
Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

520

https://internationalpubls.com

Design and Analysis of JIC Algorithm on Big Data

Ilamchezhian J1, Kannan A2, Cyrilraj V3, N. Padmapriya4

1Associate Professor, Dr. M.G.R. Educational and Research Institute, Maduravoyal,

Chennai-95, India.
2 Former Professor, College of Engineering, Anna University, Guindy, Chennai – 25, India.

3Professor, Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai-95, India.
4Assistant Professor, Department of Statistics, Sri Sarada College for Women (Autonomous),

Salem, TN, India
1chezhian.ilam@gmail.com

2akannan123@gmail.com

3cyrilraj@drmgrdu.ac.in

4theen.91@gmail.com

Article History:

Received: 12-11-2024

Revised: 15-12-2024

Accepted: 11-01-2025

Abstract: Computers have significantly impacted various fields, but managing vast

amounts of information remains challenging. Artificial intelligence helps machines make

data-driven decisions, but large datasets still pose difficulties for researchers. To tackle

challenges and gain deep insights from large datasets, we proposed a novel technique

using Geometric Progression series numbers (GPLN) for labeling singleton frequent

itemsets and Cumulative Geometric Progression series numbers (CGPLN) for labeling

itemsets with multiple frequent items. Initially, the algorithm used 2 as the constant 'r'

for generating the series, but that was inadequate for large datasets. So, this paper

proposes the Jagged Itemset Counting (JIC) algorithms 1 and 2 by reducing the value of

‘r’ and introduced dotted pairs for CGPLN labels to represent frequent itemsets. This

redefined methodology requiring two passes over the transaction database: the first pass

involves pre-processing, identifying singleton (1-k) frequent itemsets, determining

GPLN, and partitioning the dataset. The partitions are processed sequentially: JIC-

Algorithm-1 is applied to the first partition and JIC-Algorithm-2 to the remaining

partitions. The n-k frequent itemsets from all partitions are combined using the Join

algorithm, alongside 1-k itemsets found earlier. For small and medium-sized data, the

JIC methodology outperforms Apriori and Eclat algorithms, showing better execution

time even at low support thresholds. In Big Data scenarios, while FP-Growth and Eclat

struggled, the proposed methodology excelled in execution time, main memory

consumption, and disk memory utilization.

Keywords— Frequent Itemset Mining (FIM), Big Data, Jagged Itemset Counting (JIC),

Geometric Progression (GP), Geometric Progression Label Number (GPLN),

Cumulative Geometric Progression Label Number (CGPLN), Apriori, Eclat, FP Growth.

Introduction

The introduction of computing technology has greatly impacted business data processing and

scientific computing. Initially, data storage was limited, but storage capacity has exponentially

grown, doubling every two years. Today, organizations accumulate massive volumes of data,

stored in megabytes, gigabytes, or terabytes daily [3]. The HACE theorem outlines the key

characteristics of big data, which is essential for various business applications and analyses.

Frequent itemset mining is a crucial method for identifying common data patterns. In our earlier

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

521

https://internationalpubls.com

works, the initial method for mining frequent items involved using Geometric Progression

series numbers as labels for each item, summing the items in subsets to find their frequency

[1]. This approach used the constant 'r' as 2 for generating the series and the generated labels

are inadequate for large datasets. To overcome this limitation, the Jagged Itemset Counting

(JIC) algorithm was introduced. This algorithm employs Geometric Progression sequence

numbers for labeling items, making it easier to mine frequent items. The Geometric Progression

Label Number (GPLN) labels individual items, while the Cumulative Geometric Progression

Label Number (CGPLN) labels itemsets [2]. This straightforward method enhances the speed

of Frequent Itemset mining, leading to the development of the JIC methodologies for mining

frequent itemsets from voluminous data. Despite numerous algorithms developed over the past

few decades, many struggle with identifying frequent itemsets from sparse datasets at low

support counts and efficiently handling large datasets. Among the seven V's of big data,

'Volume' is the most challenging for frequent itemset mining. As the JIC algorithm was a

straightforward method that speeds up the Frequent Itemset mining process, it was further

modified and named the Jagged Itemset Counting methodologies to mine frequent itemsets

from voluminous data.

This paper addresses this by introducing Jagged Itemset Counting methodologies, pre-

processing raw internet data, and reading the database twice. It uses six algorithms: Pre-

Processing, Partitioning, GPLN, Jagged Itemset Counting (JIC) - 1, JIC - 2, and Join operation,

with performance measured in execution time and primary memory consumption.

I. BACKGROUND AND LITERATURE

FIM algorithms are classified into two categories: those based on threshold/support measure

and those without. The first algorithm to find Association-rules was proposed in 1993 and later

renamed as the Apriori algorithm [4] [5]. The Apriori algorithm, Eclat algorithm [6], and FP

growth algorithm [7] are the roots of most FIM algorithms. However, the Apriori algorithm

may take longer to execute when the data set size is large. The Eclat algorithm uses a depth-

first search technique but may not be effective for sparse databases. The FP-Tree algorithm

loads data into main memory and creates a prefix-based tree representation. The FP Growth

algorithm offers benefits but has drawbacks, such as complexity, cost, and memory

requirements for large datasets.

The Partition [8] reads transaction databases twice without considering partitions, but has

disadvantages like partition size skew and poor performance when common super sets are

present in multiple partitions. DHP [9] is a hash-based technique used to efficiently minimize

candidate itemset size in early stages, with faster execution time than Apriori but longer hash

table generation time. The Apriori method, initially refined and renamed Dynamic Itemset

Counting (DIC), performed poorly in some datasets due to its low support level and infrequent

items [10]. For mining frequent itemsets from dynamic datasets using ZIGZAG backtracking

search and dynamically maintained support information without database scanning was

introduced [11]. The effectiveness of this strategy is influenced by the distribution of items in

transactions, as it does not yield impressive results when data is skewed [12].

The Buddy Prima algorithm [13], which uses prime numbers to represent transactions, but

requires more computational power, memory, and I/O processing capacity for large databases

like VLDB. A new methodology was introduced using weights for frequent itemsets, based on

user-specified minimum range [14]. The runtime also depends on the weight range. PRISM

approach was developed for frequent sequence mining, using primal-block encoding notation

for itemsets, but its cardinality is insufficient for massive data sets [15]. A Bi-Eclat technique

was introduced for improving the real Eclat algorithm, but found it unstable in sparse databases

and inadequate for massive ones [16]. FP-Tree-based [17] infrequent itemset mining was

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

522

https://internationalpubls.com

proposed by adjusting pattern size based on computational complexity, with run time

increasing with higher lower-bound values. AprioriMin [18] was introduced using a support

value approximation method for frequent itemset discovery, but found it underperforms when

support is minimal. The N-list [19] approach under the Subsume technique have significantly

improved the pre-post methodology for locating frequent itemsets, but not for sparse data.

