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Abstract:  

In today's VLSI SoC designs, Design for Testability (DFT) is a crucial 

methodology aimed at simplifying the testing of digital circuits during 

the manufacturing and debugging phases to ensure their functionality 

and performance. This technique primarily focuses on identifying 

whether a fabricated device is defective. By implementing DFT, 

testing costs and time can be significantly reduced, which in turn 

enhances manufacturing yield and accelerates time-to-market. 

Debugging Very Large Scale Integration (VLSI) circuits can be a 

complex and time-intensive task. Therefore, the strategy is to address 

failures early in the simulation phase, which can substantially decrease 

the time required for debugging compared to on-silicon debugging. 

Keywords: Design for Testability (DFT), ATPG Flow, Very Large 

Scale Integration (VLSI), Pattern Generation, Translation. 

 

1 Introduction 

Design for Testability (DFT) is an essential methodology aimed at simplifying the process of 

testing digital circuits during manufacturing and debugging. Its primary focus is to determine 

whether a fabricated device is defective while ensuring that the circuit functions as intended. 

By incorporating DFT techniques, manufacturers can significantly reduce testing time and 

costs, leading to improved production yields and shorter time-to-market.  

Implementing DFT requires careful consideration of several factors, including test coverage, 

fault models, and the trade-offs between enhancing testability and maintaining other design 

priorities like performance and power efficiency. As technology nodes shrink and designs 

grow in complexity, testing becomes increasingly challenging and time intensive. Identifying 

faulty chips under these conditions necessitates robust testing mechanisms.  

To address these challenges, DFT introduces additional logic to the design without altering its 

core functionality. This added logic improves the testability of the circuit by enhancing its 

controllability and observability. By ensuring the quality of the manufactured chip, DFT 

plays a vital role in maintaining design reliability and achieving superior product 

performance.  

mailto:profsandeepkkr@gmail.com


Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 1 (2025) 

  

608 
 

https://internationalpubls.com 

Design for Testability (DFT) is a critical component in the design of integrated circuits (ICs), 

aimed at enhancing the ease and effectiveness of testing to ensure the reliability and 

functionality of chips. Fault models play a vital role in DFT by providing a framework to 

simulate and understand potential defects in a circuit. Here’s an overview of some common 

DFT fault models: m, ensuring that the memory can test itself during manufacturing, in-

system operation, and during periodic maintenance.[1] 

2 Objective of the Work 

a) To create or adapt system-on-chip (SoC) compatible test patterns for effective testing.  

b) To reconstruct a virtual SoC-level design using netlists to ensure proper integration.  

c) To validate the programming of test data registers for accurate functionality.  

d) To simulate and verify both the functional and DFT logic within the design, ensuring 

reliability and testability.  

3   Scan Cell and Chain 

Scan Cell   

A scan flip-flop is a key element in creating a scan chain. Modern scan architecture typically 

employs two main types of designs: Mux-D flip-flops and Level Sensitive Scan Design 

(LSSD). Mux-D flip-flops are edge-triggered and incorporate a two-input multiplexer before 

the data input. The multiplexer is controlled by a selection signal, commonly referred to as 

"scan enable," "shift enable," "scan mode," or "test mode." When this signal is low, the 

flipflop operates in its normal mode, allowing functional data to pass through. Conversely, 

when the signal is high, it switches to scan mode, directing scan-in data through the flip-flop. 

The flip-flop uses a single clock for both normal operations and shifting scan data. 

Additionally, both functional and scan data are conveyed through a single output. The typical 

design of a Mux-D flip-flop uses "scan en" for enabling the scan mode or shift, with "SI" and 

"SO" representing the scan data input and output, respectively, as illustrated in Figure 1. 

 

 

Figure 1 Scan cell design 
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Mux-D flip-flops are widely favored because they offer minimal area overhead, requiring 

only an additional selector signal for routing to each flip-flop. This selector typically has few 

timing constraints. However, if delay faults need to be observed by initiating transitions 

during the final shift cycle in scan testing, the selector should be routed similarly to a clock 

tree. Addressing hold-time issues in Mux-D flip-flop-based scan chains can be challenging, 

as simply reducing the scan shift frequency is not a viable solution, often necessitating a 

design overhaul. The inclusion of a multiplexer in the functional data path can increase data 

path delay and potentially lower the maximum frequency for functional operations. Since 

only one clock tree supports both functional and scan shift modes, increasing expected scan 

frequencies to expedite scan test execution might be labor-intensive and could negatively 

impact power consumption.  

