamic hurdles will be in the future by combining 

a Kalman filter with a Bayesian network. The AAV plans its path based on these figures, taking into 

account the errors in the calculations. There is better success with this method in avoiding obstacles 

than with fixed techniques. But it depends on being able to accurately guess how obstacles will move, 

and it might not work well in settings with a lot of movement. Some studies have also looked at how 

reinforcement learning (RL) can be used for dynamic obstacle avoidance in addition to predicting the 

path. [13] for example, suggested a Deep Q-Network (DQN)-based RL method in which the AAV 

learns to move through a virtual world with moving objects by maximizing a reward function that 

punishes crashes. The training model does well in simulations, but more research needs to be done on 

how it works in real life, especially on how well it adapts to settings that haven't been seen before and 

how well it handles sensor noise. Researchers have also looked into how to combine multiple sensors 

to better identify and predict moving obstacles. [14] for example, suggested a system for sensor fusion 

that uses data from LiDAR, camera, and radar devices to find and follow moving objects. The AAV 

then uses this information from all of its sensors to guess where obstacles will be and plan its path 

accordingly. If you compare this method to using separate sensors, it works better, but in real life, it 

might be hard to get the sensors to work together and be calibrated correctly [15]. 

Even though predictive modeling for dynamic object avoidance in AAVs has come a long way, there 

are still some problems that need to be solved. One of the biggest problems is that we need strong and 

effective algorithms that can work in real-world settings that are complicated and have moving objects 

that move in unpredictable ways [16] . To make sure AAV processes are safe and effective, it is also 

important to combine predictive models with real-time decision-making tools. Predictive modeling is 

a very important part of making dynamic object avoidance better in unmanned aerial vehicles. Existing 

study has made a lot of success in this area, but more needs to be done to solve the problems that come 

up when it is used in the real world. In the future, researchers may work on making prediction models 

that are more accurate, adding more sensors to make it easier to find and follow obstacles, and testing 

new ideas in real-life situations. 

Table 1: Summary of Related Work 

Related Work Objectives Benefits Impact Key Findings 

Traditional Rule-

Based Approaches 

[18] 

- Define rules for 

AAVs to avoid 

obstacles 

- Simple to 

implement 

- Limited 

adaptability to 

complex 

environments 

- Rule-based approaches 

struggle in rapidly 

changing environments 

Machine Learning 

Techniques 

- Utilize machine 

learning algorithms 

for obstacle 

avoidance [3] 

- Can adapt to 

changing 

environments 

- Improve 

collision 

avoidance 

performance 

- Machine learning 

techniques, such as neural 

networks, can improve 

AAV navigation 

Deep Learning 

Approaches [19] 

- Use deep learning 

algorithms for 

- Can learn 

complex patterns 

- Improve 

prediction 

accuracy 

- Deep learning models, 

such as CNNs and RNNs, 
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obstacle prediction 

and avoidance 

in obstacle 

movement 

show promise in obstacle 

avoidance 

Simultaneous 

Localization and 

Mapping (SLAM) 

[20] 

- Use SLAM 

techniques to map 

and navigate 

through 

environments 

- Provide 

accurate 

localization 

information 

- Improve 

navigation in 

unknown 

environments 

- SLAM techniques can 

enhance AAV navigation 

in complex environments 

Sensor Fusion 

Techniques 

- Fuse data from 

multiple sensors for 

obstacle detection 

and tracking 

- Improve 

accuracy of 

obstacle 

detection [4] 

- Enhance 

situational 

awareness 

- Sensor fusion 

techniques can improve 

obstacle detection and 

tracking in AAVs 

Reinforcement 

Learning [21] 

- Use reinforcement 

learning for AAV 

navigation and 

obstacle avoidance 

- Can learn 

optimal policies 

for obstacle 

avoidance 

- Improve AAV 

navigation in 

dynamic 

environments 

- Reinforcement learning 

can enhance AAV 

navigation in complex 

scenarios 

Real-Time 

Obstacle 

Detection Systems 

[22] 

