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Abstract: Computers have significantly impacted various fields, but managing vast 

amounts of information remains challenging. Artificial intelligence helps machines make 

data-driven decisions, but large datasets still pose difficulties for researchers. To tackle 

challenges and gain deep insights from large datasets, we proposed a novel technique 

using Geometric Progression series numbers (GPLN) for labeling singleton frequent 

itemsets and Cumulative Geometric Progression series numbers (CGPLN) for labeling 

itemsets with multiple frequent items. Initially, the algorithm used 2 as the constant 'r' 

for generating the series, but that was inadequate for large datasets. So, this paper 

proposes the Jagged Itemset Counting (JIC) algorithms 1 and 2 by reducing the value of 

‘r’ and introduced dotted pairs for CGPLN labels to represent frequent itemsets. This 

redefined methodology requiring two passes over the transaction database: the first pass 

involves pre-processing, identifying singleton (1-k) frequent itemsets, determining 

GPLN, and partitioning the dataset. The partitions are processed sequentially: JIC-

Algorithm-1 is applied to the first partition and JIC-Algorithm-2 to the remaining 

partitions. The n-k frequent itemsets from all partitions are combined using the Join 

algorithm, alongside 1-k itemsets found earlier. For small and medium-sized data, the 

JIC methodology outperforms Apriori and Eclat algorithms, showing better execution 

time even at low support thresholds. In Big Data scenarios, while FP-Growth and Eclat 

struggled, the proposed methodology excelled in execution time, main memory 

consumption, and disk memory utilization. 

Keywords— Frequent Itemset Mining (FIM), Big Data, Jagged Itemset Counting (JIC), 

Geometric Progression (GP), Geometric Progression Label Number (GPLN), 

Cumulative Geometric Progression Label Number (CGPLN), Apriori, Eclat, FP Growth. 

 

Introduction 

The introduction of computing technology has greatly impacted business data processing and 

scientific computing. Initially, data storage was limited, but storage capacity has exponentially 

grown, doubling every two years. Today, organizations accumulate massive volumes of data, 

stored in megabytes, gigabytes, or terabytes daily [3]. The HACE theorem outlines the key 

characteristics of big data, which is essential for various business applications and analyses. 

Frequent itemset mining is a crucial method for identifying common data patterns. In our earlier 
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works, the initial method for mining frequent items involved using Geometric Progression 

series numbers as labels for each item, summing the items in subsets to find their frequency 

[1]. This approach used the constant 'r' as 2 for generating the series and the generated labels 

are inadequate for large datasets. To overcome this limitation, the Jagged Itemset Counting 

(JIC) algorithm was introduced. This algorithm employs Geometric Progression sequence 

numbers for labeling items, making it easier to mine frequent items. The Geometric Progression 

Label Number (GPLN) labels individual items, while the Cumulative Geometric Progression 

Label Number (CGPLN) labels itemsets [2]. This straightforward method enhances the speed 

of Frequent Itemset mining, leading to the development of the JIC methodologies for mining 

frequent itemsets from voluminous data. Despite numerous algorithms developed over the past 

few decades, many struggle with identifying frequent itemsets from sparse datasets at low 

support counts and efficiently handling large datasets. Among the seven V's of big data, 

'Volume' is the most challenging for frequent itemset mining. As the JIC algorithm was a 

straightforward method that speeds up the Frequent Itemset mining process, it was further 

modified and named the Jagged Itemset Counting methodologies to mine frequent itemsets 

from voluminous data. 

This paper addresses this by introducing Jagged Itemset Counting methodologies, pre-

processing raw internet data, and reading the database twice. It uses six algorithms: Pre-

Processing, Partitioning, GPLN, Jagged Itemset Counting (JIC) - 1, JIC - 2, and Join operation, 

with performance measured in execution time and primary memory consumption. 

I. BACKGROUND AND LITERATURE 

FIM algorithms are classified into two categories: those based on threshold/support measure 

and those without. The first algorithm to find Association-rules was proposed in 1993 and later 

renamed as the Apriori algorithm [4] [5]. The Apriori algorithm, Eclat algorithm [6], and FP 

growth algorithm [7] are the roots of most FIM algorithms. However, the Apriori algorithm 

may take longer to execute when the data set size is large. The Eclat algorithm uses a depth-

first search technique but may not be effective for sparse databases. The FP-Tree algorithm 

loads data into main memory and creates a prefix-based tree representation. The FP Growth 

algorithm offers benefits but has drawbacks, such as complexity, cost, and memory 

requirements for large datasets. 

The Partition [8] reads transaction databases twice without considering partitions, but has 

disadvantages like partition size skew and poor performance when common super sets are 

present in multiple partitions. DHP [9] is a hash-based technique used to efficiently minimize 

candidate itemset size in early stages, with faster execution time than Apriori but longer hash 

table generation time. The Apriori method, initially refined and renamed Dynamic Itemset 

Counting (DIC), performed poorly in some datasets due to its low support level and infrequent 

items [10]. For mining frequent itemsets from dynamic datasets using ZIGZAG backtracking 

search and dynamically maintained support information without database scanning was 

introduced [11]. The effectiveness of this strategy is influenced by the distribution of items in 

transactions, as it does not yield impressive results when data is skewed [12]. 

The Buddy Prima algorithm [13], which uses prime numbers to represent transactions, but 

requires more computational power, memory, and I/O processing capacity for large databases 

like VLDB. A new methodology was introduced using weights for frequent itemsets, based on 

user-specified minimum range [14]. The runtime also depends on the weight range. PRISM 

approach was developed for frequent sequence mining, using primal-block encoding notation 

for itemsets, but its cardinality is insufficient for massive data sets [15]. A Bi-Eclat technique 

was introduced for improving the real Eclat algorithm, but found it unstable in sparse databases 

and inadequate for massive ones [16]. FP-Tree-based [17] infrequent itemset mining was 
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proposed by adjusting pattern size based on computational complexity, with run time 

increasing with higher lower-bound values. AprioriMin [18] was introduced using a support 

value approximation method for frequent itemset discovery, but found it underperforms when 

support is minimal. The N-list [19] approach under the Subsume technique have significantly 

improved the pre-post methodology for locating frequent itemsets, but not for sparse data. 

HashEclat [20] uses an approximation strategy for optimizing the Eclat algorithm using 

MinHash, but its effectiveness depends on matrix-sample-rate, "wrong-estimation" and "wrong 

omission". WFRIM [21] mines FIs using a user-specified weight and threshold, requiring more 

processing time and memory when the regularity threshold has more variations. The Single 

Scan (SS) approach [22] used for finding frequent itemsets using High Performance Computing, 

but this method faces memory constraints. A new method for mining frequent-itemsets by 

trimming transactions iteratively from lattice, which showed performance issues with smaller 

dataset sizes and limited distinct item counts [23]. 