HashEclat [20] uses an approximation strategy for optimizing the Eclat algorithm using

MinHash, but its effectiveness depends on matrix-sample-rate, "wrong-estimation" and "wrong

omission". WFRIM [21] mines FIs using a user-specified weight and threshold, requiring more

processing time and memory when the regularity threshold has more variations. The Single

Scan (SS) approach [22] used for finding frequent itemsets using High Performance Computing,

but this method faces memory constraints. A new method for mining frequent-itemsets by

trimming transactions iteratively from lattice, which showed performance issues with smaller

dataset sizes and limited distinct item counts [23].

For identifying frequent item sets from big data in distributed computing settings by

highlighting the significant increase in execution time with database size [24]. The authors

present an innovative approach to Frequent Itemset Mining, which overcomes the challenges

of existing methods and provides fresh insights from various data sources.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let the supermarket transaction database, TxDb, contains the set of transactions. Txn =
 {Txn1, Txn2, … , Txnn} where Txni ∈ Txn, ∀i = {1, 2, … , n}. TxDb is a database made up of

a countable number of Items, which are represented as TxI = {TxI1, TxI2, … , TxIn}, where

 TxIi ∈ TxI, ∀i = {1, 2, … , n}. A transaction, Txni , is a combination of items bought by a

single customer. As a result of Txni ⊆ TxI. An Itemset γ containing one or more items such

that γ ⊆ Txni and whose size is determined by the number of items contained within it. A set

is said to be a frequent itemset when its support count φ exceeds the minimum support count

σmin , calculated using the user-specified threshold σ. The support count φ is calculated by

counting the number of occurrences of items in the TxDb transaction.

Definition-1 (GPLN): A Geometric Progression Label Number (GPLN) is a mathematical

Geometric Progression sequence number produced by Equation 1.

GPLN = a ∗ rn−1 … Eqn. (1)

where 'a' is the first term, 'r' is a constant and 'n' is the sequence's nth term. The final term 'n'

represents the total number of unique items in the TxDb. The JIC algorithm calculates 'a' as ten

times the number of unique items (numItems*10) in the database TxDb and 'r' is calculated

using Equation 2.

r = 1 +
9.25

a
 … Eqn. (2)

where a=numItems*10. 1 and 9.25 are the constants.

Definition-2 (CGPLN): In each transaction, the Cumulative GPLN for each subset γ will be

calculated by simply adding all the GPLN of the subset's corresponding items. The CGPLN is

calculated using Equation 3 below.

CGPLN(γ) = ∑ GPLN(TxIi)

TxIi∈ γ

 where TxIi ∈ γ, ∀i = {1, 2, … , |γ|} … Eqn. (3)

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

523

https://internationalpubls.com

Definition-3 (CGPLN-Label): It is the label representation for the itemsets and it is assigned

after the CGPLN of each itemset is calculated using the label structure shown in Equation 4.

This label structure, in the style of three-dotted values, is used to label the itemsets uniquely

(xxxx.xxxx.xxxx). These three dotted values represent the CGPLN-calculated value, the

number of items in the Itemset and the sum of the item-values respectively, as shown in the

syntax below:

CGPLN . Itemset Size . Sum of Items … Eqn. (4)

Definition-4 (Frequent Itemset): The singleton (1-k) frequent itemsets discovered as found

in the Apriori algorithm are identified during the first phase of the algorithm execution

(Agrawal and Srikant 1994). The n-k frequent itemsets are discovered based on its support

count. When the support φ of CGPLN-Label exceeds the minimum support count σmin , the

itemsets are said to be frequent n-k itemsets.

φ(CGPLN − Label) > σmin ⟹ CGPLN − Label is Frequent

The CGPLN-Labels are replaced with their corresponding original itemsets and added to the

final frequent itemset list during the Join algorithm implementation.

III. JAGGED ITEMSET COUNTING (JIC) ALGORITHMS AND METHODOLOGIES

The real-time dataset is downloaded from the website# and that cannot be used directly for data

mining. To understand the buying pattern from sales as well as customer purchasing behaviour

from the transaction database, the following are the algorithms which are designed as shown

in the Figure-1 for this proposed work: algorithm for Pre-Processing, algorithm for partitioning

the dataset, algorithm for GPLN, algorithm for Jagged Itemset Counting (JIC) -1, algorithm for

Jagged Itemset Counting (JIC) -2 and algorithm for Join.

Fig. 1 System Architecture diagram

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

524

https://internationalpubls.com

The raw data downloaded from the website is pre-processed in such a way that all the items

associated with a given order-id are aggregated into a single row, with the reference id. Order-

ids that are redundant are removed. Columns and fields that are irrelevant to this study are also

removed. Table 1 displays the order details for the given raw dataset, with order id in the first

column and product id in the second. All the items associated with a specific order id are

grouped into a single row separated by a comma with that order id referenced. This data is then

inserted into the pre-processed file as a single row.

Algorithm for Pre-Processing:

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑒𝑠

2. 𝑂𝑝𝑒𝑛 𝑅𝑎𝑤 − 𝑑𝑎𝑡𝑎 (𝑇𝑟𝐷𝑎𝑡𝑎. 𝑐𝑠𝑣) 𝑓𝑖𝑙𝑒

3. 𝑅𝑒𝑎𝑑 𝑎 𝐿𝑖𝑛𝑒 𝑓𝑟𝑜𝑚 𝑇𝑟𝐷𝑎𝑡𝑎 𝑎𝑛𝑑 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑡𝑜 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝐷𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 ′𝐶𝑜𝑚𝑚𝑎′
4. 𝑇𝑟𝐷𝑎𝑡𝑎𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +

5. 𝑜𝑟𝑑𝐼𝐷𝑖 ← 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑜𝑟𝑑𝑒𝑟𝐼𝐷]
6. 𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝐴𝑝𝑝𝑒𝑛𝑑 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝐷]
7. 𝑅𝑒𝑎𝑑 𝑁𝑒𝑥𝑡𝐿𝑖𝑛𝑒 𝑓𝑟𝑜𝑚 𝑇𝑟𝐷𝑎𝑡𝑎 𝑎𝑛𝑑 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑡𝑜 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝐷𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 ′𝐶𝑜𝑚𝑚𝑎′
8. 𝑇𝑟𝐷𝑎𝑡𝑎𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +

