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Abstract:  

This paper presents an analytical and numerical analysis of an inventory model incorporating 

credit periods, focusing on major business concerns that face cash flow constraints. In such 

circumstances, credit periods serve as a crucial tool for determining optimal production 

inventory strategies. The foremost objective of the research is to assess the benefits accrued 

by both producers and buyers within a fixed credit period framework. The analytical solution 

model developed in this study aims to optimize production inventory costs by considering 

the cycle periods and interest earned during shortage periods. Through the utilization of 

differential equations, the model offers a comprehensive evaluation of inventory 

management strategies. By incorporating credit periods as a key parameter, the research 

investigates how producers and buyers can derive maximum benefits from this approach. 

Furthermore, a numerical example is given to describe the practical application of the model 

and demonstrate how decision variables are employed in real-world scenarios. This example 

showcases the effectiveness of the analytical and numerical analysis in determining optimal 

production inventory costs. Overall, this study contributes to the understanding of inventory 

management in situations where cash flow is inconsistent. By incorporating credit periods 

into the analysis, the research provides insights into the decision-making process for 

production inventory, enabling businesses to optimize costs and enhance overall efficiency.  

Keywords:  Permissible delay payments, Production quantity, Linear Demand, Partially 

backlogged shortages, time horizon. 

1. Introduction 

   Inventory management is a critical aspect for businesses across various industries and sectors. The 

efficient management of inventory levels is essential for meeting customer demands, minimizing 

costs, and maximizing profitability. One important factor that influences inventory management 

strategies is the consideration of credit periods in the context of production and linear demand. An 

inventory model that incorporates production and linear demand, along with credit periods, allows 

companies to make informed decisions about their inventory control strategies. By understanding the 

dynamics of production, demand patterns, and credit periods, businesses can optimize their inventory 

levels and align them with their operational and financial goals. In various fields and industries, 

companies face the challenge of balancing production activities with customer demand. They need to 

ensure that they have sufficient inventory on hand to meet customer orders promptly while avoiding 

excessive inventory levels that can tie up working capital. The integration of production and linear 

demand in an inventory model enables companies to optimize production schedules and order 
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quantities to meet demand fluctuations efficiently. Moreover, credit periods play a crucial role in 

managing inventory and cash flow. The availability of credit periods allows companies to delay 

payment for goods or services received, providing a financial advantage by freeing up working 

capital for other purposes. By strategically utilizing credit periods, businesses can capably manage 

their cash flow and strengthen their complete financial position. The integration of credit periods into 

the inventory model provides companies with a holistic approach to inventory management. It allows 

them to evaluate the trade-offs between holding costs, production costs, and financial benefits 

derived from credit periods. This comprehensive analysis enables businesses to make data-driven 

decisions on order quantities, production schedules, and payment terms. The application of the 

inventory model with production and linear demand using credit periods is relevant to various 

industries and companies. Whether in manufacturing, retail, distribution, or any other sector that 

deals with inventory management, the model offers a framework for optimizing inventory levels and 

achieving operational efficiency. By incorporating production, linear demand, and credit periods into 

their inventory management strategies, companies can streamline their operations, reduce costs, and 

enhance customer satisfaction. The utilization of this model allows businesses to strike a balance 

between meeting demand, minimizing holding costs, and effectively managing their cash flow. 

 

     Throughout this paper, we will delve into the analytical and numerical analysis of the inventory 

model with production and linear demand using credit periods. We will explore the benefits and 

trade-offs associated with this approach and provide practical insights for companies in different 

fields to enhance their inventory management strategies. Through the integration of production, 

linear demand, and credit periods in the inventory model, companies can gain a competitive edge in 

their respective industries. The ability to optimize inventory levels while considering production 

capabilities, demand fluctuations, and financial advantages of credit periods is crucial for sustained 

success. In manufacturing companies, the inventory model with production and linear demand using 

credit periods enables efficient production planning and scheduling. By aligning production activities 

with anticipated demand and utilizing credit periods strategically, manufacturers can minimize stock 

outs, reduce production costs, and enhance customer satisfaction. The model allows for a more 

accurate estimation of the optimal production quantity, taking into account both the immediate 

demand and the anticipated future demand based on linear patterns. Retailers and distributors also 

benefit from the integration of credit periods into their inventory management strategies. By 

leveraging credit periods offered by suppliers, they can maintain optimal inventory levels without 

tying up excessive capital. This approach not only improves cash flow but also allows retailers to 

respond quickly to changing customer demands. By accurately forecasting the linear demand and 

factoring in credit periods, retailers can effectively determine the order quantities that will meet 

customer needs while managing their financial resources efficiently. Furthermore, the inventory 

model with production and linear demand using credit periods extends beyond manufacturing and 

retail sectors. It is applicable in various fields such as healthcare, e-commerce, and service-based 

industries. For instance, healthcare facilities can utilize the model to optimize their inventory of 

medical supplies, ensuring they have the right quantities available while managing costs. E-

commerce companies can leverage credit periods to streamline their inventory management 

processes, improve fulfilment operations, and enhance customer experience. 
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1.1 LITERATURE REVIEW 

 