For identifying frequent item sets from big data in distributed computing settings by 

highlighting the significant increase in execution time with database size [24]. The authors 

present an innovative approach to Frequent Itemset Mining, which overcomes the challenges 

of existing methods and provides fresh insights from various data sources. 

II. PRELIMINARIES AND PROBLEM STATEMENT 

Let the supermarket transaction database, TxDb, contains the set of transactions. Txn =
 {Txn1, Txn2, … , Txnn} where  Txni ∈  Txn, ∀i =  {1, 2, … , n}. TxDb is a database made up of 

a countable number of Items, which are represented as TxI =  {TxI1, TxI2, … , TxIn}, where 

 TxIi ∈  TxI, ∀i =  {1, 2, … , n}. A transaction, Txni , is a combination of items bought by a 

single customer. As a result of  Txni ⊆ TxI. An Itemset γ containing one or more items such 

that γ ⊆ Txni and whose size is determined by the number of items contained within it. A set 

is said to be a frequent itemset when its support count φ exceeds the minimum support count 

σmin , calculated using the user-specified threshold σ. The support count φ is calculated by 

counting the number of occurrences of items in the TxDb transaction. 

Definition-1 (GPLN): A Geometric Progression Label Number (GPLN) is a mathematical 

Geometric Progression sequence number produced by Equation 1. 

 

GPLN = a ∗  rn−1                                       … Eqn. (1) 

where 'a' is the first term, 'r' is a constant and 'n' is the sequence's nth term. The final term 'n' 

represents the total number of unique items in the TxDb. The JIC algorithm calculates 'a' as ten 

times the number of unique items (numItems*10) in the database TxDb and 'r' is calculated 

using Equation 2. 

r = 1 +
9.25

a
                                                … Eqn. (2) 

where a=numItems*10. 1 and 9.25 are the constants. 

 

Definition-2 (CGPLN): In each transaction, the Cumulative GPLN for each subset γ will be 

calculated by simply adding all the GPLN of the subset's corresponding items. The CGPLN is 

calculated using Equation 3 below. 

 

CGPLN(γ) = ∑ GPLN(TxIi)

TxIi∈ γ

  

                where TxIi ∈  γ, ∀i =  {1, 2, … , |γ|}       … Eqn. (3) 
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Definition-3 (CGPLN-Label): It is the label representation for the itemsets and it is assigned 

after the CGPLN of each itemset is calculated using the label structure shown in Equation 4. 

This label structure, in the style of three-dotted values, is used to label the itemsets uniquely 

(xxxx.xxxx.xxxx). These three dotted values represent the CGPLN-calculated value, the 

number of items in the Itemset and the sum of the item-values respectively, as shown in the 

syntax below: 

CGPLN . Itemset Size . Sum of Items            … Eqn. (4) 

Definition-4 (Frequent Itemset): The singleton (1-k) frequent itemsets discovered as found 

in the Apriori algorithm are identified during the first phase of the algorithm execution 

(Agrawal and Srikant 1994). The n-k frequent itemsets are discovered based on its support 

count. When the support φ of CGPLN-Label exceeds the minimum support count σmin , the 

itemsets are said to be frequent n-k itemsets. 

φ(CGPLN − Label) >  σmin                 ⟹            CGPLN − Label is Frequent 

The CGPLN-Labels are replaced with their corresponding original itemsets and added to the 

final frequent itemset list during the Join algorithm implementation. 

III. JAGGED ITEMSET COUNTING (JIC) ALGORITHMS AND METHODOLOGIES 

The real-time dataset is downloaded from the website# and that cannot be used directly for data 

mining. To understand the buying pattern from sales as well as customer purchasing behaviour 

from the transaction database, the following are the algorithms which are designed as shown 

in the Figure-1 for this proposed work: algorithm for Pre-Processing, algorithm for partitioning 

the dataset, algorithm for GPLN, algorithm for Jagged Itemset Counting (JIC) -1, algorithm for 

Jagged Itemset Counting (JIC) -2 and algorithm for Join. 

 

 

Fig. 1  System Architecture diagram 
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The raw data downloaded from the website is pre-processed in such a way that all the items 

associated with a given order-id are aggregated into a single row, with the reference id. Order-

ids that are redundant are removed. Columns and fields that are irrelevant to this study are also 

removed. Table 1 displays the order details for the given raw dataset, with order id in the first 

column and product id in the second. All the items associated with a specific order id are 

grouped into a single row separated by a comma with that order id referenced. This data is then 

inserted into the pre-processed file as a single row. 

Algorithm for Pre-Processing:  

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑒𝑠 

2. 𝑂𝑝𝑒𝑛 𝑅𝑎𝑤 − 𝑑𝑎𝑡𝑎 (𝑇𝑟𝐷𝑎𝑡𝑎. 𝑐𝑠𝑣) 𝑓𝑖𝑙𝑒 

3. 𝑅𝑒𝑎𝑑 𝑎 𝐿𝑖𝑛𝑒 𝑓𝑟𝑜𝑚 𝑇𝑟𝐷𝑎𝑡𝑎 𝑎𝑛𝑑 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑡𝑜 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝐷𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 ′𝐶𝑜𝑚𝑚𝑎′ 
4. 𝑇𝑟𝐷𝑎𝑡𝑎𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + + 

5. 𝑜𝑟𝑑𝐼𝐷𝑖  ← 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑜𝑟𝑑𝑒𝑟𝐼𝐷] 
6. 𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝐴𝑝𝑝𝑒𝑛𝑑 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝐷] 
7. 𝑅𝑒𝑎𝑑 𝑁𝑒𝑥𝑡𝐿𝑖𝑛𝑒 𝑓𝑟𝑜𝑚 𝑇𝑟𝐷𝑎𝑡𝑎 𝑎𝑛𝑑 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑡𝑜 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝐷𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 ′𝐶𝑜𝑚𝑚𝑎′  
8. 𝑇𝑟𝐷𝑎𝑡𝑎𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + + 

9. 𝑜𝑟𝑑𝐼𝐷𝑗  ← 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑜𝑟𝑑𝑒𝑟𝐼𝐷] 

10. 𝐼𝑓 𝑜𝑟𝑑𝐼𝐷𝑗 == 𝑜𝑟𝑑𝐼𝐷𝑖𝑡ℎ𝑒𝑛 

11.   𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝐴𝑝𝑝𝑒𝑛𝑑 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝐷] 
12.   𝐼𝑓 𝑛𝑜𝑡 𝑇𝑟𝐷𝑎𝑡𝑎. 𝐸𝑂𝐹 𝑡ℎ𝑒𝑛 