9. 𝑜𝑟𝑑𝐼𝐷𝑗 ← 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑜𝑟𝑑𝑒𝑟𝐼𝐷]

10. 𝐼𝑓 𝑜𝑟𝑑𝐼𝐷𝑗 == 𝑜𝑟𝑑𝐼𝐷𝑖𝑡ℎ𝑒𝑛

11. 𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝐴𝑝𝑝𝑒𝑛𝑑 𝑙𝑖𝑛𝑒𝑃𝑎𝑟𝑡𝑠[𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝐷]
12. 𝐼𝑓 𝑛𝑜𝑡 𝑇𝑟𝐷𝑎𝑡𝑎. 𝐸𝑂𝐹 𝑡ℎ𝑒𝑛

13. 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑟𝑜𝑚 𝑆𝑡𝑒𝑝 − 7

14. 𝐸𝑛𝑑 𝑖𝑓

15. 𝐸𝑛𝑑𝑖𝑓

16. 𝑊𝑟𝑖𝑡𝑒 𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏. 𝑑𝑎𝑡 𝑓𝑖𝑙𝑒

17. 𝑝𝑟𝑒𝐷𝑏𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +

18. 𝑝𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑛𝑢𝑙𝑙
19. 𝐼𝑓 𝑛𝑜𝑡 𝑇𝑟𝐷𝑎𝑡𝑎. 𝐸𝑂𝐹 𝑡ℎ𝑒𝑛

20. 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑟𝑜𝑚 𝑆𝑡𝑒𝑝 − 3

21. 𝐸𝑙𝑠𝑒

22. 𝐸𝑥𝑖𝑡

23. 𝐸𝑛𝑑 𝑖𝑓

24. 𝐶𝑙𝑜𝑠𝑒 𝑇𝑟𝐷𝑎𝑡𝑎 𝑓𝑖𝑙𝑒

25. 𝑊𝑟𝑖𝑡𝑒 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒 𝑤𝑖𝑡ℎ 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠

A. Partitioning

According to the literature, the number of candidate set subsets will grow at an exponential

rate. In view of this and in order to improve performance in frequent itemset mining, the pre-

processed file is further partitioned into three Partitions based on the number of items present

in each transaction. The unique items are already identified during the pre-processing with its

support and now the items with its support less than the ‘GlobalSupportCount’ will be removed

and that are considered as infrequent item.

𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡 𝜎𝑚𝑖𝑛
𝐺 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∗ (𝜎 /100) … Eqn. (5)

From the each transaction of the pre-processed file, infrequent items are removed and the

singleton frequent items are counted. The partition is chosen based on the number of items in

a transaction line and data is written into the corresponding dataset. Partition-1 will only

include transactions containing 13 or fewer items, Partition-2 will include transactions

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

525

https://internationalpubls.com

containing more than 13 but less than or equal to 30 items and Partition-3 will include

transactions containing more than 30 items. The Pseudo code for the partitioning algorithm as

follows:

Algorithm for Partitioning

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
2. 𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏. 𝑑𝑎𝑡
3. 𝑅𝑒𝑎𝑑 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏
4. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑥𝑛𝑖 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏
5. 𝑖𝑡𝑒𝑚𝐶𝑜𝑢𝑛𝑡 + +
6. 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + +
7. 𝑆𝑝𝑙𝑖𝑡 𝑇𝑥𝑛𝑖 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑑𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 ′𝑆𝑝𝑎𝑐𝑒′
8. 𝑖𝑓 𝑝𝑎𝑟𝑡𝑠𝐶𝑜𝑢𝑛𝑡 > 30 𝑡ℎ𝑒𝑛
9. 𝑊𝑟𝑖𝑡𝑒 𝑇𝑥𝑛𝑖𝑖𝑛 𝑝𝑟𝑒𝐷𝑏3. 𝑑𝑎𝑡
10. 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠3 + +
11. 𝐸𝑙𝑠𝑒𝑖𝑓 𝑝𝑎𝑟𝑡𝑠𝐶𝑜𝑢𝑛𝑡 > 13 𝑡ℎ𝑒𝑛
12. 𝑊𝑟𝑖𝑡𝑒 𝑇𝑥𝑛𝑖𝑖𝑛 𝑝𝑟𝑒𝐷𝑏2. 𝑑𝑎𝑡
13. 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠2 + +
14. 𝐸𝑙𝑠𝑒
15. 𝑊𝑟𝑖𝑡𝑒 𝑇𝑥𝑛𝑖𝑖𝑛 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡
16. 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠1 + +
17. 𝐸𝑛𝑑𝑖𝑓
18. 𝐹𝑖𝑛𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑚 𝑇𝑥𝐼𝑖
19. 𝑖𝑡𝑒𝑚𝑠𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑢𝑛𝑖𝑞𝑢𝑒 𝑇𝑥𝐼𝑖
20. 𝐸𝑛𝑑𝑓𝑜𝑟
21. 𝐶𝑙𝑜𝑠𝑒 𝑝𝑟𝑒𝐷𝑏. 𝑑𝑎𝑡, 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡, 𝑝𝑟𝑒𝐷𝑏2. 𝑑𝑎𝑡 𝑎𝑛𝑑 𝑝𝑟𝑒𝐷𝑏3. 𝑑𝑎𝑡 𝑓𝑖𝑙𝑒𝑠
22. 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡 𝜎𝑚𝑖𝑛

𝐺 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
23. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑖𝑡𝑒𝑚𝑠𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
24. 𝐼𝑓 𝜑(𝑇𝑥𝐼𝑖) ≥ 𝜎𝑚𝑖𝑛

𝐺 𝑡ℎ𝑒𝑛
25. 𝐹𝐼𝑆1𝑘 ← 𝑎𝑑𝑑 𝑇𝑥𝐼𝑖 , FIS –Frequent Item Set
26. 𝐸𝑛𝑑 𝑖𝑓
27. 𝐸𝑛𝑑 𝑓𝑜𝑟
28. 𝑊𝑟𝑖𝑡𝑒 𝐹𝐼𝑆 𝑖𝑛 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐹𝐼𝑆. 𝑑𝑎𝑡 𝑤𝑖𝑡ℎ 𝑖𝑡𝑒𝑚′𝑠𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
29. 𝑊𝑟𝑖𝑡𝑒 𝑚𝑒𝑡𝑎𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡 𝑤𝑖𝑡ℎ 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠,
 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠1, numTransaction2,numTransaction3,numItems and Global Support
Count.