Zhang and Wang [1] proposed a mathematical model for inventory management in supply chain 

networks that takes into account multiple demand scenarios, supply chain structure, and inventory 

policies. The goal is to minimize the total cost of inventory while ensuring a high level of service 

level for customers. Zhu and Cui [2] developed a novel mathematical model for inventory control in 

a multi-level supply chain network. The model considers the coordination of inventory decisions 

between different echelons of the supply chain and aims to optimize the total inventory cost while 

satisfying customer demand. Li et al. [3] discussed a model for inventory management that 

incorporates demand uncertainty and lead time variability. The model aims to minimize the total 

inventory cost while ensuring a high service level for customers. Gao et al. [4] developed a stochastic 

mathematical model for inventory management in a multi-echelon supply chain that considers both 

demand uncertainty and lead time variability. The model aims to minimize the total inventory cost 

while ensuring a high level of service level for customers. Sarkar, B et al. [5] developed an inventory 

model with trade-credit policy, variable deterioration for production products. Sana, S. S [6] studied 

a production–inventory model for imperfect inventory process.  Huang, Y. F. [7] studied an 

inventory model under two levels of trade credit and also limited storage space model.  Hammami, R 

et al. [8] Analyzed carbon emissions in a multi-echelon production-stock using lead time constraints. 

Birim.S et al. [9] presented evaluating vendor managed inventory systems: how incentives can 

benefit supply chain partners. Srivathsan, S., & Kamath, M et al. [10] considered a performance 

modeling of a two-echelon with supply chain and information sharing. Muniappan et al. [11] 

developed an EOQ model for deteriorating products and time value of money for delay payments. 

Muniappan et al. [12] developed a production inventory model for vendor–buyer with quantity 

discount and backordering for used products. Mohammadi, H et al. [13] discussed about 

deteriorating and seasonal products, such as fresh produce, the issues of timely supply and disposal 

of the deteriorated products are of high concerns and presented a new mathematical model of the 

location-routing problem of facilities in supply chain network for deteriorating items by taking 

environmental reflections, cost, delivery time and customer satisfaction into account across the entire 

network and customer satisfaction. Amini, A et al. [14] addresses about combined transportation and 

inventory problem in a two-stage supply chain, including suppliers and retailers and the role of 

energy in terms of fuel's type selection. Vafaeenezhad et al. [15] discussed about the purchase, 

production and distribution quantities for facilities in a supply chain and minimizing the total cost or 

maximizing the profits was the major aim of supply chains, responsibility for the environmental and 

social impacts, processes and products, the safety and health of their employees and the entire 

community. Huang, J et al. [16] studied the complexities of bidders’ information interactions and 

behaviour preferences caused from financial and production perceptions. Also we take into account 

the complex and dynamic market background, which will impact the operation effect of sale policies. 

Yadav, A. S et al. [17] discussed about simulated Annealing to optimize FIFO & LIFO in green 

supply chain inventory management of Hazardous substance components industry and studied on 

determining the most likely level of surplus stock and shortage required for FIFO & LIFO in green 

supply chain stocks of Hazardous substance components industry to find the minimum total cost of 

the supply chain. Setak, M et al. [18] discussed two mathematical models of supply chain under 
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uncertainty.  The competition is considered as a game. Davizon, Y. A et al. [19] studied the 

mathematical modelling, optimal control, and stability analysis for dynamic supply chain. Aghsami, 

A et al. [20] addresses various aspects of the blood collection centres are considered in this model 

and storage of optimum blood level is considered. Dehghani, E et al. [21] studied the Markov 

process and mixed-integer nonlinear programming is presented to design the distribution network of 

a supply chain. Yang et al. [22] studied the inventory competition under lead time sensitive demands 

and compared the consolidated scenarios. Yadav, A. S et al. [23] discussed the most likely level of 

surplus stock and shortage required for green supply chain stocks of Auto-components industry to 

find the minimum total cost in supply chain. R. Uthayakumar, & A. Ruba Priyadharshini [24] 

discussed a deteriorating item return policy with allowable delay and partial backlog is included in 

the inventory model for a single item. By selling both price and time, it optimizes the overall profit. 

Duary,et al. [25]  A developed a very non-linear objective function for a two-warehouse inventory 

problem, taking into account all potential cases and subcases. In addition to applying the suggested 

algorithm to identify the best ideal values from an economic perspective, we employed the GRG 

technique to solve the problem. A two-warehouse inventory model with a decaying product whose 

demand varies with time, selling price, the strength of media advertisements, and continuous time 

with a mixed type trade credit policy is also updated here. Najafnejhad, E et al. [26] established the 

demand fluctuations in inventory management are greatly decreased by this policy. Based on the 

vendor-managed policy, this article creates an inventory model with many merchants and a single 

vendor. Apart from making inventory decisions, the suggested methodology maximizes an upper 

bound on inventory levels determined by a penalty. The established mathematical model's goal is to 

determine the best value for retailers' order quantities, replenishment frequencies, and upper limits on 

their inventory levels. Saren, S., et al. [27] demonstrates that a cap and trade policy can be used to 

control the overall amount of carbon released into the atmosphere by the transportation and 

production sectors, the lead time demand for items by retailers is assumed to be random rather than 

fixed uniform and normal distribution functions. The ideal retailer lot size, customer service rendered 

by the store, and retailer reorder points are evaluated under these two distribution functions. 