13.    𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑟𝑜𝑚 𝑆𝑡𝑒𝑝 − 7 

14.    𝐸𝑛𝑑 𝑖𝑓 

15. 𝐸𝑛𝑑𝑖𝑓 

16.  𝑊𝑟𝑖𝑡𝑒 𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏. 𝑑𝑎𝑡 𝑓𝑖𝑙𝑒 

17.  𝑝𝑟𝑒𝐷𝑏𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + + 

18.  𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑛𝑢𝑙𝑙 
19. 𝐼𝑓 𝑛𝑜𝑡 𝑇𝑟𝐷𝑎𝑡𝑎. 𝐸𝑂𝐹 𝑡ℎ𝑒𝑛 

20.   𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑟𝑜𝑚 𝑆𝑡𝑒𝑝 − 3 

21.  𝐸𝑙𝑠𝑒 

22.   𝐸𝑥𝑖𝑡 

23.  𝐸𝑛𝑑 𝑖𝑓 

24. 𝐶𝑙𝑜𝑠𝑒 𝑇𝑟𝐷𝑎𝑡𝑎 𝑓𝑖𝑙𝑒 

25. 𝑊𝑟𝑖𝑡𝑒 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒 𝑤𝑖𝑡ℎ 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

A. Partitioning 

According to the literature, the number of candidate set subsets will grow at an exponential 

rate. In view of this and in order to improve performance in frequent itemset mining, the pre-

processed file is further partitioned into three Partitions based on the number of items present 

in each transaction. The unique items are already identified during the pre-processing with its 

support and now the items with its support less than the ‘GlobalSupportCount’ will be removed 

and that are considered as infrequent item. 

 

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡  𝜎𝑚𝑖𝑛
𝐺 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∗ (𝜎 /100)  … Eqn. (5) 

 

From the each transaction of the pre-processed file, infrequent items are removed and the 

singleton frequent items are counted. The partition is chosen based on the number of items in 

a transaction line and data is written into the corresponding dataset. Partition-1 will only 

include transactions containing 13 or fewer items, Partition-2 will include transactions 
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containing more than 13 but less than or equal to 30 items and Partition-3 will include 

transactions containing more than 30 items. The Pseudo code for the partitioning algorithm as 

follows: 

Algorithm for Partitioning 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
2.  𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏. 𝑑𝑎𝑡  
3. 𝑅𝑒𝑎𝑑 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏  
4. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑥𝑛𝑖 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏 
5.   𝑖𝑡𝑒𝑚𝐶𝑜𝑢𝑛𝑡 + + 
6.  𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + + 
7.   𝑆𝑝𝑙𝑖𝑡 𝑇𝑥𝑛𝑖 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑑𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 ′𝑆𝑝𝑎𝑐𝑒′ 
8.   𝑖𝑓 𝑝𝑎𝑟𝑡𝑠𝐶𝑜𝑢𝑛𝑡 > 30 𝑡ℎ𝑒𝑛 
9.    𝑊𝑟𝑖𝑡𝑒 𝑇𝑥𝑛𝑖𝑖𝑛 𝑝𝑟𝑒𝐷𝑏3. 𝑑𝑎𝑡 
10.    𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠3 + + 
11.   𝐸𝑙𝑠𝑒𝑖𝑓 𝑝𝑎𝑟𝑡𝑠𝐶𝑜𝑢𝑛𝑡 > 13 𝑡ℎ𝑒𝑛 
12.    𝑊𝑟𝑖𝑡𝑒 𝑇𝑥𝑛𝑖𝑖𝑛 𝑝𝑟𝑒𝐷𝑏2. 𝑑𝑎𝑡 
13.    𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠2 + + 
14.   𝐸𝑙𝑠𝑒 
15.   𝑊𝑟𝑖𝑡𝑒 𝑇𝑥𝑛𝑖𝑖𝑛 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡 
16.    𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠1 + + 
17.   𝐸𝑛𝑑𝑖𝑓 
18.   𝐹𝑖𝑛𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 
19.   𝑖𝑡𝑒𝑚𝑠𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑢𝑛𝑖𝑞𝑢𝑒 𝑇𝑥𝐼𝑖 
20. 𝐸𝑛𝑑𝑓𝑜𝑟 
21. 𝐶𝑙𝑜𝑠𝑒 𝑝𝑟𝑒𝐷𝑏. 𝑑𝑎𝑡, 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡, 𝑝𝑟𝑒𝐷𝑏2. 𝑑𝑎𝑡 𝑎𝑛𝑑 𝑝𝑟𝑒𝐷𝑏3. 𝑑𝑎𝑡 𝑓𝑖𝑙𝑒𝑠 
22. 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡  𝜎𝑚𝑖𝑛

𝐺 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 
23. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑖𝑡𝑒𝑚𝑠𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 
24.  𝐼𝑓 𝜑(𝑇𝑥𝐼𝑖) ≥  𝜎𝑚𝑖𝑛

𝐺  𝑡ℎ𝑒𝑛 
25.    𝐹𝐼𝑆1𝑘 ← 𝑎𝑑𝑑 𝑇𝑥𝐼𝑖 , FIS –Frequent Item Set 
26.  𝐸𝑛𝑑 𝑖𝑓 
27. 𝐸𝑛𝑑 𝑓𝑜𝑟 
28. 𝑊𝑟𝑖𝑡𝑒 𝐹𝐼𝑆 𝑖𝑛 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐹𝐼𝑆. 𝑑𝑎𝑡 𝑤𝑖𝑡ℎ 𝑖𝑡𝑒𝑚′𝑠𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
29. 𝑊𝑟𝑖𝑡𝑒 𝑚𝑒𝑡𝑎𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡 𝑤𝑖𝑡ℎ 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 
 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠1, numTransaction2,numTransaction3,numItems and Global Support 
Count. 

TABLE I 

ORDER DETAILS OF RAW DATA MADE BY THE CUSTOMERS 

order

_id 

product

_id 

add_to_c

art_orde

r 

reorder

ed 

1 49302 1 1 

1 11109 2 1 

1 10246 3 0 

1 49683 4 0 

1 43633 5 1 

1 13176 6 0 
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1 47209 7 0 

1 22035 8 1 

36 39612 1 0 

36 19660 2 1 

36 49235 3 0 

B. Geometric Progression Label Numbering 

The singleton frequent items are read from the previously saved list of frequent items, in order 

to calculate the Geometric Progression Label Number (GPLN). Each singleton frequent item 

was given a Geometric Progression Label Number using the procedure outlined in Equation 1. 