TABLE I

ORDER DETAILS OF RAW DATA MADE BY THE CUSTOMERS

order

_id

product

_id

add_to_c

art_orde

r

reorder

ed

1 49302 1 1

1 11109 2 1

1 10246 3 0

1 49683 4 0

1 43633 5 1

1 13176 6 0

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

526

https://internationalpubls.com

1 47209 7 0

1 22035 8 1

36 39612 1 0

36 19660 2 1

36 49235 3 0

B. Geometric Progression Label Numbering

The singleton frequent items are read from the previously saved list of frequent items, in order

to calculate the Geometric Progression Label Number (GPLN). Each singleton frequent item

was given a Geometric Progression Label Number using the procedure outlined in Equation 1.

These GPLNs are stored for later usage, together with the representative item names that

correspond with them. The pseudo code for the GPLN algorithm is as follows:

Algorithm for Partitioning

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

2. 𝑂𝑝𝑒𝑛 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐹𝐼𝑆. 𝑑𝑎𝑡
3. 𝑎 = 𝑛𝑢𝑚𝑖𝑡𝑒𝑚𝑠 ∗ 10

4. 𝑟 = (1 + 9.25)/𝑎

5. 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒, 𝑥 = 0

6. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐹𝐼𝑆

7. 𝐼𝑓 𝑓𝑙𝑎𝑔 𝑡ℎ𝑒𝑛

8. 𝑛 = 1 + 𝑥

9. 𝑓𝑙𝑎𝑔 = 𝑓𝑎𝑙𝑠𝑒

10. 𝐸𝑙𝑠𝑒

11. 𝑛 = 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 − 𝑥

12. 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒

13. 𝐸𝑛𝑑 𝑖𝑓

14. 𝐺𝑃𝐿𝑁 = 𝑎 ∗ 𝑟𝑛−1

15. 𝑥 + +

16. 𝐺𝑃𝐿𝑁 − 𝐿𝑖𝑠𝑡 ← 𝐺𝑃𝐿𝑁(𝑇𝑥𝐼𝑖)

17. 𝐸𝑛𝑑 𝑓𝑜𝑟

18. 𝑊𝑟𝑖𝑡𝑒 𝐺𝑃𝐿𝑁 𝑤𝑖𝑡ℎ 𝐼𝑡𝑒𝑚𝑁𝑎𝑚𝑒

C. Jagged Itemset Counting (JIC) Stage -1

In this procedure, a transaction line was read from the PreDb1 dataset using the first split of

the preprocessed dataset. Every subset of a transaction is generated, with the exception of the

empty set and the subset with a single item. During the partitioning phase, we have already

eliminated the infrequent elements from the transaction to minimize computing complexity.

Each subset item was then mapped from their GPLN list to its corresponding GPLN, which
was determined and stored using the GPLN method. We used Definition-2 to calculate the

cumulative GPLN. As described in Definition-3, a CGPLN-Label representation is made for

every subset and stored in a text file for future use.

𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙) > 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡 𝜎𝑚𝑖𝑛
𝐺 … Eqn. (6)

𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙) >
1

6
𝜎𝑚𝑖𝑛

𝐺 … Eqn. (7)

For Every new CGPLN-Label, its count was assigned by 1, and the count of any existing label

was increased by 1. When compared to other algorithms like Apriori, this technique will reduce

needless procedures like searching and sorting the items or itemsets contained in the transaction.

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

527

https://internationalpubls.com

It will also lower the execution time. Until every transaction is read, this process is repeated.

When CGPLN-Labels support more than the ‘GlobalSupportCount’ during this procedure, they

are categorized as frequent CGPLN-Labels and are stored in a hash map. While CGPLN-Labels

with balance are rare, those with support larger than one-sixth of ‘GlobalSupportCount’ are

deemed 'Likely to be frequent CGPLN-Labels' and are stored in a temporary file for potential

future frequency. The residual CGPLN-Labels that are rare are eliminated.

Algorithm for Jagged Itemset Counting (JIC)-1

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

2. 𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡
3. 𝑅𝑒𝑎𝑑 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏1

4. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑥𝑛𝑖 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏1

5. 𝑅𝑒𝑚𝑜𝑣𝑒 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠

6. 𝐹𝑖𝑛𝑑 𝑎𝑙𝑙 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑇𝑥𝑛𝑖

7. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑠𝑒𝑡 𝛾𝑗 𝑖𝑛 𝑇𝑥𝑛𝑖

8. 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 ← 𝐶𝐺𝑃𝐿𝑁(𝛾𝑗) . |𝛾𝑗| . 𝑠𝑢𝑚(𝛾𝑗)

9. 𝐼𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) = 0 𝑡ℎ𝑒𝑛

10. 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗

11. 𝑊𝑟𝑖𝑡𝑒 𝛾𝑗@𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

12. 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 − 𝑐𝑜𝑢𝑛𝑡 = 1

13. 𝐸𝑙𝑠𝑒

14. 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 − 𝑐𝑜𝑢𝑛𝑡 + +

15. 𝐸𝑛𝑑 𝑖𝑓

16. 𝐸𝑛𝑑 𝑓𝑜𝑟

17. 𝐸𝑛𝑑 𝑓𝑜𝑟

18. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑖𝑛 𝐶𝐺𝑃𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠

19. 𝐼𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) < 𝜎𝑚𝑖𝑛
𝐺 𝑡ℎ𝑒𝑛

20. 𝑖𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) ≥ 1
6 ⁄ (𝜎𝑚𝑖𝑛

𝐺) 𝑡ℎ𝑒𝑛

21. 𝑊𝑟𝑖𝑡𝑒 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑛𝑡𝑜 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝

22. 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗

23. 𝐸𝑙𝑠𝑒

24. 𝑊𝑟𝑖𝑡𝑒 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑛𝑡𝑜 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝

25. 𝐸𝑛𝑑 𝑖𝑓

26. 𝐸𝑛𝑑 𝑓𝑜𝑟

27. 𝐶𝑙𝑜𝑠𝑒 𝑝𝑟𝑒𝐷𝑏1. 𝑑𝑎𝑡

D. Jagged Itemset Counting (JIC) Stage -2

This process is invoked when the partitions have transactions with more than 13 items. Initially,

the infrequent CGPLN-Labels which that were stored during the previous Jagged Itemset

Counting (JIC) Stage-1 process are loaded, and their counts are updated. The transactions from

these partitions are read one by one. After eliminating the infrequent item from each transaction,

the frequent items are re-ordered based on their support count in such a manner that the item

with the least support will go last and items with higher support will come first. The

transactions are stored in a transaction collection, and the first item with the highest support

from each transaction is stored in the Header-List representing that it is a starting node.

