
Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

607

https://internationalpubls.com

Overview of Design for Testability, ATPG Flow, Pattern

Generation and Translation

Dr. Sandeep Santosh

Department of Electronics and Communication, National Institute of Technology,

Kurukshetra, Haryana, India.

Email: profsandeepkkr@gmail.com

Article History:

Received: 19-01-2025

Revised: 24-02-2025

Accepted: 21-03-2025

Abstract:

In today's VLSI SoC designs, Design for Testability (DFT) is a crucial

methodology aimed at simplifying the testing of digital circuits during

the manufacturing and debugging phases to ensure their functionality

and performance. This technique primarily focuses on identifying

whether a fabricated device is defective. By implementing DFT,

testing costs and time can be significantly reduced, which in turn

enhances manufacturing yield and accelerates time-to-market.

Debugging Very Large Scale Integration (VLSI) circuits can be a

complex and time-intensive task. Therefore, the strategy is to address

failures early in the simulation phase, which can substantially decrease

the time required for debugging compared to on-silicon debugging.

Keywords: Design for Testability (DFT), ATPG Flow, Very Large

Scale Integration (VLSI), Pattern Generation, Translation.

1 Introduction

Design for Testability (DFT) is an essential methodology aimed at simplifying the process of

testing digital circuits during manufacturing and debugging. Its primary focus is to determine

whether a fabricated device is defective while ensuring that the circuit functions as intended.

By incorporating DFT techniques, manufacturers can significantly reduce testing time and

costs, leading to improved production yields and shorter time-to-market.

Implementing DFT requires careful consideration of several factors, including test coverage,

fault models, and the trade-offs between enhancing testability and maintaining other design

priorities like performance and power efficiency. As technology nodes shrink and designs

grow in complexity, testing becomes increasingly challenging and time intensive. Identifying

faulty chips under these conditions necessitates robust testing mechanisms.

To address these challenges, DFT introduces additional logic to the design without altering its

core functionality. This added logic improves the testability of the circuit by enhancing its

controllability and observability. By ensuring the quality of the manufactured chip, DFT

plays a vital role in maintaining design reliability and achieving superior product

performance.

mailto:profsandeepkkr@gmail.com

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

608

https://internationalpubls.com

Design for Testability (DFT) is a critical component in the design of integrated circuits (ICs),

aimed at enhancing the ease and effectiveness of testing to ensure the reliability and

functionality of chips. Fault models play a vital role in DFT by providing a framework to

simulate and understand potential defects in a circuit. Here’s an overview of some common

DFT fault models: m, ensuring that the memory can test itself during manufacturing, in-

system operation, and during periodic maintenance.[1]

2 Objective of the Work

a) To create or adapt system-on-chip (SoC) compatible test patterns for effective testing.

b) To reconstruct a virtual SoC-level design using netlists to ensure proper integration.

c) To validate the programming of test data registers for accurate functionality.

d) To simulate and verify both the functional and DFT logic within the design, ensuring

reliability and testability.

3 Scan Cell and Chain

Scan Cell

A scan flip-flop is a key element in creating a scan chain. Modern scan architecture typically

employs two main types of designs: Mux-D flip-flops and Level Sensitive Scan Design

(LSSD). Mux-D flip-flops are edge-triggered and incorporate a two-input multiplexer before

the data input. The multiplexer is controlled by a selection signal, commonly referred to as

"scan enable," "shift enable," "scan mode," or "test mode." When this signal is low, the

flipflop operates in its normal mode, allowing functional data to pass through. Conversely,

when the signal is high, it switches to scan mode, directing scan-in data through the flip-flop.

The flip-flop uses a single clock for both normal operations and shifting scan data.

Additionally, both functional and scan data are conveyed through a single output. The typical

design of a Mux-D flip-flop uses "scan en" for enabling the scan mode or shift, with "SI" and

"SO" representing the scan data input and output, respectively, as illustrated in Figure 1.