These GPLNs are stored for later usage, together with the representative item names that 

correspond with them. The pseudo code for the GPLN algorithm is as follows: 

Algorithm for Partitioning 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

2. 𝑂𝑝𝑒𝑛 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐹𝐼𝑆. 𝑑𝑎𝑡  
3. 𝑎 = 𝑛𝑢𝑚𝑖𝑡𝑒𝑚𝑠 ∗ 10 

4. 𝑟 = (1 + 9.25)/𝑎 

5. 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒, 𝑥 = 0 

6. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐹𝐼𝑆 

7.         𝐼𝑓 𝑓𝑙𝑎𝑔 𝑡ℎ𝑒𝑛 

8.                  𝑛 = 1 + 𝑥 

9.                 𝑓𝑙𝑎𝑔 = 𝑓𝑎𝑙𝑠𝑒 

10.         𝐸𝑙𝑠𝑒 

11.                 𝑛 = 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 − 𝑥 

12.                 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 

13.         𝐸𝑛𝑑 𝑖𝑓 

14.         𝐺𝑃𝐿𝑁 = 𝑎 ∗ 𝑟𝑛−1 

15.         𝑥 + + 

16.      𝐺𝑃𝐿𝑁 − 𝐿𝑖𝑠𝑡 ← 𝐺𝑃𝐿𝑁(𝑇𝑥𝐼𝑖) 

17. 𝐸𝑛𝑑 𝑓𝑜𝑟 

18. 𝑊𝑟𝑖𝑡𝑒 𝐺𝑃𝐿𝑁 𝑤𝑖𝑡ℎ 𝐼𝑡𝑒𝑚𝑁𝑎𝑚𝑒 

C. Jagged Itemset Counting (JIC) Stage -1 

In this procedure, a transaction line was read from the PreDb1 dataset using the first split of 

the preprocessed dataset. Every subset of a transaction is generated, with the exception of the 

empty set and the subset with a single item. During the partitioning phase, we have already 

eliminated the infrequent elements from the transaction to minimize computing complexity. 

Each subset item was then mapped from their GPLN list to its corresponding GPLN, which 
was determined and stored using the GPLN method. We used Definition-2 to calculate the 

cumulative GPLN. As described in Definition-3, a CGPLN-Label representation is made for 

every subset and stored in a text file for future use. 

𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙) >  𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡  𝜎𝑚𝑖𝑛
𝐺   … Eqn. (6) 

𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙) >
1

6
𝜎𝑚𝑖𝑛

𝐺                    … Eqn. (7) 

For Every new CGPLN-Label, its count was assigned by 1, and the count of any existing label 

was increased by 1. When compared to other algorithms like Apriori, this technique will reduce 

needless procedures like searching and sorting the items or itemsets contained in the transaction. 
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It will also lower the execution time. Until every transaction is read, this process is repeated. 

When CGPLN-Labels support more than the ‘GlobalSupportCount’ during this procedure, they 

are categorized as frequent CGPLN-Labels and are stored in a hash map. While CGPLN-Labels 

with balance are rare, those with support larger than one-sixth of ‘GlobalSupportCount’ are 

deemed 'Likely to be frequent CGPLN-Labels' and are stored in a temporary file for potential 

future frequency. The residual CGPLN-Labels that are rare are eliminated. 

Algorithm for Jagged Itemset Counting (JIC)-1 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

2. 𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡  
3. 𝑅𝑒𝑎𝑑 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏1 

4. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑥𝑛𝑖 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏1 

5.   𝑅𝑒𝑚𝑜𝑣𝑒 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 

6.   𝐹𝑖𝑛𝑑 𝑎𝑙𝑙 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑇𝑥𝑛𝑖 

7.   𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑠𝑒𝑡 𝛾𝑗 𝑖𝑛 𝑇𝑥𝑛𝑖 

8.    𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗  ← 𝐶𝐺𝑃𝐿𝑁(𝛾𝑗) . |𝛾𝑗| . 𝑠𝑢𝑚(𝛾𝑗) 

9.    𝐼𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) = 0 𝑡ℎ𝑒𝑛 

10.    𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗  

11.    𝑊𝑟𝑖𝑡𝑒 𝛾𝑗@𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒   

12.    𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 − 𝑐𝑜𝑢𝑛𝑡 =  1 

13.    𝐸𝑙𝑠𝑒 

14.     𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 − 𝑐𝑜𝑢𝑛𝑡 + + 

15.    𝐸𝑛𝑑 𝑖𝑓 

16.   𝐸𝑛𝑑 𝑓𝑜𝑟 

17.  𝐸𝑛𝑑 𝑓𝑜𝑟 

18.  𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑖𝑛 𝐶𝐺𝑃𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 

19.   𝐼𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) <  𝜎𝑚𝑖𝑛
𝐺 𝑡ℎ𝑒𝑛 

20.         𝑖𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) ≥ 1
6 ⁄ (𝜎𝑚𝑖𝑛

𝐺 ) 𝑡ℎ𝑒𝑛 

21.        𝑊𝑟𝑖𝑡𝑒  𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑛𝑡𝑜 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝  

22.        𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗  

23.  𝐸𝑙𝑠𝑒 

24.        𝑊𝑟𝑖𝑡𝑒  𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑛𝑡𝑜 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝  

25.   𝐸𝑛𝑑 𝑖𝑓 

26. 𝐸𝑛𝑑 𝑓𝑜𝑟 

27. 𝐶𝑙𝑜𝑠𝑒 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡 

D. Jagged Itemset Counting (JIC) Stage -2 

This process is invoked when the partitions have transactions with more than 13 items. Initially, 

the infrequent CGPLN-Labels which that were stored during the previous Jagged Itemset 

Counting (JIC) Stage-1 process are loaded, and their counts are updated. The transactions from 

these partitions are read one by one. After eliminating the infrequent item from each transaction, 

the frequent items are re-ordered based on their support count in such a manner that the item 

with the least support will go last and items with higher support will come first. The 

transactions are stored in a transaction collection, and the first item with the highest support 

from each transaction is stored in the Header-List representing that it is a starting node. 

Form transaction collection: a node is created for each item in the transaction if it does not exist 

in the existing node list and its count is set to 1. The count of the node was incremented by 1 
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and updated if it already existed in the node list. The node’s parent and child connections are 

built from the header node to the leaf node for each transaction. A pattern tree was created 

using the header node with its parent-child relationship from the whole transaction collection, 

so that the path of each node in the Header-List is then tracked using parent and child links. 

Then, for every header node of the pattern tree and its related parent-child path, a set was 

created, and its subsequent subsets are stored in the list. 

 

Using Definitions 1, 2 and 3, the GPLN, CGPLN, and CGPLN-Labels are found for every 

subset, and its support count was found using the previous methodology and is updated in a 

hash map. Now the frequent CGPLN-Labels are moved, and their support counts are updated 

in the final frequent list, which was created in the previous JIC-Stage-1 process. The infrequent 

CGPLN-Labels and its support count are now merged with the previously stored 'Likely to be 

frequent CGPLN-Labels'. After merging, the frequent CGPLN-Labels are moved to the final 

frequent list, and the pattern tree will be purged. From the rest of the CGPLN-Labels, when the 

support of CGPLN-Label exceeds the local support count (𝜎𝑚𝑖𝑛
𝐿𝑜𝑐𝑎𝑙), they are moved to the 

'Likely to be frequent CGPLN-Labels' collection after purging the existing old collection, and 

they are written back to the infrequent CGPLN-Label temporary file. This process is continued 

when there are more partitions to proceed, and the final frequent list, the 'Likely to be frequent 

CGPLN-Labels' collections and their support counts are updated subsequently for each cycle. 