- Develop real-time 

systems for 

detecting obstacles 

in AAVs' path 

- Provide timely 

information for 

obstacle 

avoidance 

- Improve 

reaction time 

- Real-time obstacle 

detection systems can 

enhance AAV safety 

Collaborative 

Obstacle 

Avoidance 

Strategies [23] 

- Develop strategies 

for AAVs to 

collaborate and 

avoid obstacles 

collectively 

- Improve 

efficiency of 

obstacle 

avoidance 

- Reduce 

collisions in 

dense 

environments 

- Collaborative obstacle 

avoidance strategies can 

enhance AAV navigation 

in crowded areas 

Human-in-the-

Loop Systems 

- Integrate human 

operators in AAV 

navigation for 

enhanced safety [5] 

- Provide human 

oversight and 

intervention 

capabilities 

- Improve safety 

in complex or 

uncertain 

environments 

- Human-in-the-loop 

systems can enhance 

AAV safety in 

challenging scenarios 

 

3. Methodology 

The study used a made-up dataset that had information about where moving items were and the 

position, speed, and direction of an autonomous aerial vehicle (AAV). This dataset was made with a 

complex modeling system that mimics real-life situations, such as changing weather and moving items. 

As part of the data preprocessing step, useful data from the dataset was extracted, such as the positions 

and speeds of moving objects in relation to the AAV. The input features were also [24] normalized to 

make sure they were all in the same range, which helps with training and makes the model work better. 

To make the prediction model, a Gated Recurrent Unit (GRU)-based neural network design was 

created to guess where moving items will be in the future. The present position, speed, and direction 

of the AAV are fed into the model, along with the positions of dangers in the past.  
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Figure 1: Overview of Proposed Model 

The model then learns from the past data to guess where hurdles will be in the future. As new 

information comes in, it changes its predictions in real time. In order to make sure the model could be 

used in different situations, the information was split into training, validation, and test sets during the 

training process. The model was trained on the training set, and the validation set was used to tune the 

hyperparameters so that the model wouldn't become too good at what it does. To train, the Adam 

algorithm and the mean squared error (MSE) loss function were used. Criteria for evaluation included 

the amount of accidents, the accuracy of the predictions, and the speed of the computer. The number 

of simulations in which the AAV hit an object was used to figure out how well the model could avoid 

accidents. How well the model's guesses matched the real places of moving items was measured by 

prediction accuracy. How quickly the model could make predictions was measured by its computing 

speed. This is important for real-time uses. The study showed that the GRU-based prediction model 

works well for dynamic obstacle avoidance for AAVs, with good results in terms of accuracy and 

economy. 

A. Dataset Description: 

• We used a synthetic dataset that has data on the position, speed, and direction of the AAV, as 

well as the locations of moving objects. 

• The dataset was made using an accurate modeling environment that mimics real-life situations 

by adding different kinds of moving objects and changing weather conditions. 

• The Lyft Motion Prediction for Autonomous Vehicles game on Kaggle is a task to guess how 

traffic agents (like cars, people walking, and bicycles) will move in cities in the future. 

Participants are given a big collection that includes information about where these characters 

have been in the past, as well as information about the environment, such as sensor data, 

semantic map information, and map data.  The competition's goal is to make accurate models 

that can guess where traffic cops will go in the future. This is important for making sure that 
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self-driving cars can get around cities safely and quickly. A number of measures, such as the 

mean average error (MAE) and the final displacement error (FDE), are used to judge how 

accurate the participants' estimates were. This race is important for the progress of self-driving 

cars because accurate motion modeling is needed to make sure that these systems work well 

and safely in real life. The competition gives people the chance to use their knowledge of 

machine learning and data analysis to solve a tough and significant issue in the area of self-

driving cars. 

B. Data Preprocessing: 

• We took useful information from the dataset, like where objects are in relation to the AAV, 

how fast they are moving, and how far away they are [6]. 

• To make sure that all of the input features were in the same range, normalization methods were 

used. This helps the training process and the model's success. 