Figure 1 Scan cell design

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

609

https://internationalpubls.com

Mux-D flip-flops are widely favored because they offer minimal area overhead, requiring

only an additional selector signal for routing to each flip-flop. This selector typically has few

timing constraints. However, if delay faults need to be observed by initiating transitions

during the final shift cycle in scan testing, the selector should be routed similarly to a clock

tree. Addressing hold-time issues in Mux-D flip-flop-based scan chains can be challenging,

as simply reducing the scan shift frequency is not a viable solution, often necessitating a

design overhaul. The inclusion of a multiplexer in the functional data path can increase data

path delay and potentially lower the maximum frequency for functional operations. Since

only one clock tree supports both functional and scan shift modes, increasing expected scan

frequencies to expedite scan test execution might be labor-intensive and could negatively

impact power consumption.

In contrast, LSSD (Level-Sensitive Scan Design) scan cells utilize level-sensitive latches and

do not require a selector signal. Instead, their operation is governed by three clocks, allowing

the cell to retain functional data, store scan data, or propagate scan data to a specific scan

output, depending on the clock configuration. In the example LSSD cell shown in Figure 2,

there are two D-latches, and the latch that retains data features two input ports: one for

functional data and another for scan data.

Figure 2 LSSD cell

While LSSD scan architecture can be used in high-performance systems, it is less commonly

adopted. This approach comes with its own set of advantages and disadvantages:

Advantages:

• No extra delay in data paths.

• Avoidance of hold-time issues.

• Separate clock trees simplify timing constraints throughout the design process.

Disadvantages:

• Greater area overhead.

• Requirement to route two additional clock trees.

Scan Chain

Figure 3 illustrates a design lacking scan flip-flops, where shifting data in and out presents

difficulties, thus diminishing the design's controllability and observability. This challenge led

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

610

https://internationalpubls.com

to the introduction of scan-enabled flip-flops. In a full-scan design, scan flip-flops replace

standard flip-flops. As shown in Figure 4, these scan flip-flops are linked together to form a

scan chain. During test mode, with the test enable signal (SE) active, the scan chain functions

as a shift register. The scan input is connected to the first flip-flop in the chain, while the scan

output is linked to the final flip-flop.

Figure 3 Scan chain without scan

Partial scan designs, on the other hand, are those that contain some flip-flops that are

purposefully not modified to scan flip-flops. A design’s capacity to be tested for

manufacturing

Figure 4 Design with scan

Role of Scan Chain in DFT

A scan chain is a series of sequential components, like flip-flops or latches, connected in

sequence, each with an input and output. It allows for the recording and serial shifting out of

the state of each flip-flop or latch for testing purposes. Scan chains are vital in Design for

Testability (DFT) for several reasons:

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

611

https://internationalpubls.com

1. Improved Testability: By providing access to the internal states of the circuit, scan

chains improve the circuit's testability. This access makes it easier to detect and diagnose

defects in the circuit.

2. Reduced Test Time: Scan chains decrease the overall number of test vectors required,

allowing for more efficient testing. Test vectors can be shifted in and out serially through the

scan chain, thus shortening the test duration.

3. Simplified Evaluation: They offer a standardized and easily automated method for

assessing the circuit, which reduces both the time and cost of testing.

4. Effective Troubleshooting: With scan chains, designers can monitor the internal states of

a circuit during operation, facilitating troubleshooting efforts.

Scan chains are a critical element in DFT, enabling the efficient and effective testing of

digital circuits. Without them, testing large digital circuits would be more complex, time-

consuming, and costly.

Scan Chain Functioning

The scan chain’s functioning may be broken down into three phases, namely:

1. Scan In: While the design is in test timing mode, test patterns are loaded at this stage.

2. Capture: While the design is still in functional timing mode, the goal of this stage is to

record how the design reacts to the test pattern.

3. Scan Out: This phase’s primary goals are to unload the pattern response and return the

design to the test timing mode. In rare circumstances, this step might also start the Scan In

procedure, which will inject the next test pattern.