Once this entire JIC-Stage-2 process gets over, the infrequent CGPLN-Labels are purged from 

the memory. 

Algorithm for Jagged Itemset Counting (JIC)-2 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

2. 𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏𝑛. 𝑑𝑎𝑡 

3. 𝑅𝑒𝑎𝑑 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏𝑛 

4. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑥𝑛𝑖 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏𝑛 

5.   𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + + 

6.   𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑇𝑥𝑛𝑖 

7.   𝐼𝑓 𝜑(𝑇𝑥𝐼𝑖) <  𝜎𝑚𝑖𝑛
𝐺  𝑡ℎ𝑒𝑛 

8.     𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑇𝑥𝐼𝑖 

9.     𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

10.    𝐸𝑙𝑠𝑒 

11.     𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝑇𝑥𝐼𝑖 

12.   𝐸𝑛𝑑𝑖𝑓 

13.   𝐸𝑛𝑑𝑓𝑜𝑟 

14.   𝑇𝑥𝑛𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑠𝑜𝑟𝑡𝑒𝑑 𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 

15.  ℎ𝑒𝑎𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← 𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐹𝑖𝑟𝑠𝑡𝐼𝑡𝑒𝑚) 

16.   𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑛𝑢𝑙𝑙 

17. 𝐸𝑛𝑑𝑓𝑜𝑟 

18. 𝐶𝑙𝑜𝑠𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏𝑛 

19. 𝜎𝑚𝑖𝑛
𝐿𝑜𝑐𝑎𝑙  ← 𝑛𝑢𝑚𝑇𝑟𝑎𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

20. 𝐵𝑢𝑖𝑙𝑑 𝑇𝑟𝑒𝑒 𝑗𝑇𝑟𝑒𝑒 ← ℎ𝑒𝑎𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 

21. 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← 𝑗𝑁𝑜𝑑𝑒[]  
22. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝑛𝑖  𝑖𝑛 𝑇𝑥𝑛𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛  

23.   𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑇𝑥𝑛𝑖 

24.   𝐼𝑓 𝑇𝑥𝐼𝑖 𝑛𝑜𝑡 𝑖𝑛 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 𝑡ℎ𝑒𝑛 

25.     𝑐𝑟𝑒𝑎𝑡𝑒 𝑗𝑁𝑜𝑑𝑒 
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26.     𝑗𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑇𝑥𝐼𝑖 

27.    𝑗𝑁𝑜𝑑𝑒. 𝑐𝑜𝑢𝑛𝑡 = 1 

28.     𝑢𝑝𝑑𝑎𝑡𝑒 𝑗𝑁𝑜𝑑𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑐ℎ𝑖𝑙𝑑 𝑙𝑖𝑛𝑘𝑠 

29.     𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← 𝑗𝑁𝑜𝑑𝑒 

30.    𝑒𝑙𝑠𝑒 

31.     𝑢𝑝𝑑𝑎𝑡𝑒 𝑗𝑁𝑜𝑑𝑒. 𝑐𝑜𝑢𝑛𝑡 

32.    𝐸𝑛𝑑 𝑖𝑓 

33.   𝐸𝑛𝑑𝑓𝑜𝑟 

34.   𝑗𝑇𝑟𝑒𝑒 ← 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑇𝑥𝑛𝑖   
35.  𝐸𝑛𝑑 𝑓𝑜𝑟 

36. 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 ← 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒 

37. 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒 

38. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖𝑛 ℎ𝑒𝑎𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 

39.   𝑇𝑟𝑎𝑐𝑒 𝑟𝑜𝑢𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝑝𝑎𝑟𝑒𝑛𝑡 𝑐ℎ𝑖𝑙𝑑 𝑙𝑖𝑛𝑘𝑠 𝑎𝑛𝑑 𝑐𝑟𝑒𝑎𝑡𝑒 𝑗𝑆𝑒𝑡 

40.   𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑆𝑒𝑡 𝛾𝑗 𝑖𝑛 𝑗𝑆𝑒𝑡 

41.    𝐼𝑓 𝜑( 𝛾𝑗) > 𝜎𝑚𝑖𝑛
𝐿𝑜𝑐𝑎𝑙 𝑡ℎ𝑒𝑛 

42.    𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗  ← 𝐶𝐺𝑃𝐿𝑁(𝛾𝑗) . |𝛾𝑗| . 𝑠𝑢𝑚(𝛾𝑗) 

43.     𝐼𝑓 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁  

44.      𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 − 𝑐𝑜𝑢𝑛𝑡 +=  𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗)  

45.    𝐸𝑛𝑑 𝑖𝑓 

46.   𝐸𝑛𝑑 𝑓𝑜𝑟 

47.   𝑗𝑆𝑒𝑡 = 𝑛𝑢𝑙𝑙 
48.  𝐸𝑛𝑑 𝑓𝑜𝑟 

49. 𝑊𝑟𝑖𝑡𝑒  𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑛𝑡𝑜 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒 

E. The Join operation 

Now the ‘Likely to be frequent CGPLN-Label’s from the JIC-Stage-2 process and infrequent 

CGPLN-Labels from the JIC-Stage-2 are merged with its respective support count and when 

its count exceeds then GlobalSupportCount  σ_min^G, they are moved to the final frequent 

CGPLN-Labels collection otherwise discarded. Finally the final list of frequently occurring 

CGPLN-Labels is replaced by its original itemset representation and its support. These itemsets 

are now added directly to the final Frequent Itemset list and displayed as output. 

Algorithm for the Join operation 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

2. 𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝  
3. 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 ← 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒 

4.  𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒 

5. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑖𝑛 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 

6.   𝐼𝑓 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝐶𝐺𝑃𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 𝑡ℎ𝑒𝑛 

7.          𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠[𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗] − 𝑐𝑜𝑢𝑛𝑡 

8.   𝐸𝑙𝑠𝑒 

9.    𝐼𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) ≥  𝜎𝑚𝑖𝑛
𝐺 𝑡ℎ𝑒𝑛 

10.     𝐶𝐺𝑃𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 ←  𝑎𝑑𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗  

11.   𝐸𝑙𝑠𝑒  

12.     𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗  

13.    𝐸𝑛𝑑 𝑖𝑓 
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14.   𝐸𝑛𝑑𝑖𝑓 

15. 𝐸𝑛𝑑 𝑓𝑜𝑟 

16. 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 ← 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒 

17. 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒 

18. 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑜𝑟 𝑎𝑝𝑝𝑒𝑛𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 

19. 𝑂𝑝𝑒𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠. 𝑡𝑚𝑝 

20. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑘𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠 