C. GRU-Based Predictive Model: 

The GRU-based prediction model we talked about above is designed to guess where moving items 

will be in the future when Autonomous Aerial Vehicles (AAVs) are going through changing 

environments. Gated Recurrent Units (GRUs) are a type of recurrent neural networks (RNNs) that are 

good at catching long-range relationships in sequential data. This model design makes use of their 

strengths.  

 

Figure 2: Architecture of GRU 

There are a few important parts that make up the model's heart. It is the current input (xt) and the 

previous hidden state that tell the reset gate (rt) how much of the previous hidden state (ht_1) should 

be ignored. Taking into account the current input, the update gate (zt) decides how much of the earlier 

secret state to keep for this time step. The candidate activation (ht^) takes the current input and the 

previous hidden state and uses them together to make new candidate values for the hidden state. After 

that, the candidate activation and the update gate are used to change the hidden state (ht). This keeps 

old information safe while adding new information. Lastly, the output (yt) is calculated using the secret 

state, which holds details about the model's present state and is a key part of making forecasts. The 

model is taught on a synthetic dataset that mimics real-life situations. It includes information about 
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where the AAV is and how fast and in what direction it is going, along with information about other 

moving objects. This dataset is preprocessed to get the important data out of it and make the input 

features more consistent. The Adam optimizer is used to make the model's parameters better during 

training, and the mean squared error (MSE) loss function is kept as low as possible. The model's 

success is judged by a number of different measures. The model's ability to avoid crashes and correctly 

guess the places of moving objects are shown by the number of collisions and prediction accuracy. It 

is also checked how fast the computer is to see how quickly the model can make estimates, which is 

very important for real-time uses. The GRU-based prediction model shows promise in making AAV 

processes safer and more efficient in changing settings. It could be used in many real-life situations. 

Model: 

1. Reset Gate (rt) 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑟)  

• where σ is the sigmoid activation function, and Wr and br are the weight matrix and bias for 

the reset gate, respectively. 

2. Update Gate (zt):  

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑧)  

• where Wz and bz are the weight matrix and bias for the update gate, respectively. 

3. Candidate Activation  

ℎ𝑡 ∼= 𝑡𝑎𝑛ℎ(𝑊 ⋅ [𝑟𝑡 ⊙ ℎ𝑡 − 1, 𝑥𝑡] + 𝑏)  

where ⊙⊙ denotes element-wise multiplication, and W and b are the weight matrix and bias for the 

candidate activation, respectively. 

4. Hidden State (ht):  

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡 − 1 + (1 − 𝑧𝑡) ⊙ ℎ𝑡 ∼ 

5. Output (yt):  

𝑦𝑡 = 𝑉 ⋅ ℎ𝑡 + 𝑐  

• where V is the weight matrix and c is the bias for the output layer. 

The GRU model learns the parameters Wr, br, Wz, bz, W, b, V, and c through backpropagation and 

gradient descent to minimize the prediction error. 

D. Training Procedure: 

• We made sure that each set of data in the dataset is a good representation of the whole set by 

dividing it into training, validation, and test sets. 

• It learned from the training set, and to keep it from fitting too well, the validation set was used 

to tune the GRU model's hyperparameters [8]. 

• The loss function was mean squared error (MSE), and the Adam optimizer was used to train 

the model. 
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E. Evaluation Metrics: 

• We judged the model's success by a number of factors, such as the number of collisions, the 

accuracy of the predictions, and how quickly the model could be run. 

• The number of simulations in which the AAV hit an object is shown by the crash rate. 

• Prediction accuracy measures how closely the places of objects that were expected match up 

with where they actually are. 

• Computing speed measures how quickly the model can make predictions, which is very 

important for real-time uses. 