For stuck-at testing, a single clock capture pulse is adequate because stuck-at testing is done

at a slower frequency. But when testing for path delay or transition defects, functional speed

is employed (also known as at speed testing), and the design is placed in functional timing

mode with functional frequency. In the capture mode, this calls for two or more functional

clock pulses.

The execution of the capture timing mode for a scan chain differs somewhat for slow capture

(for stuck-at faults) and at-speed capture (for path delay or transition faults). This will be

covered in more depth during the conversation about the capture stage.

In figure 5 the scan chain functioning is shown with description of three phases.

Stage-1 Scan In:

The loading stage, also known as the scan-in stage, serves the primary function of loading the

appropriate test vectors. In figure 2.6, the SE signal is maintained high throughout this phase

(asserted) to ensure the scan flipflop only recognizes the SI signals as inputs. All of the

combinational logic between the flipflops is bypassed by doing this. The next flip-flop’s test

patterns are then moved from SI to SO followed by SO to SI, creating a chain that serves as a

shift register.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

612

https://internationalpubls.com

Test patterns go to the initial flip-flop in the scan chain after serially entering through the

scan input port. They advance to the subsequent flip-flop stage for every active clock edge

(shift register behavior), and so on, until all parts of the scan chain are loaded with the proper

test patterns.

For suppose there are n flip-flops in the scan chain, the test vectors are going to reach the SI

(Q) pins and related combinational logic within the flip-flops after n-1 clock pulses. ‘The

loading of test patterns’ is the technical term for this procedure.

Stage-2 Capture:

Slow-Stuck-at Capture: This mode operates on a slower frequency and is used to identify

stuck-at problems. It only lasts for one clock cycle (CK) in this mode shown in figure 6. The

flipflops function in the regular functional timing mode when the SE (enable signal) is low

during this mode. The next flip-flop FF2/Q then records the test pattern response after it has

been processed via the combinational logic. Prior to the next active clock edge arriving, the

next flip-flop’s D input receives the test pattern response after the combinational logic has

processed it. The processed test pattern response is stored in the following flip-flop until the

active clock edge comes, at which point it may be accessed at the Q and SO pins.

At Speed-Transition/Path delay Capture: Path delay or transition defects are found using

capture mode at the functional frequency. Because both launch and capture operations must

be completed quickly in at-speed testing. The capture mode lasts for two or more clock cycles

(CK) shown in figure 7. In order to enable the flip-flops to operate in the typical timing

mode, SE (enable signal) is low during this mode.

Because there are two flip-flop steps involved, creating a pattern for this type of testing is

difficult. In figure 2.7 the test pattern is launched to the specified combinational logic by the

first capture pulse (CK) when SE is low by the FF2, and its response at FF2/Q(SO) is

captured during the functional frequency by the second pulse (CK) when SE is low by FF3.

The test pattern data launches from the flop’s D to Q pin with the first capture pulse, and it is

captured by the following flip-flop and sent to its Q and SO pins during its second capture

pulse. With this method, the test pattern response can be generated and recorded at the

functional frequency. The test pattern is introduced to the intended combinational logic by the

first clock pulse, and the desired combinational logic is given at-speed processing time by the

second clock pulse.

Stage-3 Scan Out:

The scan chains are emptied in the scan out mode. To return the design into test timing mode,

SE (scan enable) gets high once more. At each active clock edge, the collected data, which

comprises the test pattern response processed via combinational logic, is serially shifted out

on the scan chain. In this mode, the test pattern response that was recorded at the flip-flops’

SI pins is carried over to the scan output port so that it may be cross-checked against the

anticipated outcomes shown in figures 6 and 7 respectively.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

613

https://internationalpubls.com

Figure 5 Scan chain functioning [5]

Figure 6 Stuck-at capture waves

Figure 7 At-speed capture waves

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

614

https://internationalpubls.com

Complete Scan Design

To obtain good fault coverage and a small test vector size, practically every flipflop in

modern chip contains a significant amount of random logic and a high number of flipflops or

latches are replaced with a scan cell. Then it is referred to as a “full or complete scan design”.