Form transaction collection: a node is created for each item in the transaction if it does not exist

in the existing node list and its count is set to 1. The count of the node was incremented by 1

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

528

https://internationalpubls.com

and updated if it already existed in the node list. The node’s parent and child connections are

built from the header node to the leaf node for each transaction. A pattern tree was created

using the header node with its parent-child relationship from the whole transaction collection,

so that the path of each node in the Header-List is then tracked using parent and child links.

Then, for every header node of the pattern tree and its related parent-child path, a set was

created, and its subsequent subsets are stored in the list.

Using Definitions 1, 2 and 3, the GPLN, CGPLN, and CGPLN-Labels are found for every

subset, and its support count was found using the previous methodology and is updated in a

hash map. Now the frequent CGPLN-Labels are moved, and their support counts are updated

in the final frequent list, which was created in the previous JIC-Stage-1 process. The infrequent

CGPLN-Labels and its support count are now merged with the previously stored 'Likely to be

frequent CGPLN-Labels'. After merging, the frequent CGPLN-Labels are moved to the final

frequent list, and the pattern tree will be purged. From the rest of the CGPLN-Labels, when the

support of CGPLN-Label exceeds the local support count (𝜎𝑚𝑖𝑛
𝐿𝑜𝑐𝑎𝑙), they are moved to the

'Likely to be frequent CGPLN-Labels' collection after purging the existing old collection, and

they are written back to the infrequent CGPLN-Label temporary file. This process is continued

when there are more partitions to proceed, and the final frequent list, the 'Likely to be frequent

CGPLN-Labels' collections and their support counts are updated subsequently for each cycle.

Once this entire JIC-Stage-2 process gets over, the infrequent CGPLN-Labels are purged from

the memory.

Algorithm for Jagged Itemset Counting (JIC)-2

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

2. 𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏𝑛. 𝑑𝑎𝑡

3. 𝑅𝑒𝑎𝑑 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏𝑛

4. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑥𝑛𝑖 𝑖𝑛 𝑝𝑟𝑒𝐷𝑏𝑛

5. 𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + +

6. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑇𝑥𝑛𝑖

7. 𝐼𝑓 𝜑(𝑇𝑥𝐼𝑖) < 𝜎𝑚𝑖𝑛
𝐺 𝑡ℎ𝑒𝑛

8. 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑇𝑥𝐼𝑖

9. 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒

10. 𝐸𝑙𝑠𝑒

11. 𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝑇𝑥𝐼𝑖

12. 𝐸𝑛𝑑𝑖𝑓

13. 𝐸𝑛𝑑𝑓𝑜𝑟

14. 𝑇𝑥𝑛𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑠𝑜𝑟𝑡𝑒𝑑 𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

15. ℎ𝑒𝑎𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← 𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐹𝑖𝑟𝑠𝑡𝐼𝑡𝑒𝑚)

16. 𝑖𝑡𝑒𝑚𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑛𝑢𝑙𝑙

17. 𝐸𝑛𝑑𝑓𝑜𝑟

18. 𝐶𝑙𝑜𝑠𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑟𝑒𝐷𝑏𝑛

19. 𝜎𝑚𝑖𝑛
𝐿𝑜𝑐𝑎𝑙 ← 𝑛𝑢𝑚𝑇𝑟𝑎𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

20. 𝐵𝑢𝑖𝑙𝑑 𝑇𝑟𝑒𝑒 𝑗𝑇𝑟𝑒𝑒 ← ℎ𝑒𝑎𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

21. 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← 𝑗𝑁𝑜𝑑𝑒[]
22. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝑛𝑖 𝑖𝑛 𝑇𝑥𝑛𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛

23. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐼𝑡𝑒𝑚 𝑇𝑥𝐼𝑖 𝑖𝑛 𝑇𝑥𝑛𝑖

24. 𝐼𝑓 𝑇𝑥𝐼𝑖 𝑛𝑜𝑡 𝑖𝑛 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 𝑡ℎ𝑒𝑛

25. 𝑐𝑟𝑒𝑎𝑡𝑒 𝑗𝑁𝑜𝑑𝑒

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

529

https://internationalpubls.com

26. 𝑗𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑇𝑥𝐼𝑖

27. 𝑗𝑁𝑜𝑑𝑒. 𝑐𝑜𝑢𝑛𝑡 = 1

28. 𝑢𝑝𝑑𝑎𝑡𝑒 𝑗𝑁𝑜𝑑𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑐ℎ𝑖𝑙𝑑 𝑙𝑖𝑛𝑘𝑠

29. 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← 𝑗𝑁𝑜𝑑𝑒

30. 𝑒𝑙𝑠𝑒

31. 𝑢𝑝𝑑𝑎𝑡𝑒 𝑗𝑁𝑜𝑑𝑒. 𝑐𝑜𝑢𝑛𝑡

32. 𝐸𝑛𝑑 𝑖𝑓

33. 𝐸𝑛𝑑𝑓𝑜𝑟

34. 𝑗𝑇𝑟𝑒𝑒 ← 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑇𝑥𝑛𝑖
35. 𝐸𝑛𝑑 𝑓𝑜𝑟

36. 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 ← 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

37. 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

38. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖𝑛 ℎ𝑒𝑎𝑑𝑒𝑟𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

39. 𝑇𝑟𝑎𝑐𝑒 𝑟𝑜𝑢𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝑝𝑎𝑟𝑒𝑛𝑡 𝑐ℎ𝑖𝑙𝑑 𝑙𝑖𝑛𝑘𝑠 𝑎𝑛𝑑 𝑐𝑟𝑒𝑎𝑡𝑒 𝑗𝑆𝑒𝑡

40. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑆𝑒𝑡 𝛾𝑗 𝑖𝑛 𝑗𝑆𝑒𝑡

41. 𝐼𝑓 𝜑(𝛾𝑗) > 𝜎𝑚𝑖𝑛
𝐿𝑜𝑐𝑎𝑙 𝑡ℎ𝑒𝑛

42. 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 ← 𝐶𝐺𝑃𝐿𝑁(𝛾𝑗) . |𝛾𝑗| . 𝑠𝑢𝑚(𝛾𝑗)