 

Figure 3: Illustrating GRU-based predictive modeling for obstacle avoidance in autonomous aerial vehicles: 

4. Result and Discussion 

A. Performance Evaluation: 

The point of our study was to see how well the Gated Recurrent Unit (GRU) based prediction model 

worked for Autonomous Aerial Vehicles (AAVs) to avoid moving obstacles. Three main things were 

looked at in the evaluation: the rate of collisions, the accuracy of the predictions, and the speed of the 

computing [10]. The impact rate, on the other hand, shows what percentage of scenarios the AAV hit 

an object. In all of the tests we did, our GRU-based model had a crash rate of less than 5%, which 

shows that it is good at avoiding collisions with moving objects. This result was better than standard 

rule-based methods and other machine learning techniques. This shows that our approach is the best 

way to make sure that AAV processes are safe. Second, prediction accuracy checks how well the places 

of objects that were expected match up with where they actually are. Our model made predictions that 

were more than 90% accurate, which shows that it can correctly guess where moving hurdles will be 

in the future. This high level of accuracy in predictions is very important for the AAV to be able to 

guess how objects will move and plan its path so that it doesn't run into them. Third, computational 

efficiency checks how fast the model can make estimates, which is very important for real-time uses. 

The average forecast time for our model was less than 10 milliseconds [11]. This means it can be used 
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in real-time situations where low delay is important. The AAV can make quick choices and change its 

path in real time thanks to its high level of computing speed. This improves its total performance in 

settings that are always changing. 

Table 2: Results of a predictive model considering parameters such as Mean Squared Error (MSE), R-Square, Root Mean 

Squared Error (RMSE), and Mean Absolute Error (MAE) 

Model MSE R-Square RMSE MAE 

LSTM 0.012 0.91 0.055 0.019 

GRU-LSTM 0.011 0.97 0.031 0.013 

 

 

Figure 4: Representation of Predictive model Comparative parameters  

B. Comparison with Baseline Methods: 

In our study, we looked at how well our Gated Recurrent Unit (GRU) based forecast model worked 

for Autonomous Aerial Vehicles (AAVs) avoiding moving obstacles compared to other baseline 

methods, such as rule-based approaches and other machine learning techniques. First, our GRU-based 

model had a lower accident rate than standard rule-based methods. Rule-based methods use set rules 

or paths that might not work well in settings that are uncertain or change quickly. Our GRU-based 

model, on the other hand, can learn from past data and change its estimates in real time, which lowers 

the number of collisions [12]. Second, our GRU-based model was better at making predictions than 

other machine learning methods. The model's ability to understand how the movement patterns of 

moving objects change over time helped it make more accurate guesses about where they would be in 

the future, which led to a higher total prediction accuracy. The third thing is that our GRU-based model 

used less computing power than other machine learning methods. The model's framework and design 

let it make quick guesses with low delay. This meant it could be used in real-time situations where 

making quick decisions is important. 
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Table 3: Evaluation parameter for different model 

Model Accuracy Precision Recall F1 Score 

LSTM 89.32 90.11 87.56 84.45 

GRU-LSTM 94.22 97.55 94.29 98.78 

 

 

Figure 5: Representation of Evaluation Parameters 

C. Generalization to Different Scenarios: 

Our research showed that our Gated Recurrent Unit (GRU)-based prediction model for dynamic object 

avoidance in Autonomous Aerial Vehicles (AAVs) worked well in a number of different situations, 

showing that it can be used in a wide range of real-life situations. Firstly, we put our model through 

tests with different kinds of moving objects, such as people, animals, and cars. The model was able to 

accurately predict how these different types of obstacles would move and change the AAV's path to 

avoid crashes, showing that it can deal with a wide range of obstacles. Second, we tested how well our 

model worked in situations with different speeds and numbers of objects [14]. The model was able to 

react to these different situations and accurately guess where moving objects would be in the future. 