Ganguly,et al. [28] examined a reworking approach that would be put into practice following an 

inventory of such faulty goods and  there would be no shortages when the assembled product was 

remanufactured. Productivity variation was raised to enhance the quality of the completed products 

while lowering manufacturing costs. The space capacity and budget were regarded as limitations. 

Based on five distinct distribution functions and the defined variable parameters of production rate, 

manufacturing batch size, and backorder amount, the total inventory cost was computed. Mondal, et 

al. [29] discussed a three-tiered supply chain management model based on a single manufacturer, one 

supplier, and several retailers, all subject to payment and advertising regulations. Advertising has 

shown to have a beneficial impact on sales since it creates demand for the goods in the market. By 

taking into account a single-setup multiple-delivery policy, variable transportation costs, variable 

carbon emissions costs, and trade-credit policy, the model seeks to minimize supply chain costs and 

maximize profit. Based on the payment duration, the objective function is optimized for certain 

instances. Sen, N et al. [30] establishes a green supply chain model with one supplier and one buyer 

for decaying commodities. Demand is influenced by the selling price and the degree of greening 
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improvement. There are two established generalized models for green supply chains: one with 

consignment stock policy and the other without. 

1.2 Research Focus 

     The integration of production, linear demand, and credit periods in the inventory model offers 

significant benefits for companies across diverse fields. By optimizing inventory levels, aligning 

production with demand, and strategically utilizing credit periods, businesses can achieve operational 

efficiency, cost savings, and improved financial performance. The analytical and numerical analysis 

of this inventory model provides valuable insights and practical guidance for companies to make 

informed decisions regarding their inventory management strategies. Throughout this paper, we will 

delve further into the specific methodologies, analyses, and numerical examples that illustrate the 

advantages of the inventory model with production and linear demand using credit periods. We aim 

to provide readers with a comprehensive understanding of how this model can be applied in various 

industries and companies, ultimately enabling them to optimize their inventory management 

practices and achieve their business objectives. 

1.3   Decision variables 

The permissible delay  𝑀 

Time horizon 𝑇, 𝑇1 

Optimum total inventory cost 𝑇𝐶(𝑇1, 𝑇)  

Backlogged shortage 𝛿 

2.  FORMULATION AND ANALYTICAL SOLUTION FOR INVENTORY MODEL 

     In the proposed inventory model, the change in inventory over a [0, T1) time interval is 

determined by the production and the linear demand. Additionally, the occurrence of shortages in 

subsequent time intervals is taken into account. The model formulation can be described as follows 

the inventory level at the beginning of the time interval as 𝐼1(𝑡), the production quantity during the 

time interval [0, T1)as P. The demand rate (linear) during the time interval [0, T1) as D(t). The 

shortage quantity during the time interval [T1, T) as S(t). Hence, the change in inventory over the 

time interval [0, T) can be calculated as:  

𝑑𝐼1(𝑡)

𝑑𝑡
+ 𝜃𝐼1(𝑇1) =  𝑃 − 𝑎 − 𝑏𝑡 ;  [0, T1).                                                                           (1) 

𝐼1(𝑇1) = 0 gives, 

𝐼1(𝑡) =
𝜃(𝑃−𝑎)+𝑏

𝜃2 [1 − 𝑒𝜃(𝑇1−𝑡)] +  
𝑏

𝜃
[𝑇1𝑒𝜃(𝑇1−𝑡) − 𝑡]                                                                   

𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝜃𝐼2(𝑇1) =  −

𝑎

1+ 𝛿 (𝑇−𝑡)
 ;   [T1, T).                                                                             ( 2) 

𝐼2(𝑇1) = 0 gives, 

𝐼2(𝑡) = −
𝑎

𝛿
[𝑙𝑜𝑔(1 + 𝛿(𝑇 − 𝑇1)) − 𝑙𝑜𝑔(1 + 𝛿(𝑇 − 𝑡)) ]   

We obtain inventory level for the different intervals as follows: 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 31 No. 2s (2024) 

 

 

47 
https://internationalpubls.com 

  𝐼1(𝑡) =
𝜃(𝑃−𝑎)+𝑏

𝜃2 [1 − 𝑒𝜃(𝑇1−𝑡)] +  
𝑏

𝜃
[𝑇1𝑒𝜃(𝑇1−𝑡) − 𝑡]                                                         (3) 

   𝐼2(𝑡) = −
𝑎

𝛿
[𝑙𝑜𝑔(1 + 𝛿(𝑇 − 𝑇1)) − 𝑙𝑜𝑔(1 + 𝛿(𝑇 − 𝑡)) ]                                                 (4) 

I (T) = 𝐼1(𝑡) +  𝐼2(𝑡);  [0, T)                                                                                                    (5) 

Various Inventory cost calculated by using integral calculus in the interval [0, T1)  

We are using holding cost ℎ, shortage cost 𝑠, Deterioration cost 𝑝, Opportunity cost 𝛼.  