43. 𝐼𝑓 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁

44. 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 − 𝑐𝑜𝑢𝑛𝑡 += 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗)

45. 𝐸𝑛𝑑 𝑖𝑓

46. 𝐸𝑛𝑑 𝑓𝑜𝑟

47. 𝑗𝑆𝑒𝑡 = 𝑛𝑢𝑙𝑙
48. 𝐸𝑛𝑑 𝑓𝑜𝑟

49. 𝑊𝑟𝑖𝑡𝑒 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑛𝑡𝑜 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

E. The Join operation

Now the ‘Likely to be frequent CGPLN-Label’s from the JIC-Stage-2 process and infrequent

CGPLN-Labels from the JIC-Stage-2 are merged with its respective support count and when

its count exceeds then GlobalSupportCount σ_min^G, they are moved to the final frequent

CGPLN-Labels collection otherwise discarded. Finally the final list of frequently occurring

CGPLN-Labels is replaced by its original itemset representation and its support. These itemsets

are now added directly to the final Frequent Itemset list and displayed as output.

Algorithm for the Join operation

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

2. 𝑂𝑝𝑒𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝
3. 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 ← 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

4. 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

5. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑖𝑛 𝑖𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁

6. 𝐼𝑓 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝐶𝐺𝑃𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 𝑡ℎ𝑒𝑛

7. 𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠[𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗] − 𝑐𝑜𝑢𝑛𝑡

8. 𝐸𝑙𝑠𝑒

9. 𝐼𝑓 𝜑(𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗) ≥ 𝜎𝑚𝑖𝑛
𝐺 𝑡ℎ𝑒𝑛

10. 𝐶𝐺𝑃𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝑎𝑑𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗

11. 𝐸𝑙𝑠𝑒

12. 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑗

13. 𝐸𝑛𝑑 𝑖𝑓

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

530

https://internationalpubls.com

14. 𝐸𝑛𝑑𝑖𝑓

15. 𝐸𝑛𝑑 𝑓𝑜𝑟

16. 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁 ← 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

17. 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡. 𝑡𝑚𝑝 𝑓𝑖𝑙𝑒

18. 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑜𝑟 𝑎𝑝𝑝𝑒𝑛𝑑 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝐺𝑃𝐿𝑁

19. 𝑂𝑝𝑒𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠. 𝑡𝑚𝑝

20. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑘𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠

21. 𝑖𝑓 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑘 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑠 𝑡ℎ𝑒𝑛

22. 𝛾𝑘 ← 𝐶𝐺𝑃𝐿𝑁 − 𝐿𝑎𝑏𝑒𝑙𝑘

23. 𝐹𝐼𝑆𝑛𝑘 ← 𝑎𝑑𝑑 𝛾𝑘

24. 𝐸𝑛𝑑𝑖𝑓

25. 𝐸𝑛𝑑𝑓𝑜𝑟

26. 𝐶𝑙𝑜𝑠𝑒 𝑎𝑛𝑑 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐾𝑒𝑦𝑠. 𝑡𝑚𝑝

27. 𝐹𝐼𝑆 ← 𝐹𝐼𝑆1𝑘

28. 𝐹𝐼𝑆 ← 𝐹𝐼𝑆𝑛𝑘

29. 𝑝𝑟𝑖𝑛𝑡 𝐴𝑙𝑙 𝐹𝐼𝑆, 𝑖𝑡𝑠 𝑐𝑜𝑢𝑛𝑡 𝑎𝑛𝑑 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠

To provide a rigorous mathematical justification and analysis of the superiority of the Jagged

Itemset Counting (JIC) algorithm, a combination of formal hypotheses, lemmas, theorems, and

proofs is presented. These are based on the properties of frequent itemset mining and

complexity analysis, highlighting the advantages of the JIC algorithm compared to other

algorithms such as Apriori and Eclat.

Hypothesis:

 The JIC algorithm, using Geometric Progression Label Numbers (GPLN) and Cumulative

Geometric Progression Label Numbers (CGPLN), outperforms Apriori and Eclat in terms of

execution time and memory consumption.

Theorem:

 The JIC algorithm achieves a time complexity of 𝑂(𝑛2) and space complexity of 𝑂(𝑛),

outperforming the Apriori algorithm (with complexity 𝑂(2𝑛) and the Eclat algorithm (with

complexity 𝑂(2𝑛. 𝑡), where 𝑡 is the transaction size).

Proof:

Lemma 1: Time Complexity of JIC Algorithm

The JIC algorithm reduces the time complexity by using a geometric progression labeling

system (GPLN and CGPLN) and requires only two passes over the database.

Hypothesis:

Each itemset in the transaction database TxDb is labeled using the Geometric Progression

Label Number (GPLN). For each itemset 𝛾, the CGPLN label is generated using Definition-1

(GPLN) and Definition-2 (CGPLN).

Proof:

The process of generating the GPLN and CGPLN requires iterating over each item in 𝐹. Since

the GPLN computation is a constant-time operation (due to fixed 𝑎 and 𝑟), the total time to

generate the CGPLN for a single itemset 𝛾 with 𝑚 items is 𝑂(𝑚). Given that we need to

process 𝑛 transactions in the database and generate itemsets for all transactions, the total time

complexity becomes:

𝑇𝐽𝐼𝐶 = 𝑂(𝑛 . 𝑚)

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

531

https://internationalpubls.com

Assuming 𝑚 grows linearly with the number of items 𝑛, we get:

𝑇𝐽𝐼𝐶 = 𝑂(𝑛2)

This is significantly better than the Apriori algorithm, which needs to generate candidate

itemsets of size 𝑘, leading to a time complexity of 𝑂(2𝑛).

Lemma 2: Space Complexity of JIC Algorithm

The JIC algorithm requires less space for storing candidate itemsets by using CGPLN labels,

which uniquely represent itemsets as numeric values.

Hypothesis:

The space complexity of JIC is driven by the storage of CGPLN labels and the hash maps for

counting support values. Since the CGPLN labels for all itemsets can be represented as single

numerical values, the space required is proportional to the number of itemsets rather than the

size of the itemsets themselves.

Formula:

Let 𝑚 represent the number of unique items and 𝑛 the number of transactions. For each itemset,

we store:

𝐶𝐺𝑃𝐿𝑁(𝛾) = 𝑎1 . 𝑎2. 𝑎3

where 𝑎1, 𝑎2 and 𝑎3 are the components of the CGPLN label, representing the cumulative

value, number of items, and sum of item-values, respectively. The space required to store each

CGPLN is 𝑂(1).