In order to reduce the scan’s overhead area or for performance reasons, flipflops and latches

may be partially replaced by scan cells but not a part of scan chains. This implies less fault

coverage and more scan patterns for sequential testing with multi-cycle capture sequences.

The cost of area is no longer a justification for “partial scanning” given that the cost of area

and the expense of a single transistor on the die have been falling dramatically for years,

while the test costs have been falling at a much slower rate. It is now more efficient to use

more “cheap” area for test logic so as to save “expensive” test time and tester memory. The

implementation of “partial scanning” may still be justified, though, given the performance

reasons indicated above.

4 ATPG Pattern Generation

4.1 Introduction

During the fabrication of integrated circuits, the imperfect manufacturing process can

introduce defects that result in malfunctioning chips. The objective of test generation in

digital circuit testing is to produce a set of test vectors that can identify any defects. This

process, known as Automatic Test Pattern Generation (ATPG), aims to differentiate defective

chips from defect-free ones by utilizing specific inputs.

Effective test pattern generation is crucial for uncovering faults, and ATPG systems are

essential for achieving this goal. The complexity of generating test patterns has led to the

development of Design for Testability (DFT) methods to ease the ATPG process. In an ideal

scenario, a powerful ATPG would render DFT methods unnecessary by delivering test

patterns that achieve high fault coverage with minimal test sets.

Figure 8 Example of a single stuck-at fault [3]

ATPG systems employ abstract representations of defects, typically referred to as faults, to

simplify test generation. The single stuck-at fault model is widely used in this context. This

model assumes that a circuit node can be tied to either logic 1 or logic 0, representing a fault.

For example, in Figure 8, if a signal (d) is stuck at logic 1 (denoted as (d/1)), the test patterns

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

615

https://internationalpubls.com

need to apply logic 0 to this node (a) and logic 0 to another node (b). To detect the fault at the

output, apply logic 1 to node (c) and observe the output at node (e).

To detect all possible faults, ATPG attempts to create test vectors for each fault within the

circuit. However, some faults might be logically equivalent, meaning no test can distinguish

between them. Equivalent fault collapsing is a technique used to reduce the number of

targeted faults by identifying these equivalences beforehand.

4.2 ATPG Basic Tool Flow

Figure 9 ATPG Tool Usage [6]

The Scan Automatic Pattern Generation and Validation Environment is an ATPG flow

developed collaboratively by various teams. It utilizes Tessent software from Mentor

Graphics. The process is managed using a main script that handles settings, command-line

options, inputs, and outputs, along with lower-level scripts for specific tasks. This structure

allows each major function to be contained within a single script, facilitating concurrent

development.

 Here's a simplified breakdown of the tasks involved in generating test patterns as shown in

Figure 9:

1. Starting Tessent Shell: Launch the Tessent Shell using the command tessent -shell. Set

the context to use ATPG functionality by running set_context patterns -scan.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

616

https://internationalpubls.com

2. Loading Design and Library: The ATPG tool needs a gate-level netlist and a Design for

Testability (DFT) library. Use the commands read_cell_library and read_verilog to load

these files. Every element in the netlist must have a corresponding definition in the DFT

library.

3. Setup Mode: After loading the netlist and library, the tool enters setup mode. Here, you

can configure details about the design and its scan circuits either by interactive commands or

by using a script file (dofile). This stage also includes setting parameters that influence model

creation during design flattening.

4. Exiting Setup Mode: After setting up, exiting the setup mode triggers several operations.

If it's the first exit attempt, a flattened design model gets created. This model represents a

simplified version of the design and is used in later steps. If the model already exists, perhaps

due to a previous session or using the create_flat_model command, no new model is created.

5. Learning Analysis: Once the model is flattened, the tool performs a learning analysis to

understand the design better.

6. Design Rule Checking: After learning analysis, the tool checks the design rules to ensure

everything is in order.