21.   𝑖𝑓 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑘  𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠  𝑡ℎ𝑒𝑛 

22.   𝛾𝑘  ←  𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑘  

23.    𝐹𝐼𝑆𝑛𝑘  ← 𝑎𝑑𝑑 𝛾𝑘 

24.   𝐸𝑛𝑑𝑖𝑓 

25. 𝐸𝑛𝑑𝑓𝑜𝑟 

26. 𝐶𝑙𝑜𝑠𝑒 𝑎𝑛𝑑 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠. 𝑡𝑚𝑝 

27. 𝐹𝐼𝑆 ← 𝐹𝐼𝑆1𝑘 

28. 𝐹𝐼𝑆 ← 𝐹𝐼𝑆𝑛𝑘 

29. 𝑝𝑟𝑖𝑛𝑡 𝐴𝑙𝑙 𝐹𝐼𝑆, 𝑖𝑡𝑠 𝑐𝑜𝑢𝑛𝑡 𝑎𝑛𝑑 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 

 

To provide a rigorous mathematical justification and analysis of the superiority of the Jagged 

Itemset Counting (JIC) algorithm, a combination of formal hypotheses, lemmas, theorems, and 

proofs is presented. These are based on the properties of frequent itemset mining and 

complexity analysis, highlighting the advantages of the JIC algorithm compared to other 

algorithms such as Apriori and Eclat. 

Hypothesis: 

     The JIC algorithm, using Geometric Progression Label Numbers (GPLN) and Cumulative 

Geometric Progression Label Numbers (CGPLN), outperforms Apriori and Eclat in terms of 

execution time and memory consumption. 

 

Theorem: 

 The JIC algorithm achieves a time complexity of 𝑂(𝑛2) and space complexity of 𝑂(𝑛), 

outperforming the Apriori algorithm (with complexity 𝑂(2𝑛) and the Eclat algorithm (with 

complexity 𝑂(2𝑛. 𝑡), where 𝑡 is the transaction size). 

 

Proof: 

Lemma 1: Time Complexity of JIC Algorithm 

The JIC algorithm reduces the time complexity by using a geometric progression labeling 

system (GPLN and CGPLN) and requires only two passes over the database. 

 

Hypothesis: 

Each itemset in the transaction database TxDb is labeled using the Geometric Progression 

Label Number (GPLN). For each itemset 𝛾, the CGPLN label is generated using Definition-1 

(GPLN) and Definition-2 (CGPLN).  

Proof: 

The process of generating the GPLN and CGPLN requires iterating over each item in 𝐹. Since 

the GPLN computation is a constant-time operation (due to fixed 𝑎 and 𝑟), the total time to 

generate the CGPLN for a single itemset 𝛾 with 𝑚 items is 𝑂(𝑚). Given that we need to 

process 𝑛 transactions in the database and generate itemsets for all transactions, the total time 

complexity becomes: 

𝑇𝐽𝐼𝐶 = 𝑂(𝑛 . 𝑚) 
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Assuming 𝑚 grows linearly with the number of items 𝑛, we get: 

𝑇𝐽𝐼𝐶 = 𝑂(𝑛2) 

This is significantly better than the Apriori algorithm, which needs to generate candidate 

itemsets of size 𝑘, leading to a time complexity of 𝑂(2𝑛). 

 

Lemma 2: Space Complexity of JIC Algorithm 

The JIC algorithm requires less space for storing candidate itemsets by using CGPLN labels, 

which uniquely represent itemsets as numeric values. 

 

Hypothesis: 

The space complexity of JIC is driven by the storage of CGPLN labels and the hash maps for 

counting support values. Since the CGPLN labels for all itemsets can be represented as single 

numerical values, the space required is proportional to the number of itemsets rather than the 

size of the itemsets themselves. 

Formula: 

Let 𝑚 represent the number of unique items and 𝑛 the number of transactions. For each itemset, 

we store: 

𝐶𝐺𝑃𝐿𝑁(𝛾) = 𝑎1 . 𝑎2. 𝑎3 

where 𝑎1, 𝑎2  and 𝑎3  are the components of the CGPLN label, representing the cumulative 

value, number of items, and sum of item-values, respectively. The space required to store each 

CGPLN is 𝑂(1). 

 

Proof: 

Since the CGPLN labels are stored as fixed-size values, the total space required for all itemsets 

in the transaction database is proportional to the number of itemsets, denoted as 𝑚, which is 

linear in the size of the database: 

𝑆𝐽𝐼𝐶 =  𝑂(𝑛) 

This is better than Eclat, which stores multiple vertical databases and has a space complexity 

of 𝑂(2𝑛 .  𝑡), where 𝑡 is the average transaction length. 

 

Lemma 3: Scalability of JIC Algorithm for Big Data 

The JIC algorithm scales better for large datasets by partitioning the transaction database and 

processing each partition independently. 

 

Hypothesis: 

The transaction database TxDb is partitioned based on the number of items in each transaction, 

with frequent itemsets computed in each partition using the CGPLN labels. Let 𝑃 represent the 

number of partitions. 

 

Formula: 

The total time to process all partitions is given by: 

𝑇𝐽𝐼𝐶−𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 = 𝑃 . 𝑇𝐽𝐼𝐶 

Since each partition is processed independently, the complexity remains linear in the number 

of partitions and quadratic in the number of items: 

𝑇𝐽𝐼𝐶−𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 = 𝑂(𝑃 . 𝑛2) 
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Proof: 

By dividing the dataset into partitions, JIC minimizes the memory and computation 

requirements per partition. Each partition only requires processing the transactions within it, 

and the final frequent itemsets are merged using the Join operation, which has a complexity of 

𝑂(𝑛). Therefore, the algorithm scales efficiently with large datasets. 

 

So, the JIC algorithm achieves better performance than Apriori and Eclat due to its lower time 

and space complexities. The use of Geometric Progression Label Numbers (GPLN) and 

Cumulative Geometric Progression Label Numbers (CGPLN), along with a two-pass scanning 

approach, enables it to process frequent itemsets in 𝑂(𝑛2) time and 𝑂(𝑛) space, compared to 

𝑂(2𝑛)  for Apriori and 𝑂(2𝑛 . 𝑡) for Eclat. The algorithm's scalability is also ensured through 

partitioning, making it suitable for Big Data also. 

IV. RESULTS AND EVALUATIONS 

The performance of the JIC algorithm is evaluated using both real-world and synthetic 

databases. The synthetic database is created with IBM Synthetic Data Generator [27] and the 

real-time databases are downloaded from [26] & [28] and their information is presented in 

Tables 2 and 3. The dataset downloaded from the website [26] contains 50 thousand rows of 

Product Information, 3.4 million transaction details, 134 rows of Aisles information, and 21 

rows of Department Information. The JIC algorithm's performance is assessed on both artificial 

and real-world databases. The synthetic database is created with IBM Synthetic Data Generator 

(https://github.com/zakimjz/ IBMGenerator.git) and the real-time databases are downloaded 

from [26] & [28] and their information is presented in Tables 2 and 3. 50 thousand rows of 

product information, 3.4 million transaction details, 134 rows of information about aisles, and 

21 rows of department information are all included in the dataset that may be obtained from 

the website [26]. The CSV (Comma Separated Values) format is used for the dataset.  