In contrast, LSSD (Level-Sensitive Scan Design) scan cells utilize level-sensitive latches and 

do not require a selector signal. Instead, their operation is governed by three clocks, allowing 

the cell to retain functional data, store scan data, or propagate scan data to a specific scan 

output, depending on the clock configuration. In the example LSSD cell shown in Figure 2, 

there are two D-latches, and the latch that retains data features two input ports: one for 

functional data and another for scan data.  

 

Figure 2 LSSD cell 

While LSSD scan architecture can be used in high-performance systems, it is less commonly 

adopted. This approach comes with its own set of advantages and disadvantages:  

Advantages:  

• No extra delay in data paths.  

• Avoidance of hold-time issues.  

• Separate clock trees simplify timing constraints throughout the design process.  

Disadvantages:  

• Greater area overhead.  

• Requirement to route two additional clock trees.  

Scan Chain 

Figure 3 illustrates a design lacking scan flip-flops, where shifting data in and out presents 

difficulties, thus diminishing the design's controllability and observability. This challenge led 
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to the introduction of scan-enabled flip-flops. In a full-scan design, scan flip-flops replace 

standard flip-flops. As shown in Figure 4, these scan flip-flops are linked together to form a 

scan chain. During test mode, with the test enable signal (SE) active, the scan chain functions 

as a shift register. The scan input is connected to the first flip-flop in the chain, while the scan 

output is linked to the final flip-flop.  

 

Figure 3 Scan chain without scan 

Partial scan designs, on the other hand, are those that contain some flip-flops that are 

purposefully not modified to scan flip-flops. A design’s capacity to be tested for 

manufacturing 

 

Figure 4 Design with scan 

Role of Scan Chain in DFT   

A scan chain is a series of sequential components, like flip-flops or latches, connected in 

sequence, each with an input and output. It allows for the recording and serial shifting out of 

the state of each flip-flop or latch for testing purposes. Scan chains are vital in Design for 

Testability (DFT) for several reasons:  
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1. Improved Testability: By providing access to the internal states of the circuit, scan 

chains improve the circuit's testability. This access makes it easier to detect and diagnose 

defects in the circuit.  

2. Reduced Test Time: Scan chains decrease the overall number of test vectors required, 

allowing for more efficient testing. Test vectors can be shifted in and out serially through the 

scan chain, thus shortening the test duration.  

3. Simplified Evaluation: They offer a standardized and easily automated method for 

assessing the circuit, which reduces both the time and cost of testing.  

4. Effective Troubleshooting: With scan chains, designers can monitor the internal states of 

a circuit during operation, facilitating troubleshooting efforts.  

Scan chains are a critical element in DFT, enabling the efficient and effective testing of 

digital circuits. Without them, testing large digital circuits would be more complex, time-

consuming, and costly.  

Scan Chain Functioning  

The scan chain’s functioning may be broken down into three phases, namely:   

1. Scan In: While the design is in test timing mode, test patterns are loaded at this stage.   

2. Capture: While the design is still in functional timing mode, the goal of this stage is to 

record how the design reacts to the test pattern.   

3. Scan Out: This phase’s primary goals are to unload the pattern response and return the 

design to the test timing mode. In rare circumstances, this step might also start the Scan In 

procedure, which will inject the next test pattern.   

For stuck-at testing, a single clock capture pulse is adequate because stuck-at testing is done 

at a slower frequency. But when testing for path delay or transition defects, functional speed 

is employed (also known as at speed testing), and the design is placed in functional timing 

mode with functional frequency. In the capture mode, this calls for two or more functional 

clock pulses.   

The execution of the capture timing mode for a scan chain differs somewhat for slow capture 

(for stuck-at faults) and at-speed capture (for path delay or transition faults). This will be 

covered in more depth during the conversation about the capture stage.  

In figure 5 the scan chain functioning is shown with description of three phases.   

Stage-1 Scan In:   

The loading stage, also known as the scan-in stage, serves the primary function of loading the 

appropriate test vectors. In figure 2.6, the SE signal is maintained high throughout this phase 

(asserted) to ensure the scan flipflop only recognizes the SI signals as inputs. All of the 

combinational logic between the flipflops is bypassed by doing this. The next flip-flop’s test 

patterns are then moved from SI to SO followed by SO to SI, creating a chain that serves as a 

shift register.   



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 1 (2025) 

  

612 
 

https://internationalpubls.com 

Test patterns go to the initial flip-flop in the scan chain after serially entering through the 

scan input port. They advance to the subsequent flip-flop stage for every active clock edge 

(shift register behavior), and so on, until all parts of the scan chain are loaded with the proper 

test patterns.   