HC =  ℎ ∫ 𝐼1(𝑡)𝑑𝑡
𝑇1

0
 

= ℎ {
𝜃(𝑃−𝑎)+𝑏

𝜃3
[1 − 𝑒𝜃𝑇1] +

𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
)) }                                            (6) 

DC = 𝑝𝜃 ∫ 𝐼1(𝑡)𝑑𝑡
𝑇1

0
 

= 𝑝𝜃 {
𝜃(𝑃−𝑎)+𝑏

𝜃3 [1 − 𝑒𝜃𝑇1] +
𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
)) }                                         (7) 

SC = 𝑠 ∫ 𝐼2(𝑡)𝑑𝑡
𝑇

𝑇1
 

= 
𝑠𝑎

𝛿2
[𝛿(𝑇 − 𝑇1) − log (1 + 𝛿(𝑇 − 𝑇1))]                                                                             (8) 

OC = 𝛼 ∫ 𝐼2(𝑡)𝑑𝑡
𝑇

𝑇1
 

= 
𝑎𝛼

𝛿
{𝛿(𝑇 − 𝑇1) − log (1 + 𝛿(𝑇 − 𝑇1)) }                                                                          (9) 

 

2.1. Scenario1:  supplier’s delay payment period  𝑀 ≤  𝑇1 

      Consider a situation where a buyer purchases goods or services from a supplier on credit, with 

specific payment terms and conditions. In this case, the supplier's permissible delay, denoted as M, 

represents the maximum duration allowed for the buyer to settle the outstanding payment. Let's say 

the total credit period agreed upon between the supplier and the buyer is denoted as 𝑇1. It is specified 

that within each credit cycle, the buyer earns interest during the interval [0, 𝑇1), referred to as IE1, at 

a rate denoted as Ie. However, in the subsequent interval [M, 𝑇1), denoted as Ip, the buyer is required 

to pay interest to the supplier at a predetermined interest rate, denoted as Ir. To provide a real-life 

example, let's consider a retailer purchasing goods from a wholesaler on credit terms. The wholesaler 

allows a credit period of 60 days (𝑇1) for the retailer to make the payment. However, the retailer has 

the flexibility to delay payment for up to 30 days (M) before it is considered overdue. During the 

first 30 days of the credit period ([0, 30), denoted as IE1), the retailer benefits from earning interest 

on the outstanding amount owed to the wholesaler. However, if the retailer delays the payment 

beyond the permissible delay (M) and falls within the interval [30, 60) days (denoted as Ip), it is 

required to pay interest to the wholesaler at the predetermined interest rate, Ir. This serves as a 

mechanism to incentivize the buyer to make timely payments and compensate the supplier for the 

delayed payment. 
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     In summary, this real-life example illustrates a scenario where a buyer earns interest during the 

initial portion of the credit period [0, 𝑇1) (denoted as IE1), but once the permissible delay (M) is 

exceeded, the buyer is obliged to pay interest to the supplier during the subsequent period [M, 𝑇1) 

(denoted as Ip). We have, 

IE1 = 𝑝𝐼𝑒 ∫ (𝑇1 −  𝑡)(𝑎 + 𝑏𝑡)𝑑𝑡
𝑇1

0
 

      = 
𝑝𝐼𝑒 𝑇1

2

6
[3𝑎 + 𝑏𝑇1]                                                                                                                (10)

  

Ip   =  𝑝𝐼𝑟 ∫ 𝐼(𝑡)𝑑𝑡
𝑇1

𝑀
  

      =  𝑝𝐼𝑟 {
1−𝑒𝜃(𝑇1−𝑀)

𝜃3
[𝜃(𝑃 − 𝑎) + 𝑏(1 − 𝜃𝑇1)] +

𝜃(𝑃−𝑎)+𝑏

𝜃2
[𝑇1 − 𝑀] −

𝑏

2𝜃
(𝑇1

2 − 𝑀2)}    (11)  

PC = ∫ (𝑎 + 𝑏𝑡)𝑐𝑑𝑑𝑡
𝑇1

0
 

       = 𝑐𝑑 [𝑎𝑇1 +
𝑏𝑇1

2

2
]                                                                                                                

       (12)                                                              

Average cost developed as follow 

                                                                   

        TC1   = 
1

𝑇
{𝑟 + ℎ {

𝜃(𝑃−𝑎)+𝑏

𝜃3 [1 − 𝑒𝜃𝑇1] +
𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
))}  +  𝑃𝜃 {

𝜃(𝑃−𝑎)+𝑏

𝜃3 [1 − 𝑒𝜃𝑇1] +

𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
))} +  𝑠 {

𝑎

𝛿2 [𝛿(𝑇 − 𝑇1) − log (1 + 𝛿(𝑇 − 𝑇1))]} +  
 𝑎𝛼

𝛿
{𝛿(𝑇 − 𝑇1) −

log (1 + 𝛿(𝑇 − 𝑇1)) } +  𝑃𝐼𝑟 {
1−𝑒𝜃(𝑇1−𝑀)

𝜃3
[𝜃(𝑃 − 𝑎) + 𝑏(1 − 𝜃𝑇1)] +

𝜃(𝑃−𝑎)+𝑏

𝜃2
[𝑇1 − 𝑀] −

𝑏

2𝜃
(𝑇1

2 − 𝑀2)} +𝑐𝑑 [𝑎𝑇1 +
𝑏𝑇1

2

2
] −

𝑝𝐼𝑒 𝑇1
2

6
[3𝑎 + 𝑏𝑇1]} 

          =  
1

𝑇
{𝑟 + (ℎ + 𝑃𝜃) {

𝜃(𝑃−𝑎)+𝑏

𝜃3 [1 − 𝑒𝜃𝑇1] +
𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
)) } +

 𝑎(𝑠+𝛿𝛼)