 

To continue with data mining, information must be extracted from raw datasets since these data 

cannot be utilized directly to mine Frequent Itemsets and understanding the buying pattern of 

sales and the customer's buying behaviour is crucial. A laptop computer with an Intel i5 7200U 

@ 2.5 GHz - 4 cores and a 2.7 GHz - 1 core CPU, together with 4GB RAM, was used to 

perform all of the algorithms. This section presents the results of a comparison between the JIC 

algorithm and two popular algorithms, Apriori and Eclat, regarding the JIC algorithm's 

efficiency in terms of execution time/runtime and main memory utilization. As illustrated in 

Fig. 13 and Fig. 15, the Eclat algorithm's resource utilization of heap memory and Central 

Processing Unit (CPU) consumption is not feasible due to the Online Grocery Database's big 

size. 

 

A Java Out of capacity Error happens even though all of the algorithms were executed with a 

2GB extended heap capacity. Fig. 10 and 11 show how heap memory is used and how much 

CPU power the JIC algorithm uses during execution, and Fig. 12 and 14 show how heap 

memory is used and how much CPU power the Apriori algorithm uses during execution using 

the SPMF software tool [25]. The JIC method performs better than the other algorithms in 

terms of execution time since it consumes memory uniformly and loads 50% of the CPU during 

operation. 

A. Performance on Execution Time 

The JIC method and other algorithms' execution times are displayed in Table 4, and Fig. 2 

provides a graphic representation of the same data for the "Online Retail" database. In the 
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"Online Retail" database, the JIC algorithm performs better than the Apriori and Eclat 

algorithms for all support thresholds, including the lowest support criterion of 0.1%, as Table 

4 and Fig. 2 unambiguously demonstrate. Table 5's "Fruit Hut" database's JIC and other 

algorithms' execution times are graphically displayed in Fig. 3. According to Table 5 and Fig. 

3, the JIC method outperforms the Apriori algorithm and performs comparable to the Eclat 

algorithm in the "Fruit Hut" real-life database. Perform better, nevertheless, when the support 

threshold is at 0.1%. For the "T4I4D100K" database in Table 6, the JIC and other algorithms' 

execution times are visually displayed in Fig. 4. Table 7 lists the JIC and Apriori algorithms' 

execution timings. 

 

For all support criteria between 0.25 and 5%, the JIC algorithm performs better than the 

competition. While the JIC algorithm gradually grows with an overall efficiency of 38% when 

compared to the Apriori algorithm, the Apriori algorithm's execution time climbs constantly as 

the support threshold drops. The JIC method works quite well for small and medium-sized 

databases, outperforming both the Apriori and Eclat algorithms in comparable tests. It is 

concluded that both the Apriori and JIC algorithms find Frequent Itemsets from all sizes of 

datasets taken for evaluation because the Eclat algorithm was unable to execute for the given 

Big Data. However, the Eclat algorithm is not suitable when the size of the database or dataset 

is large, and the JIC algorithm's overall performance on the execution times is good for all 

databases taken for evaluation. 

B. Performance on the usage of Main Memory 

Table 8 displays the RAM utilization for the JIC method and other algorithms, while Fig. 6 

exhibits the same graphically for the "Online Retail" database. When compared to other 

methods for this database, it is evident that the JIC approach used less primary RAM. When 

compared to the other two algorithms, the Apriori and Eclat, the memory utilised by the JIC 

algorithm during execution in the "Fruit Hut" real-life database and the "T4I4D100K" synthetic 

database is high (see Tables 9 and 10, Figs. 7 and 8, respectively). However, when the JIC 

algorithm is conducted on a Big data dataset, Table 11 and Fig. 9 reveal that the primary 

memory consumed by the JIC algorithm is significantly greater than the Apriori, but no 

significant difference can be discovered, as shown for small and medium databases or datasets. 

However, with the higher support threshold, the JIC algorithm consumes less memory than the 

Apriori approach. Memory occupancy and the support threshold are therefore inversely 

correlated. At that point, the RAM needed to run the JIC algorithm is increased, and the support 

threshold is lowered. 

 

TABLE 2  

INFORMATION ABOUT THE REAL-LIFE DATABASES USED FOR THE EVALUATION 

Database 

Name 
Transaction Count Item Count Database Size 

Online Retail 5,41,909 2,603 11.4 Mb 

Fruit Hut 1,81,970 1,265 3.4 Mb 

Insta Cart 

Online Grocery 

Shopping 

Dataset 

3.24 Millions (Raw Data) 

32,14,873 (Pre-Processed Data) 
49,689 

551 Mb 

179 Mb 

TABLE 3  
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INFORMATION ABOUT THE SYNTHETIC DATABASE – T4I4D100K.DAT USED FOR THE 

EVALUATION 

Particulars of Database Size 

Average Size of Transaction (T) 5 

The average size of the Maximal Frequent Itemset (I) 4 

Total Number of Items (N) 1000 

Total Number of Transactions (D         x1000) 1,00,000 

Database Size 3.4 Mb 

 

TABLE 4  

PERFORMANCE ON EXECUTION TIME FOR “ONLINE RETAIL” DATABASE 

Support 

Threshold  

% 

Apriori 

Alg. 

Execution 

Time(in 

Sec.) 

Execution 

Time of 

Eclat Alg. 

(in Sec.) 

Execution 

Time of 

JIC Alg. 

(in Sec.) 

0.1 1293 109 22 

0.25 424 44 16 

0.5 59 22 12 

0.75 31 15 8 

1 18 11 6 

 
Fig. 2 Performance on Execution Time for “Online Retail” database 

 
Fig. 3 Performance on Execution Time for “Fruit Hut” database 
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TABLE 5  

PERFORMANCE ON EXECUTION TIME FOR “FRUIT HUT” DATABASE 

Support 

Threshold % 

Execution Time of the 

Apriori Algorithm (in 

Sec.) 

Execution Time of 

Eclat the Algorithm 

(in Sec.) 

Execution Time of the 

JIC Algorithm (in 

Sec.) 

0.1 191 49 50 

0.25 47 27 42 

0.5 21 18 29 

0.75 15 9 18 

1 12 3 13 

 

TABLE 6  

PERFORMANCE ON EXECUTION TIME FOR “T4I4D100K” DATABASE 

Support 

Threshold % 

Execution Time of the 

Apriori Algorithm (in 

Sec.) 