For suppose there are n flip-flops in the scan chain, the test vectors are going to reach the SI   

(Q) pins and related combinational logic within the flip-flops after n-1 clock pulses. ‘The 

loading of test patterns’ is the technical term for this procedure.   

Stage-2 Capture:   

Slow-Stuck-at Capture: This mode operates on a slower frequency and is used to identify 

stuck-at problems. It only lasts for one clock cycle (CK) in this mode shown in figure 6. The 

flipflops function in the regular functional timing mode when the SE (enable signal) is low 

during this mode. The next flip-flop FF2/Q then records the test pattern response after it has 

been processed via the combinational logic. Prior to the next active clock edge arriving, the 

next flip-flop’s D input receives the test pattern response after the combinational logic has 

processed it. The processed test pattern response is stored in the following flip-flop until the 

active clock edge comes, at which point it may be accessed at the Q and SO pins.   

At Speed-Transition/Path delay Capture: Path delay or transition defects are found using 

capture mode at the functional frequency. Because both launch and capture operations must 

be completed quickly in at-speed testing. The capture mode lasts for two or more clock cycles 

(CK) shown in figure 7. In order to enable the flip-flops to operate in the typical timing 

mode, SE (enable signal) is low during this mode.   

Because there are two flip-flop steps involved, creating a pattern for this type of testing is 

difficult. In figure 2.7 the test pattern is launched to the specified combinational logic by the 

first capture pulse (CK) when SE is low by the FF2, and its response at FF2/Q(SO) is 

captured during the functional frequency by the second pulse (CK) when SE is low by FF3. 

The test pattern data launches from the flop’s D to Q pin with the first capture pulse, and it is 

captured by the following flip-flop and sent to its Q and SO pins during its second capture 

pulse. With this method, the test pattern response can be generated and recorded at the 

functional frequency. The test pattern is introduced to the intended combinational logic by the 

first clock pulse, and the desired combinational logic is given at-speed processing time by the 

second clock pulse.  

Stage-3 Scan Out:   

The scan chains are emptied in the scan out mode. To return the design into test timing mode, 

SE (scan enable) gets high once more. At each active clock edge, the collected data, which 

comprises the test pattern response processed via combinational logic, is serially shifted out 

on the scan chain. In this mode, the test pattern response that was recorded at the flip-flops’ 

SI pins is carried over to the scan output port so that it may be cross-checked against the 

anticipated outcomes shown in figures 6 and 7 respectively.  
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Figure 5 Scan chain functioning [5] 

 

Figure 6 Stuck-at capture waves 

 

Figure 7 At-speed capture waves 
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Complete Scan Design   

To obtain good fault coverage and a small test vector size, practically every flipflop in 

modern chip contains a significant amount of random logic and a high number of flipflops or 

latches are replaced with a scan cell. Then it is referred to as a “full or complete scan design”.   

In order to reduce the scan’s overhead area or for performance reasons, flipflops and latches 

may be partially replaced by scan cells but not a part of scan chains. This implies less fault 

coverage and more scan patterns for sequential testing with multi-cycle capture sequences. 

The cost of area is no longer a justification for “partial scanning” given that the cost of area 

and the expense of a single transistor on the die have been falling dramatically for years, 

while the test costs have been falling at a much slower rate. It is now more efficient to use 

more “cheap” area for test logic so as to save “expensive” test time and tester memory. The 

implementation of “partial scanning” may still be justified, though, given the performance 

reasons indicated above.  

4 ATPG Pattern Generation 

4.1 Introduction  

During the fabrication of integrated circuits, the imperfect manufacturing process can 

introduce defects that result in malfunctioning chips. The objective of test generation in 

digital circuit testing is to produce a set of test vectors that can identify any defects. This 

process, known as Automatic Test Pattern Generation (ATPG), aims to differentiate defective 

chips from defect-free ones by utilizing specific inputs.  

Effective test pattern generation is crucial for uncovering faults, and ATPG systems are 

essential for achieving this goal. The complexity of generating test patterns has led to the 

development of Design for Testability (DFT) methods to ease the ATPG process. In an ideal 

scenario, a powerful ATPG would render DFT methods unnecessary by delivering test 

patterns that achieve high fault coverage with minimal test sets.  