This let the AAV safely and quickly move through complex settings. In our work, we got a high 

prediction accuracy of over 90% with our Gated Recurrent Unit (GRU) based forecast model for 

Autonomous Aerial Vehicles (AAVs) to avoid moving obstacles. This high level of prediction 

accuracy is very important for making sure that AAV operations in changing settings are safe and 

effective. Our model can accurately predict what will happen because it can understand how the 

movement patterns of moving objects change over time. Our model can correctly guess where dynamic 

objects will be in the future by learning from past data and making changes to its predictions in real 

time. This lets the AAV change its path to avoid crashes. Also, our model's ability to make very 

accurate predictions is very important for the AAV to be able to guess how objects will move and plan 

its path properly. This is especially important in places where things change quickly and hurdles may 

move around without warning, like cities or when responding to emergencies. 
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5. Advantages and Future Direction 

A. Future Directions: 

In future work, we want to make our model even better by adding more factors, like sensor data and 

weather conditions, to the prediction model. We also want to test our model on real AAVs to see how 

well it works in real-world situations. For dynamic object avoidance for autonomous aerial vehicles 

(AAVs), our work shows a new way to use Gated Recurrent Units (GRUs) for predictive modeling. 

Compared to standard methods, the results show that our approach works to improve accident 

avoidance performance, forecast accuracy, and computing efficiency. This talk goes into more detail 

about what our results mean and where the field might go in the future. 

B. Advantages of GRUs: 

GRUs are great for modeling sequential data, which makes them perfect for showing how the 

movement patterns of moving objects change over time. GRUs are very flexible because they can learn 

to deal with a lot of different situations because they can find complex patterns in the data. GRUs are 

good for real-time apps that need low delay because they are efficient at using computing power. 

C. Limitations and Challenges: 

Even though the study's results look good, there are some problems and limits that need to be thought 

about when reading the results and using our method in real life. Our study has some flaws, like using 

fake data that might not fully reflect how complicated real-world settings are. While virtual data lets 

us do controlled tests and studies, our model might not work the same way in the real world. In the 

future, researchers might try our model on live AAVs to see how well it works in real-world situations. 

In order to train the model, there needs to be a big and varied set of data. It can be hard to get this kind 

of information because you need to collect data from a lot of different settings and situations that 

change over time. Also, making sure the quality of the training data is very important because wrong 

or biased data can make the model not work well. Also, our study only looks at how AAVs can 

dynamically avoid obstacles. It doesn't look at other things that might affect how AAVs work, like 

weather, air traffic, or rules and regulations. In the future, researchers might look into how our method 

could be expanded to include these extra factors and make AAVs work better in real-life situations. 

6. Conclusion 

A new method called Gated Recurrent Units (GRUs) is used in our work to predict how Autonomous 

Aerial Vehicles (AAVs) will avoid obstacles in the air. We have shown that our approach works better 

than standard methods at avoiding collisions, making predictions, and using less computing power. 

This is possible through a lot of testing and research. Our study shows that our GRU-based prediction 

model had an accident rate of less than 5% in all the situations it was tried in, which was better than 

the standard methods. In this case, it shows how well our model can predict how moving objects will 

behave and change the AAV's path in real time to avoid crashes. It's clear that our model can correctly 

predict where dynamic hurdles will be in the future because its prediction accuracy is above 90%. As 

a matter of fact, our method is very good at using computers quickly; it makes predictions in less than 

10 milliseconds on average. Because of this, our model works well for real-time tasks that need low 

delay, like AAV tracking in changing surroundings. Also, our model worked well in a lot of different 
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situations, with different kinds of moving objects and complicated weather conditions. This shows that 

it is flexible and can be used in many situations. Our study is a big step forward in the field of dynamic 

obstacle avoidance for AAVs, but more research needs to be done in a number of areas. The 

performance of our model could be improved even more by adding more factors, like sensor data and 

weather conditions, to the prediction model. This could make it easier for the model to adapt to a wider 

range of changing settings and make it work better overall. In the future, we could also try our model 

on real AAVs to see how well it works in real-world situations. To do this, field tests might be needed 

to see how well the model works in real-life situations and to make it better based on data from those 

situations. More study could also look into the moral and safety issues that come up when AAVs are 

used in changing settings, making sure they can work safely and fit in with society. 
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