𝛿2 {𝛿(𝑇 − 𝑇1) −

log (1 + 𝛿(𝑇 − 𝑇1)) } + 𝑃𝐼𝑟 {
1−𝑒𝜃(𝑇1−𝑀)

𝜃3
[𝜃(𝑃 − 𝑎) + 𝑏(1 − 𝜃𝑇1)] +

𝜃(𝑃−𝑎)+𝑏

𝜃2
[𝑇1 − 𝑀] −

𝑏

2𝜃
(𝑇1

2 − 𝑀2)} +𝑐𝑑 [𝑎𝑇1 +
𝑏𝑇1

2

2
] −

𝑝𝐼𝑒 𝑇1
2

6
[3𝑎 + 𝑏𝑇1]}                                                      (13) 

                   
𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1
= 0   𝑎𝑛𝑑   

 𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇
= 0                                                                        

2.1.1. Solution procedure for optimum inventory level 

[
𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1
2 ]

𝑎𝑡 (𝑇1
∗ ,𝑇∗)

> 0   , [
𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇2 ]
𝑎𝑡 (𝑇1

∗ ,𝑇∗)
> 0 ; [(

𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1
2 ) (

𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇2 ) − (
𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1𝜕𝑇
)

2

] >

0   

  
𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1
= 0   𝑎𝑛𝑑   

 𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇
= 0  Implies the optimal values of  𝑇∗ and  𝑇1

∗ 
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𝜕𝑇𝐶1(𝑇1, 𝑇)

𝜕𝑇1
= 0 

 

1

𝑇
{(ℎ + 𝑃𝜃) {(𝜃(𝑃 − 𝑎) + 𝑏) (

−𝑒𝜃𝑇1  

𝜃2
) +

𝑇1

𝜃
 [𝑏 (𝑒𝜃𝑇1 −

1

2
)] +

1

𝜃2
 [(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
))] } −

 𝑎(𝑠+𝛿𝛼)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
+ 𝑃𝐼𝑟 {– 𝑏 (

1−𝑒𝜃(𝑇1−𝑀)

𝜃2 ) −  
𝑒𝜃(𝑇1−𝑀)

𝜃2
[𝜃(𝑃 − 𝑎) + 𝑏(1 − 𝜃𝑇1)] +

𝜃(𝑃−𝑎)+𝑏

𝜃2 −

𝑏𝑇1

𝜃
} +𝑐𝑑[𝑎 + 𝑏𝑇1] −

𝑝𝐼𝑒 𝑇1

3
[3𝑎 + 𝑏𝑇1] −

𝑝𝐼𝑒 𝑏𝑇1
2

6
} = 0                                              (14) 

𝜕𝑇𝐶1(𝑇1, 𝑇)

𝜕𝑇
= 0 

1

𝑇
{

 𝑎(𝑠+𝛿∝)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
} −  

1

   𝑇2
{𝑟 + (ℎ + 𝑃𝜃) {

𝜃(𝑃−𝑎)+𝑏

𝜃3
[1 − 𝑒𝜃𝑇1] +

𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
)) } +

 𝑎(𝑠+𝛿𝛼)

𝛿2 {𝛿(𝑇 − 𝑇1) − log (1 + 𝛿(𝑇 − 𝑇1)) } + 𝑃𝐼𝑟 {
1−𝑒𝜃(𝑇1−𝑀)

𝜃3
[𝜃(𝑃 − 𝑎) + 𝑏(1 − 𝜃𝑇1)] +

𝜃(𝑃−𝑎)+𝑏

𝜃2
[𝑇1 − 𝑀] −

𝑏

2𝜃
(𝑇1

2 − 𝑀2)} +𝑐𝑑 [𝑎𝑇1 +
𝑏𝑇1

2

2
] −

𝑝𝐼𝑒 𝑇1
2

6
[3𝑎 + 𝑏𝑇1]}  = 0                          (15) 

Hence the optimum cycle length values are 𝑇1
∗,  𝑇∗ and optimum average inventory cost is  

𝑇𝐶1(𝑇1, 𝑇) 

2.2. Scenario2:  supplier’s payment delay  𝑻𝟏 < 𝑀 

     Consignment inventory refers to a situation where the supplier stocks and maintains inventory at 

the buyer's premises, but the buyer does not pay for the inventory until it is consumed or sold. In this 

scenario, the buyer benefits from having access to the inventory without incurring any immediate 

costs. Consider a manufacturing company (buyer) that relies on a supplier for raw materials. The 

supplier agrees to provide consignment inventory to the buyer, ensuring a constant supply of raw 

materials. The agreement specifies that within the time interval [0, M), the buyer earns interest on the 

inventory held and does not pay any interest or carrying costs to the supplier during this period. 

During this time interval, the buyer can utilize the consignment inventory to fulfil production 

demands without paying for the materials upfront. This arrangement allows the buyer to effectively 

manage cash flow by deferring the payment until the inventory is consumed or transformed into 

finished goods. Meanwhile, the buyer can invest the funds that would have been allocated for 

purchasing inventory elsewhere, potentially earning interest on those funds during the consignment 

period. Overall, the consignment inventory arrangement exemplifies a real-life scenario where the 

buyer benefits from earning interest on inventory held within the specified time interval [0, M), 

without incurring any interest or carrying costs associated with the supplier's consigned inventory. 