7. Analysis Mode: If the design passes the rule check, it moves into analysis mode, allowing

you to simulate the pattern set applicable to the design.

8. Pattern Creation: At this stage, you can generate test patterns. Additional setup might be

needed, such as specifying a list of faults. ATPG can then be executed on this fault list, and

during this process, fault simulation is done to confirm that the patterns can detect the

anticipated faults.

This workflow helps in efficiently generating test patterns to ensure that the integrated circuit

functions correctly by identifying and addressing potential manufacturing defects.

 ATPG Tool Inputs and Outputs

Figure 10 ATPG Tool Inputs and Outputs [6]

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

617

https://internationalpubls.com

As per Figure 9 ATPG Inputs:

1. Design: The design data must be provided in gate-level Verilog format. Additional inputs

include:

• A cell model from the design library.

• A previously saved, flattened model.

2. Test Procedure File: This file outlines how the scan circuitry operates in your design.

You can either create this file manually or have Tessent Scan automatically generate it using

the write_atpg_setup command.

3. Library: The design library contains details about all the cells used in the design. The tool

leverages this library to convert the design data into a simplified, gate-level model that can be

used by both the fault simulator and the test generator.

4. Fault List: The tool can use an external fault list, which includes information and current

states of faults, as a foundation for initiating the test generation process.

ATPG Outputs:

1. Test Patterns: The tool produces files with test patterns, available in different formats

compatible with various simulators and ASIC vendors.

2. ATPG Information Files: This collection of files contains data from the ATPG session,

such as the creation of a session log.

3. Fault List: An ASCII-readable file is generated, detailing internal fault information using

the standard Mentor Graphics fault format.

Results

To generate test patterns for detecting stuck-at faults, the following command is utilized:

create_patterns

This command enables the automatic initiation of the ATPG process for stuck-at faults. By

default, the tool generates these test patterns internally, meaning they are created within the

ATPG system rather than being imported from external files. This approach streamlines the

test pattern generation process and ensures integrated handling of design data.

As per Figure 10 it will Performs test generation on selected faults from current fault list.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

618

https://internationalpubls.com

Figure 10 Pattern generation report in log

4.4 Coverage Analysis

Analyzing the coverage report and addressing low test coverage are crucial elements of

ATPG execution. A fundamental step in this process involves understanding the various

fault-related terms presented in the statistics reports produced by the ATPG tool. As

illustrated in Figure 11, different fault classes are categorized, while Figure 12 provides an

example of coverage statistics generated after ATPG's pattern generation phase. By

reviewing these figures, users can pinpoint specific faults that need attention to enhance the

overall coverage percentage.

Figure 11 Coverage Statistics

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

619

https://internationalpubls.com

Untestable faults can be categorized into four subgroups: tied, blocked, redundant, and

unused. These types of faults do not lead to functional failures and are therefore excluded

from the calculations for test coverage. The most widely recognized metric for measuring

coverage is test coverage itself. To enhance test coverage, focusing on faults that are

undetected and ATPG-untestable is often most effective.

In figure 12 fault patterns are applied and simulation with expected response is observed,

whereas in figure 12 mismatches are there between simulated and expected values at multiple

time stamps resulting in simulation failure.

Figure 12 No mismatch in simulation

5 Conclusion & Future Scope

In electronic design, Design for Testability (DFT) plays a crucial role in ensuring efficient

and effective testing processes. This work explores the foundational concepts, methodologies,

and techniques of DFT, emphasizing its importance in developing reliable and robust

electronic systems. By adopting DFT principles, engineers and designers can address

potential testing challenges, enhance test coverage, and improve overall product quality.

The primary objectives of DFT include simplifying defect detection and diagnosis, reducing

test time and costs, and enabling the development of efficient test programs. Techniques such

as boundary scan, built-in self-test (BIST), hierarchical DFT, and scan-based methods were

examined, highlighting their advantages and limitations. The influence of DFT spans all

stages of the design process, from initial design to manufacturing and post-production testing.