 

Figure 8 Example of a single stuck-at fault [3] 

ATPG systems employ abstract representations of defects, typically referred to as faults, to 

simplify test generation. The single stuck-at fault model is widely used in this context. This 

model assumes that a circuit node can be tied to either logic 1 or logic 0, representing a fault. 

For example, in Figure 8, if a signal (d) is stuck at logic 1 (denoted as (d/1)), the test patterns 
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need to apply logic 0 to this node (a) and logic 0 to another node (b). To detect the fault at the 

output, apply logic 1 to node (c) and observe the output at node (e).  

To detect all possible faults, ATPG attempts to create test vectors for each fault within the 

circuit. However, some faults might be logically equivalent, meaning no test can distinguish 

between them. Equivalent fault collapsing is a technique used to reduce the number of 

targeted faults by identifying these equivalences beforehand.  

4.2 ATPG Basic Tool Flow  

 

Figure 9 ATPG Tool Usage [6] 

The Scan Automatic Pattern Generation and Validation Environment is an ATPG flow 

developed collaboratively by various teams. It utilizes Tessent software from Mentor 

Graphics. The process is managed using a main script that handles settings, command-line 

options, inputs, and outputs, along with lower-level scripts for specific tasks. This structure 

allows each major function to be contained within a single script, facilitating concurrent 

development.  

 Here's a simplified breakdown of the tasks involved in generating test patterns as shown in 

Figure 9:  

1. Starting Tessent Shell: Launch the Tessent Shell using the command tessent -shell. Set 

the context to use ATPG functionality by running set_context patterns -scan.  
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2. Loading Design and Library: The ATPG tool needs a gate-level netlist and a Design for 

Testability (DFT) library. Use the commands read_cell_library and read_verilog to load 

these files. Every element in the netlist must have a corresponding definition in the DFT 

library.  

3. Setup Mode: After loading the netlist and library, the tool enters setup mode. Here, you 

can configure details about the design and its scan circuits either by interactive commands or 

by using a script file (dofile). This stage also includes setting parameters that influence model 

creation during design flattening.  

4. Exiting Setup Mode: After setting up, exiting the setup mode triggers several operations. 

If it's the first exit attempt, a flattened design model gets created. This model represents a 

simplified version of the design and is used in later steps. If the model already exists, perhaps 

due to a previous session or using the create_flat_model command, no new model is created.  

5. Learning Analysis: Once the model is flattened, the tool performs a learning analysis to 

understand the design better.  

6. Design Rule Checking: After learning analysis, the tool checks the design rules to ensure 

everything is in order.  

7. Analysis Mode: If the design passes the rule check, it moves into analysis mode, allowing 

you to simulate the pattern set applicable to the design.  

8. Pattern Creation: At this stage, you can generate test patterns. Additional setup might be 

needed, such as specifying a list of faults. ATPG can then be executed on this fault list, and 

during this process, fault simulation is done to confirm that the patterns can detect the 

anticipated faults.  

This workflow helps in efficiently generating test patterns to ensure that the integrated circuit 

functions correctly by identifying and addressing potential manufacturing defects. 

 ATPG Tool Inputs and Outputs  

 

Figure 10 ATPG Tool Inputs and Outputs [6] 
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As per Figure 9 ATPG Inputs:  

1. Design: The design data must be provided in gate-level Verilog format. Additional inputs 

include: 

• A cell model from the design library. 

• A previously saved, flattened model. 

2. Test Procedure File: This file outlines how the scan circuitry operates in your design. 

You can either create this file manually or have Tessent Scan automatically generate it using 

the write_atpg_setup command.  

3. Library: The design library contains details about all the cells used in the design. The tool 

leverages this library to convert the design data into a simplified, gate-level model that can be 

used by both the fault simulator and the test generator.  

4. Fault List: The tool can use an external fault list, which includes information and current 

states of faults, as a foundation for initiating the test generation process.  

ATPG Outputs:  

1. Test Patterns: The tool produces files with test patterns, available in different formats 

compatible with various simulators and ASIC vendors.  

2. ATPG Information Files: This collection of files contains data from the ATPG session, 

such as the creation of a session log.  

3. Fault List: An ASCII-readable file is generated, detailing internal fault information using 

the standard Mentor Graphics fault format.  

Results 

To generate test patterns for detecting stuck-at faults, the following command is utilized: 

create_patterns  

This command enables the automatic initiation of the ATPG process for stuck-at faults. By 

default, the tool generates these test patterns internally, meaning they are created within the 

ATPG system rather than being imported from external files. This approach streamlines the 

test pattern generation process and ensures integrated handling of design data.  