Therefore we have, 

IE2 = 𝑝𝐼𝑒 {∫ (𝑇1 −  𝑡)(𝑎 + 𝑏𝑡)𝑑𝑡 +  (𝑀 − 𝑇1 ) ∫ (𝑎 + 𝑏𝑡)𝑑𝑡 
𝑇1

0

𝑇1

0
} 

       = 
𝑝𝐼𝑒 𝑇1

2

6
[3𝑎 + 𝑏𝑇1] +

𝑝𝐼𝑒 𝑇1(𝑀−𝑇1)

2
[2𝑎 + 𝑏𝑇1]                                                                     

  (16) 
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The total average cost developed as 

   TC2 =      
𝑟 + 𝐻𝐶 + 𝐷𝐶 + 𝑆𝐶 + 𝑂𝐶+𝑃𝐶− 𝐼𝐸2

𝑇
                                                                                       

  (17) 

          = 
1

𝑇
{𝑟 + ℎ {

𝜃(𝑃−𝑎)+𝑏

𝜃3 [1 − 𝑒𝜃𝑇1] +
𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
))} +  𝑃𝜃 {

𝜃(𝑃−𝑎)+𝑏

𝜃3 [1 − 𝑒𝜃𝑇1] +

𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
))} +  𝑠 {

𝑎

𝛿2 [𝛿(𝑇 − 𝑇1) − log (1 + 𝛿(𝑇 − 𝑇1))]} +  
 𝑎𝛼

𝛿
{𝛿(𝑇 − 𝑇1) −

log (1 + 𝛿(𝑇 − 𝑇1)) } +𝑐𝑑 [𝑎𝑇1 +
𝑏𝑇1

2

2
] −

𝑃𝐼𝑒 𝑇1
2

6
[3𝑎 + 𝑏𝑇1] −

𝑝𝐼𝑒 𝑇1(𝑀−𝑇1)

2
[2𝑎 + 𝑏𝑇1]}  

           =  
1

𝑇
{𝑟 + (ℎ + 𝑃𝜃) {

𝜃(𝑃−𝑎)+𝑏

𝜃3
[1 − 𝑒𝜃𝑇1] +

𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
)) } +

 𝑎(𝑠+𝛿𝛼)

𝛿2
{𝛿(𝑇 − 𝑇1) −

log (1 + 𝛿(𝑇 − 𝑇1)) }+𝑐𝑑 [𝑎𝑇1 +
𝑏𝑇1

2

2
] −

𝑝𝐼𝑒 𝑇1
2

6
[3𝑎 + 𝑏𝑇1] −

𝑝𝐼𝑒 𝑇1(𝑀−𝑇1)

2
[2𝑎 + 𝑏𝑇1]}                                                                                                            

(18) 

2.2.1. Solution procedure for optimum inventory level 

To solve  
𝜕𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1
= 0   𝑎𝑛𝑑   

 𝜕𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇
= 0    and the sufficient conditions are                                                     

[
𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1
2 ]

𝑎𝑡 (𝑇1
∗ ,𝑇∗)

> 0   , [
𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇2 ]
𝑎𝑡 (𝑇1

∗ ,𝑇∗)
> 0 𝑎𝑛𝑑 [(

𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1
2 ) (

𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇2 ) −

(
𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1𝜕𝑇
)

2

] > 0 

 

1

𝑇
{(ℎ + 𝑃𝜃) {(𝜃(𝑃 − 𝑎) + 𝑏) (

−𝑒𝜃𝑇1 

𝜃2 ) +
𝑇1

𝜃
 [𝑏 (𝑒𝜃𝑇1 −

1

2
)] +

1

𝜃2  [(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −
𝜃𝑇1

2
))] } −

 𝑎(𝑠+𝛿𝛼)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
+𝑐𝑑[𝑎 + 𝑏𝑇1] − 𝑝𝐼𝑒 (𝑎 + 𝑏𝑇1)(𝑀 − 𝑇1)}   = 0                                                                                                                  

(19)         

  
𝜕𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇
= 0 

 
1

𝑇
{

 𝑎(𝑠+𝛿𝛼)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
} −  

1

   𝑇2
{𝑟 + (ℎ + 𝑃𝜃) {

𝜃(𝑃−𝑎)+𝑏

𝜃3 [1 − 𝑒𝜃𝑇1] +
𝑇1

𝜃2
(𝜃(𝑃 − 𝑎) + 𝑏 (𝑒𝜃𝑇1 −

𝜃𝑇1

2
)) } +

 𝑎(𝑠+𝛿𝛼)

𝛿2 {𝛿(𝑇 − 𝑇1) − log (1 + 𝛿(𝑇 − 𝑇1)) }+𝑐𝑑 [𝑎𝑇1 +
𝑏𝑇1

2

2
] −

𝑝𝐼𝑒 𝑇1
2

6
[3𝑎 + 𝑏𝑇1] −

𝑝𝐼𝑒 𝑇1(𝑀−𝑇1)

2
[2𝑎 +

𝑏𝑇1]}                                                                                                                             

                                                                                                                               (20) 