Execution Time of 

Eclat the Algorithm 

(in Sec.) 

Execution Time of the 

JIC Algorithm (in 

Sec.) 

0.1 533 63 62 

0.25 216 21 52 

0.5 50 10 32 

0.75 30 5 15 

1 6 3 7 

 
Fig. 4  Performance on Execution Time for “T4I4D100K” database 

TABLE 7  

PERFORMANCE ON EXECUTION TIME FOR “INSTA CART ONLINE RETAIL” DATABASE 

Support 

Threshold % 

Execution Time of Apriori 

Alg.(in Sec.) 

Execution Time of the JIC Alg. 

(in Sec.) 

0.25 1682 1065 

0.5 554 290 

0.75 213 140 

1 134 83 

2 40 23 

5 25 13 
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Fig. 5 Performance on Execution Time for “Insta Cart Online Retail” database 

TABLE 8  

PERFORMANCE ON MEMORY CONSUMPTION FOR “ONLINE RETAIL” DATABASE 

Support 

Threshold % 

Memory Used by the 

Apriori Algorithm (in 

MB) 

Memory Used by the 

Eclat Algorithm    (in 

MB) 

Memory Used by the  

JICAlgorithm (in MB) 

0.1 316 289 143 

0.25 317 263 153 

0.5 307 250 63 

0.75 240 238 86 

1 241 195 76 

 
Fig. 6 Performance on Memory Consumption for “Online Retail” database 

 

TABLE 9  

PERFORMANCE ON MEMORY CONSUMPTION FOR “FRUIT HUT” DATABASE 

Support 

Threshold % 

Memory Used by the 

Apriori Algorithm (in 

MB) 

Memory Used by the 

Eclat Algorithm  (in 

MB) 

Memory Used by the  

JICAlgorithm (in MB) 

0.1 123 286 546 

0.25 116 220 470 

0.5 110 206 431 
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0.75 70 196 202 

1 67 110 162 

 
Fig. 7  Performance on Memory Consumption for “Fruit Hut” database 

 

TABLE 10  

PERFORMANCE ON MEMORY CONSUMPTION FOR “T4I4D100K” DATABASE 

Support 

Threshold % 

Memory Used by 

the Apriori Alg(in 

MB) 

Memory Used by 

the Eclat Alg  (in 

MB) 

Memory Used by the 

JIC Algorithm (in 

MB) 

0.1 302 130 469 

0.25 126 105 370 

0.5 121 87 262 

0.75 61 87 270 

1 61 50 227 

 
Fig. 8 Performance on Memory Consumption for “T4I4D100K” database 

TABLE 11  

PERFORMANCE ON MEMORY CONSUMPTION FOR “INSTA CART ONLINE RETAIL” DATABASE 

Support 

Threshold % 

Memory Used by the Apriori 

Algorithm (in MB) 

Memory Used by the  

JICAlgorithm (in MB) 
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0.25 804 1352 

0.5 640 1295 

0.75 635 988 

1 602 708 

2 579 705 

5 578 483 

 

 
Fig. 9 Performance on Memory Consumption for “Insta Cart Online Retail” database 

 

 
Fig. 10 Graph taken from the Java Monitoring and Management Console – Heap Memory 

Usage during the execution of the JIC algorithm Execution process 

 

 
Fig. 11 Graph taken from the Java Monitoring and Management Console – CPU Usage 

during the execution of the JIC algorithm Execution process 
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Fig. 12 Graph taken from the Java Monitoring and Management Console – CPU Usage 

during the execution of the Apriori algorithm using the SPMF software tool 

 

 
Fig. 13  Failure-Screenshot of the Eclat Algorithm during execution using the SPMF software 

tool 

 

 

 
 

Fig. 14 Graph taken from the Java Monitoring and Management Console – Heap Memory 

Usage during the execution of the Apriori algorithm using the SPMF software tool 
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Fig. 15 Graph taken from the Java Monitoring and Management Console – Heap Memory 

Usage and CPU Usage during the execution of the Eclat algorithm using SPMF 

V. CONCLUSION AND FUTURE DIRECTION OF RESEARCH 

In the process of Knowledge Discovery from Data (KDD), the analysis of Frequent Itemset 

Mining (FIM) produces very useful information such as how the items or data are correlated 

with each other and how frequently it is found in the database, particularly in transaction data 

and its report is critical for decision-makers to procure and stock items. As the stock is the 

company's asset and the company's profit is dependent on the asset's liquidity, Frequent Itemset 

mining was given more importance. Finding Frequent Item Sets is a crucial and time-

consuming task in the field of data mining. The variety and volume of data are increasing 

dramatically in the current Big Data era, making it difficult to mine valuable information in a 

timely manner. Despite the fact that many researchers proposed many different types of 

algorithms for Frequent Item Set mining, they are not capable of finding the frequent itemsets 

using the normal computing facility from the real-life big-sized dataset particularly when the 

support count was low and they could not perform efficiently when the dataset was big. 

This paper presented an innovative approach to overcoming this difficulty and gaining new 

insights from data sources. Instead of a Complex Data Structure, all itemsets, whether frequent 

or infrequent, will be stored in the form of a simple label structure. Hashing technique is used 

to store the CGPLN-Labels and Frequent Itemsets and used temporary files to store the 

CGPLN-Label representations to reduce the use of huge volume of main memory. As a result, 

the amount of memory used is uniformly reduced throughout the algorithm implementation. 

This paper presents the Jagged Itemset Counting algorithms. Despite the prevalence of itemset 

mining algorithms in the literature, the JIC algorithm will read the database twice, regardless 

of its size or the number of transactions, without transforming the database layout from 

horizontal to vertical or constructing any conditional databases. When compared to the Apriori 

and Eclat algorithms, all frequent Itemsets up to size k can be found from the database in two 

passes.  

When compared to the Apriori and Eclat algorithms, the JIC algorithm's use of compact and 

unique label representation with a simple counting mechanism outperforms the Apriori and 

Eclat algorithms for small and medium data and shows better performance in execution time 

even at the lowest support threshold. The Frequent Itemsets identified by this proposed JIC 

algorithm consistent with the results of state-of-the-art methods. In the case of Big Data, while 

the FP-Growth and Eclat algorithms failed to perform, the proposed technique performed better 

in terms of execution time, main memory consumption and disc memory utilization. 

In the future, the JIC algorithm will be improved to reduce the number of subsets and 

implementing the JIC algorithm in parallel or distributed computing will almost certainly result 

in greater efficiency in all aspects. The JIC algorithm can also be further modified to mine the 
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frequent itemsets from the data-streams. The JIC algorithm can be further modified to mine the 

high-utility itemsets, top-k-rank itemsets, maximal-frequent itemsets, closed-frequent itemsets 

and fault-tolerant itemsets. 
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