As per Figure 10 it will Performs test generation on selected faults from current fault list.  
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Figure 10 Pattern generation report in log 

4.4 Coverage Analysis  

Analyzing the coverage report and addressing low test coverage are crucial elements of 

ATPG execution. A fundamental step in this process involves understanding the various 

fault-related terms presented in the statistics reports produced by the ATPG tool. As 

illustrated in Figure 11, different fault classes are categorized, while Figure 12 provides an 

example of coverage statistics generated after ATPG's pattern generation phase. By 

reviewing these figures, users can pinpoint specific faults that need attention to enhance the 

overall coverage percentage.  

 

Figure 11 Coverage Statistics 
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Untestable faults can be categorized into four subgroups: tied, blocked, redundant, and 

unused. These types of faults do not lead to functional failures and are therefore excluded 

from the calculations for test coverage. The most widely recognized metric for measuring 

coverage is test coverage itself. To enhance test coverage, focusing on faults that are 

undetected and ATPG-untestable is often most effective.  

In figure 12 fault patterns are applied and simulation with expected response is observed, 

whereas in figure 12 mismatches are there between simulated and expected values at multiple 

time stamps resulting in simulation failure.  

 

Figure 12 No mismatch in simulation 

5  Conclusion & Future Scope 

In electronic design, Design for Testability (DFT) plays a crucial role in ensuring efficient 

and effective testing processes. This work explores the foundational concepts, methodologies, 

and techniques of DFT, emphasizing its importance in developing reliable and robust 

electronic systems. By adopting DFT principles, engineers and designers can address 

potential testing challenges, enhance test coverage, and improve overall product quality.  

The primary objectives of DFT include simplifying defect detection and diagnosis, reducing 

test time and costs, and enabling the development of efficient test programs. Techniques such 

as boundary scan, built-in self-test (BIST), hierarchical DFT, and scan-based methods were 

examined, highlighting their advantages and limitations. The influence of DFT spans all 

stages of the design process, from initial design to manufacturing and post-production testing.  

Key factors affecting DFT effectiveness include design complexity, area overhead, power 

consumption, and testability metrics. Implementing DFT involves trade-offs, requiring 

careful consideration of design constraints and goals. Challenges such as rising design 
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complexity, the advent of new technologies, and the need for standardized approaches were 

also discussed.  

Looking ahead, DFT will continue to evolve to address the growing complexity of electronic 

systems. Potential advancements include:  

1. Automation: Leveraging artificial intelligence (AI) and machine learning (ML) can 

transform DFT by automating tasks like test generation, fault diagnosis, and optimization. 

AI-based algorithms can analyze vast amounts of design and test data to detect patterns, 

predict potential failures, and streamline testing processes.  

2. Testability-Driven Design: Incorporating testability early in the design process can create 

inherently testable structures, reducing the need for complex DFT techniques and improving 

overall testability.  

3. System-Level Testability: As electronic systems become increasingly interconnected, 

DFT techniques should extend beyond individual components to include entire systems, 

encompassing interconnects, interfaces, and communication protocols.  

4. Standardization and Collaboration: Collaboration among designers, test engineers, and 

manufacturers can promote standardization, improving the integration of DFT techniques 

within design and testing environments.  

5. Integration with Design for Manufacturability (DFM): Aligning DFT with DFM 

principles ensures a smooth transition from design to production. By considering 

manufacturing constraints and testing requirements simultaneously, designers can optimize 

both manufacturability and testability.  

In summary, DFT remains a cornerstone of electronic design, facilitating effective testing 

processes. By embracing technological advancements, focusing on early-stage testability, 

expanding to system-level testing, standardizing practices, and integrating DFT with DFM, 

designers can address future challenges and drive innovation in  testability for electronic 

systems.  

Future research in the field of Design for Testability (DFT) focuses on enhancing automation 

and collaboration. The integration of artificial intelligence (AI) and machine learning (ML) 

has the potential to transform DFT by automating key processes such as test generation, fault 

diagnosis, and optimization. AI-driven algorithms can analyze large volumes of design and 

test data to uncover patterns, predict potential failures, and streamline testing procedures.  

Additionally, fostering collaboration between designers and test engineers will play a pivotal 

role in advancing DFT practices. Establishing standard interfaces and protocols can simplify 

the integration of DFT into the design and testing workflows, enabling a more cohesive and 

efficient process. This collaborative approach is expected to enhance the adoption of DFT 

strategies, paving the way for more reliable and testable electronic systems.  
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