 Hence the optimal values are 𝑇1
∗ and  𝑇∗ and optimum average cost is 𝑇𝐶2(𝑇1

∗, 𝑇∗). 
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3. NUMERICAL ANALYSIS  

Table 3.1 Changes in different decision variables 

  𝜹  

M 2 3 4 

5         TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗ 

4.4963 X 1028 

827.1952 

826.6952 

9.2133 X 1026 

778.6209 

778.2875 

1.8418 X 1025 

729.7397 

729.4897 

10       TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗   

3.0291 X 1021 

620.8900 

620.3900 

2.2013 X 1017 

501.8787 

501.5454 

1.3824 X 1013 

381.1116 

380.8616 

15       TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

1.8893 X 1014 

413.7335 

413.2335 

7.8069 X 107 

230.4927 

230.1594 

7.1454 X 104 

50.2504 

49.9543 

20       TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗ 

1.0331 X 107 

205.0625 

204.5625 

5.3775 X 104 

36.8832 

36.4306 

7.5777 X 103 

168.5181 

168.2681 

25       TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

1.3602 X 107 

5.9916 

6.2550 

7.2276 X 106 

200.5001 

200.1668 

3.1132 X 104 

506.2087 

505.9587 

 

Table 3.2 Changes in different decision variables 

   𝜹   

M 1 2 3 4 5 

5   TC (T1,T)   

𝑻𝟏
∗                   

𝑻∗      

4.1905 X 1043 

1.4135 X 103 

1.4125 X 103 

1.1096 X 1038 

1.2301 X 103 

1.2296 X 103 

6.2022 X 1033 

1.0903 X 103 

1.0899 X 103 

1.5567 X 1030 

971.8674 

971.6174 

9.3828 X 1026 

866.0034 

865.8034 

10 TC (T1,T)                               

                     

𝑻𝟏
∗                     

                 

     𝑻∗      

2.4093 X 1035 

1.1425 X 103 

1.1415 X 103 

3.7857 X 1027 

885.9160 

885.4160 

1.1996 X 1021 

672.2785 

675.9451 

1.5939 X 1015 

479.2169 

478.9669 

4.4645 X 109 

297.0809 

296.8809 

30 TC (T1,T)   

                  𝑻𝟏
∗  

                  𝑻∗      

5.1465 X 1035 

30.4084 

29.3617 

3.6045 X 1028 

173.2545 

172.7545 

7.5704 X 1021 

698.5739 

698.2406 

2.4025 X 1036 

1.1754 X 103 

1.1751 X 103 

2.4001 X 1049 

1.6009 X 103 

1.6007 X 103 
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Table 3.3 Changes in different decision variables 

  𝜹  

M 1 2 3 

5          TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

3.1050 X 105 

34.9379 

34.8524 

9.2133 X 1026 

778.6209 

778.2875 

1.8418 X 1025 

729.7397 

729.4897 

10        TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

2.4945 X 105 

27.8632 

26.7505 

1.7809 X 105 

19.9712 

19.4182 

2.6640 X 104 

13.8226 

13.4452 

15        TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

1.8503 X 105 

20.3688 

19.2046 

9.6210 X 104 

10.3770 

9.7606 

1.8597 X 104 

1.2340 

1.7273 

25       TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

2.2438 X 104 

4.1077 

0.0161 

8.4983 X 104 

9.1159 

8.4776 

1.7930 X 105 

20.3517 

19.9900 

35       TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

9.8379 X 104 

10.3926 

8.9951 

2.4016 X 105 

27.3753 

26.8382 

3.1132 X 1017 

33.3314 

32.9819 

45       TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

2.3268 X 105 

26.1037 

24.9813 

3.5302 X 105 

40.5510 

40.0281 

3.2294 X 105 

37.2245 

36.8770 

55        TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

3.5347 X 105 

40.1939 

39.1227 

4.2710 X 105 

49.1483 

48.6314 

2.9820 X 105 

34.4051 

34.0561 

 

Table 3.4 Changes in different decision variables 

 M  

𝜹 5 15 

1         TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

4.0237 X 1030 

883.3441 

882.3441 

1.1256 X 1023 

666.0408 

665.0408 

2        TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

2.7562 X 1028 

821.0799 

820.5799 

8.9539 X 1018 

548.1489 

547.6489 

3        TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

6.5556 X 1026 

774.3687 

774.0354 

2.3585 X 1015 

445.2460 

444.9126 

4        TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

3.0652 X 1025 

736.1033 

735.8533 

1.2527 X 1012 

351.1609 

350.9109 
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5        TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

2.1144 X 1024 

702.6979 

702.4979 

1.0747 X 109 

263.1678 

262.9678 

10      TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

2.3901 X 1019 

560.4200 

560.3200 

8.7991 X 103 

2.7822 

2.8177 

20      TC (T1, T)   

                     𝑻𝟏
∗   

                     𝑻∗      

3.6397 X 109 

278.3660 

278.3160 

1.8342 X 103 

1.0174 X 103 

0.0174 X 103 

25      TC (T1, T)   𝑻𝟏
∗   

                     𝑻∗      

2.4325 X 105 

139.7781 

139.7381 

1.0987 X 103 

2.1046 X 103 

2.1046 X 103 

 

4. CONCLUSION 

The two scenarios presented in the paper shed light on different dynamics in the buyer-supplier 

relationship regarding permissible delay and interest rates. The findings highlight the importance of 

understanding and optimizing credit terms in inventory management strategies.  