Proof:

Since the CGPLN labels are stored as fixed-size values, the total space required for all itemsets

in the transaction database is proportional to the number of itemsets, denoted as 𝑚, which is

linear in the size of the database:

𝑆𝐽𝐼𝐶 = 𝑂(𝑛)

This is better than Eclat, which stores multiple vertical databases and has a space complexity

of 𝑂(2𝑛 . 𝑡), where 𝑡 is the average transaction length.

Lemma 3: Scalability of JIC Algorithm for Big Data

The JIC algorithm scales better for large datasets by partitioning the transaction database and

processing each partition independently.

Hypothesis:

The transaction database TxDb is partitioned based on the number of items in each transaction,

with frequent itemsets computed in each partition using the CGPLN labels. Let 𝑃 represent the

number of partitions.

Formula:

The total time to process all partitions is given by:

𝑇𝐽𝐼𝐶−𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 = 𝑃 . 𝑇𝐽𝐼𝐶

Since each partition is processed independently, the complexity remains linear in the number

of partitions and quadratic in the number of items:

𝑇𝐽𝐼𝐶−𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 = 𝑂(𝑃 . 𝑛2)

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

532

https://internationalpubls.com

Proof:

By dividing the dataset into partitions, JIC minimizes the memory and computation

requirements per partition. Each partition only requires processing the transactions within it,

and the final frequent itemsets are merged using the Join operation, which has a complexity of

𝑂(𝑛). Therefore, the algorithm scales efficiently with large datasets.

So, the JIC algorithm achieves better performance than Apriori and Eclat due to its lower time

and space complexities. The use of Geometric Progression Label Numbers (GPLN) and

Cumulative Geometric Progression Label Numbers (CGPLN), along with a two-pass scanning

approach, enables it to process frequent itemsets in 𝑂(𝑛2) time and 𝑂(𝑛) space, compared to

𝑂(2𝑛) for Apriori and 𝑂(2𝑛 . 𝑡) for Eclat. The algorithm's scalability is also ensured through

partitioning, making it suitable for Big Data also.

IV. RESULTS AND EVALUATIONS

The performance of the JIC algorithm is evaluated using both real-world and synthetic

databases. The synthetic database is created with IBM Synthetic Data Generator [27] and the

real-time databases are downloaded from [26] & [28] and their information is presented in

Tables 2 and 3. The dataset downloaded from the website [26] contains 50 thousand rows of

Product Information, 3.4 million transaction details, 134 rows of Aisles information, and 21

rows of Department Information. The JIC algorithm's performance is assessed on both artificial

and real-world databases. The synthetic database is created with IBM Synthetic Data Generator

(https://github.com/zakimjz/ IBMGenerator.git) and the real-time databases are downloaded

from [26] & [28] and their information is presented in Tables 2 and 3. 50 thousand rows of

product information, 3.4 million transaction details, 134 rows of information about aisles, and

21 rows of department information are all included in the dataset that may be obtained from

the website [26]. The CSV (Comma Separated Values) format is used for the dataset.

To continue with data mining, information must be extracted from raw datasets since these data

cannot be utilized directly to mine Frequent Itemsets and understanding the buying pattern of

sales and the customer's buying behaviour is crucial. A laptop computer with an Intel i5 7200U

@ 2.5 GHz - 4 cores and a 2.7 GHz - 1 core CPU, together with 4GB RAM, was used to

perform all of the algorithms. This section presents the results of a comparison between the JIC

algorithm and two popular algorithms, Apriori and Eclat, regarding the JIC algorithm's

efficiency in terms of execution time/runtime and main memory utilization. As illustrated in

Fig. 13 and Fig. 15, the Eclat algorithm's resource utilization of heap memory and Central

Processing Unit (CPU) consumption is not feasible due to the Online Grocery Database's big

size.

A Java Out of capacity Error happens even though all of the algorithms were executed with a

2GB extended heap capacity. Fig. 10 and 11 show how heap memory is used and how much

CPU power the JIC algorithm uses during execution, and Fig. 12 and 14 show how heap

memory is used and how much CPU power the Apriori algorithm uses during execution using

the SPMF software tool [25]. The JIC method performs better than the other algorithms in

terms of execution time since it consumes memory uniformly and loads 50% of the CPU during

operation.

A. Performance on Execution Time

The JIC method and other algorithms' execution times are displayed in Table 4, and Fig. 2

provides a graphic representation of the same data for the "Online Retail" database. In the

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

533

https://internationalpubls.com

"Online Retail" database, the JIC algorithm performs better than the Apriori and Eclat

algorithms for all support thresholds, including the lowest support criterion of 0.1%, as Table

4 and Fig. 2 unambiguously demonstrate. Table 5's "Fruit Hut" database's JIC and other

algorithms' execution times are graphically displayed in Fig. 3. According to Table 5 and Fig.

3, the JIC method outperforms the Apriori algorithm and performs comparable to the Eclat

algorithm in the "Fruit Hut" real-life database. Perform better, nevertheless, when the support

threshold is at 0.1%. For the "T4I4D100K" database in Table 6, the JIC and other algorithms'

execution times are visually displayed in Fig. 4. Table 7 lists the JIC and Apriori algorithms'

execution timings.

For all support criteria between 0.25 and 5%, the JIC algorithm performs better than the

competition. While the JIC algorithm gradually grows with an overall efficiency of 38% when

compared to the Apriori algorithm, the Apriori algorithm's execution time climbs constantly as

the support threshold drops. The JIC method works quite well for small and medium-sized

databases, outperforming both the Apriori and Eclat algorithms in comparable tests. It is

concluded that both the Apriori and JIC algorithms find Frequent Itemsets from all sizes of

datasets taken for evaluation because the Eclat algorithm was unable to execute for the given

Big Data. However, the Eclat algorithm is not suitable when the size of the database or dataset

is large, and the JIC algorithm's overall performance on the execution times is good for all

databases taken for evaluation.

B. Performance on the usage of Main Memory

Table 8 displays the RAM utilization for the JIC method and other algorithms, while Fig. 6

exhibits the same graphically for the "Online Retail" database. When compared to other

methods for this database, it is evident that the JIC approach used less primary RAM. When

compared to the other two algorithms, the Apriori and Eclat, the memory utilised by the JIC

algorithm during execution in the "Fruit Hut" real-life database and the "T4I4D100K" synthetic

database is high (see Tables 9 and 10, Figs. 7 and 8, respectively). However, when the JIC

algorithm is conducted on a Big data dataset, Table 11 and Fig. 9 reveal that the primary

memory consumed by the JIC algorithm is significantly greater than the Apriori, but no

significant difference can be discovered, as shown for small and medium databases or datasets.