Key factors affecting DFT effectiveness include design complexity, area overhead, power

consumption, and testability metrics. Implementing DFT involves trade-offs, requiring

careful consideration of design constraints and goals. Challenges such as rising design

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

620

https://internationalpubls.com

complexity, the advent of new technologies, and the need for standardized approaches were

also discussed.

Looking ahead, DFT will continue to evolve to address the growing complexity of electronic

systems. Potential advancements include:

1. Automation: Leveraging artificial intelligence (AI) and machine learning (ML) can

transform DFT by automating tasks like test generation, fault diagnosis, and optimization.

AI-based algorithms can analyze vast amounts of design and test data to detect patterns,

predict potential failures, and streamline testing processes.

2. Testability-Driven Design: Incorporating testability early in the design process can create

inherently testable structures, reducing the need for complex DFT techniques and improving

overall testability.

3. System-Level Testability: As electronic systems become increasingly interconnected,

DFT techniques should extend beyond individual components to include entire systems,

encompassing interconnects, interfaces, and communication protocols.

4. Standardization and Collaboration: Collaboration among designers, test engineers, and

manufacturers can promote standardization, improving the integration of DFT techniques

within design and testing environments.

5. Integration with Design for Manufacturability (DFM): Aligning DFT with DFM

principles ensures a smooth transition from design to production. By considering

manufacturing constraints and testing requirements simultaneously, designers can optimize

both manufacturability and testability.

In summary, DFT remains a cornerstone of electronic design, facilitating effective testing

processes. By embracing technological advancements, focusing on early-stage testability,

expanding to system-level testing, standardizing practices, and integrating DFT with DFM,

designers can address future challenges and drive innovation in testability for electronic

systems.

Future research in the field of Design for Testability (DFT) focuses on enhancing automation

and collaboration. The integration of artificial intelligence (AI) and machine learning (ML)

has the potential to transform DFT by automating key processes such as test generation, fault

diagnosis, and optimization. AI-driven algorithms can analyze large volumes of design and

test data to uncover patterns, predict potential failures, and streamline testing procedures.

Additionally, fostering collaboration between designers and test engineers will play a pivotal

role in advancing DFT practices. Establishing standard interfaces and protocols can simplify

the integration of DFT into the design and testing workflows, enabling a more cohesive and

efficient process. This collaborative approach is expected to enhance the adoption of DFT

strategies, paving the way for more reliable and testable electronic systems.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

621

https://internationalpubls.com

References

1. “Scan and ATPG Process Guide”, Mentor Graphics, 2006.

2. Lo, H. H., Lee, W. F., Reaz, M. B. I., Hisham, N., & Shakaff, A. Y. M. (2008). Design

methodology to achieve good testability of VLSI chips: An industrial perspective. In

Proceedings of the International Conference on Electronic Design (ICED) IEEE.

3. Wang, L. T., Wu, C. W., & Wen, X. VLSI Test Principles and Architectures. Elsevier.

4. VCS Functional Verification User Guide, Version X2005.06 Synopsys, 2005.

5. Chauhan, J., Panchal, C., and Suthar, H., 2017. “Scan methodology and atpg dft

techniques at lower technology node”. In 2017 International Conference on Computing

Methodologies and Communication (ICCMC).

6. Tessent Scan and ATPG User’s Manual, Mentor Graphics, Version 2016.3.

7. Design-for-Test: Scan and ATPG Training Student Workbook, Mentor Graphics.

8. AMD Internal Documents.

9. Impedance Control in HDI and Substrate-Like PCBs for AI Hardware Applications.

(2024). Journal of Electrical Systems, 20(11s), 5109-5115.

10. F. -H. Tang, H. -Y. Kao, S. -H. Huang and J. -F. Li, "3D Test Wrapper Chain

Optimization with I/O Cells Binding Considered," 2019 International 3D Systems

Integration Conference (3DIC), Sendai, Japan, 2019, pp. 1-4, doi:

10.1109/3DIC48104.2019.9058794.