4.1 Results and Discussion 

4.1.1. Scenario 1: Supplier's Permissible Delay M ≤ T1 In this scenario, where the supplier's 

permissible delay M is less than or equal to the total credit period T1, the analysis reveals a distinct 

pattern in interest earnings and payments for the buyer. During each credit cycle, the buyer earns 

interest (IE1) in the interval [0, T1) while paying interest (Ip) in the interval [M, T1). This model 

encourages the buyer to settle the payment within the permissible delay to avoid additional costs. 

The implications of this scenario suggest that the buyer can benefit from earning interest on the 

outstanding amount during the initial period of the credit term. However, if the buyer delays payment 

beyond the permissible delay, the buyer incurs interest charges, serving as a financial incentive for 

timely payment. This scenario emphasizes the importance of managing cash flow effectively to 

maximize interest earnings and minimize interest payments. 

4.1.2. Scenario 2: Supplier's Permissible Delay T1 < M In this alternative scenario, the supplier's 

permissible delay T1 is less than the total credit period M. Notably, during the interval [0, M), 

denoted as IE2, the buyer earns interest at the Ie rate without paying any interest to the supplier. The 

discussion surrounding this scenario reveals a different dynamic in the buyer-supplier relationship. 

The buyer has the advantage of earning interest on the outstanding amount during the entire 

permissible delay period [0, M) without incurring any interest payments to the supplier. This 

situation presents an opportunity for the buyer to utilize the available cash resources strategically, 

potentially generating additional income through interest-earning investments. However, it is crucial 

for the buyer to manage the payment effectively and settle the outstanding amount within the 

permissible delay (M) to avoid additional interest charges. The findings suggest that the buyer's 

ability to optimize cash flow and leverage the interest-earning potential during the permissible delay 

can significantly impact the overall financial performance. 
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Overall, both scenarios emphasize the importance of effectively managing credit terms, permissible 

delays, and interest rates in inventory management. The findings provide valuable insights into the 

dynamics of the buyer-supplier relationship, enabling businesses to make informed decisions and 

optimize their inventory strategies based on the specific credit terms and financial incentives 

involved.  Furthermore, the analysis of these two scenarios underscores the significance of aligning 

credit terms with the cash flow dynamics and financial goals of the buyer. The choice of permissible 

delay and the corresponding interest rates can have a substantial impact on the buyer's ability to earn 

interest, manage costs, and optimize working capital. 

In Scenario 1, where the permissible delay is within or equal to the total credit period, the buyer 

faces the risk of incurring interest payments if the payment is delayed beyond the permissible limit. 

This setup encourages prompt payment and serves as a mechanism to incentivize the buyer to 

maintain a healthy cash flow and minimize financial costs. It highlights the importance of effective 

cash flow management and timely payment to leverage interest earnings while avoiding additional 

expenses. On the other hand, Scenario 2 presents a scenario where the permissible delay exceeds the 

total credit period. In this case, the buyer has the advantage of earning interest throughout the entire 

permissible delay without incurring any interest payments to the supplier. This scenario provides the 

buyer with an opportunity to strategically utilize cash resources and potentially earn additional 

income through interest-earning investments. However, it also emphasizes the importance of 

disciplined financial management to ensure timely payment within the permissible delay and avoid 

any negative consequences such as interest charges. Overall, the analysis of these scenarios 

emphasizes the need for businesses to carefully consider and negotiate credit terms with suppliers to 

align with their financial objectives. Optimizing credit terms can lead to improved cash flow, 

reduced financial costs, and enhanced profitability. By understanding the dynamics of permissible 

delay and interest rates, buyers can make informed decisions regarding inventory management, 

working capital allocation, and financial strategies. It is important to note that the specific 

implications and outcomes of these scenarios may vary depending on the industry, market 

conditions, and individual buyer-supplier relationships. Therefore, businesses should conduct a 

thorough analysis of their unique circumstances and consider the potential trade-offs and benefits 

associated with different credit terms and interest rate structures. 

4.2 Research contribution  

The objective of the developed analytical solution model is to determine the optimal production 

inventory cost by considering the cycle period and incorporating the interest earned during shortage 

periods. Through the model, the study aims to identify the most cost-effective production and 

inventory strategies. To illustrate the effectiveness of the model, a numerical example is provided to 

showcase the optimal values of the decision variables. This example demonstrates the practical 

application of the analytical solution in real-world scenarios and highlights the potential cost savings 

and efficiency improvements achievable through its implementation. Furthermore, the model has the 

potential for extension to accommodate additional factors such as price breaks and various holding 

costs. By incorporating these elements, the model can offer a more comprehensive and accurate 

representation of the inventory management problem, enabling businesses to make informed 

decisions and optimize their operations based on specific pricing and holding cost considerations. 
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Overall, the developed analytical solution model provides a valuable framework for evaluating and 

optimizing production inventory costs. Its flexibility to incorporate various factors and its potential 

for extension make it a versatile tool for businesses seeking to enhance their inventory management 

strategies and achieve cost savings. 
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