However, with the higher support threshold, the JIC algorithm consumes less memory than the

Apriori approach. Memory occupancy and the support threshold are therefore inversely

correlated. At that point, the RAM needed to run the JIC algorithm is increased, and the support

threshold is lowered.

TABLE 2

INFORMATION ABOUT THE REAL-LIFE DATABASES USED FOR THE EVALUATION

Database

Name
Transaction Count Item Count Database Size

Online Retail 5,41,909 2,603 11.4 Mb

Fruit Hut 1,81,970 1,265 3.4 Mb

Insta Cart

Online Grocery

Shopping

Dataset

3.24 Millions (Raw Data)

32,14,873 (Pre-Processed Data)
49,689

551 Mb

179 Mb

TABLE 3

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

534

https://internationalpubls.com

INFORMATION ABOUT THE SYNTHETIC DATABASE – T4I4D100K.DAT USED FOR THE

EVALUATION

Particulars of Database Size

Average Size of Transaction (T) 5

The average size of the Maximal Frequent Itemset (I) 4

Total Number of Items (N) 1000

Total Number of Transactions (D x1000) 1,00,000

Database Size 3.4 Mb

TABLE 4

PERFORMANCE ON EXECUTION TIME FOR “ONLINE RETAIL” DATABASE

Support

Threshold

%

Apriori

Alg.

Execution

Time(in

Sec.)

Execution

Time of

Eclat Alg.

(in Sec.)

Execution

Time of

JIC Alg.

(in Sec.)

0.1 1293 109 22

0.25 424 44 16

0.5 59 22 12

0.75 31 15 8

1 18 11 6

Fig. 2 Performance on Execution Time for “Online Retail” database

Fig. 3 Performance on Execution Time for “Fruit Hut” database

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

535

https://internationalpubls.com

TABLE 5

PERFORMANCE ON EXECUTION TIME FOR “FRUIT HUT” DATABASE

Support

Threshold %

Execution Time of the

Apriori Algorithm (in

Sec.)

Execution Time of

Eclat the Algorithm

(in Sec.)

Execution Time of the

JIC Algorithm (in

Sec.)

0.1 191 49 50

0.25 47 27 42

0.5 21 18 29

0.75 15 9 18

1 12 3 13

TABLE 6

PERFORMANCE ON EXECUTION TIME FOR “T4I4D100K” DATABASE

Support

Threshold %

Execution Time of the

Apriori Algorithm (in

Sec.)

Execution Time of

Eclat the Algorithm

(in Sec.)

Execution Time of the

JIC Algorithm (in

Sec.)

0.1 533 63 62

0.25 216 21 52

0.5 50 10 32

0.75 30 5 15

1 6 3 7

Fig. 4 Performance on Execution Time for “T4I4D100K” database

TABLE 7

PERFORMANCE ON EXECUTION TIME FOR “INSTA CART ONLINE RETAIL” DATABASE

Support

Threshold %

Execution Time of Apriori

Alg.(in Sec.)

Execution Time of the JIC Alg.

(in Sec.)

0.25 1682 1065

0.5 554 290

0.75 213 140

1 134 83

2 40 23

5 25 13

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

536

https://internationalpubls.com

Fig. 5 Performance on Execution Time for “Insta Cart Online Retail” database

TABLE 8

PERFORMANCE ON MEMORY CONSUMPTION FOR “ONLINE RETAIL” DATABASE

Support

Threshold %

Memory Used by the

Apriori Algorithm (in

MB)

Memory Used by the

Eclat Algorithm (in

MB)

Memory Used by the

JICAlgorithm (in MB)

0.1 316 289 143

0.25 317 263 153

0.5 307 250 63

0.75 240 238 86

1 241 195 76

Fig. 6 Performance on Memory Consumption for “Online Retail” database

TABLE 9

PERFORMANCE ON MEMORY CONSUMPTION FOR “FRUIT HUT” DATABASE

Support

Threshold %

Memory Used by the

Apriori Algorithm (in

MB)

Memory Used by the

Eclat Algorithm (in

MB)

Memory Used by the

JICAlgorithm (in MB)

0.1 123 286 546

0.25 116 220 470

0.5 110 206 431

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

537

https://internationalpubls.com

0.75 70 196 202

1 67 110 162

Fig. 7 Performance on Memory Consumption for “Fruit Hut” database

TABLE 10

PERFORMANCE ON MEMORY CONSUMPTION FOR “T4I4D100K” DATABASE

Support

Threshold %

Memory Used by

the Apriori Alg(in

MB)

Memory Used by

the Eclat Alg (in

MB)

Memory Used by the

JIC Algorithm (in

MB)

0.1 302 130 469

0.25 126 105 370

0.5 121 87 262

0.75 61 87 270

1 61 50 227

Fig. 8 Performance on Memory Consumption for “T4I4D100K” database

TABLE 11

PERFORMANCE ON MEMORY CONSUMPTION FOR “INSTA CART ONLINE RETAIL” DATABASE

Support

Threshold %

Memory Used by the Apriori

Algorithm (in MB)

Memory Used by the

JICAlgorithm (in MB)

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

538

https://internationalpubls.com

0.25 804 1352

0.5 640 1295

0.75 635 988

1 602 708

2 579 705

5 578 483

Fig. 9 Performance on Memory Consumption for “Insta Cart Online Retail” database

Fig. 10 Graph taken from the Java Monitoring and Management Console – Heap Memory

Usage during the execution of the JIC algorithm Execution process

Fig. 11 Graph taken from the Java Monitoring and Management Console – CPU Usage

during the execution of the JIC algorithm Execution process

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

539

https://internationalpubls.com

Fig. 12 Graph taken from the Java Monitoring and Management Console – CPU Usage

during the execution of the Apriori algorithm using the SPMF software tool

Fig. 13 Failure-Screenshot of the Eclat Algorithm during execution using the SPMF software

tool

Fig. 14 Graph taken from the Java Monitoring and Management Console – Heap Memory

Usage during the execution of the Apriori algorithm using the SPMF software tool

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

540

https://internationalpubls.com

Fig. 15 Graph taken from the Java Monitoring and Management Console – Heap Memory

Usage and CPU Usage during the execution of the Eclat algorithm using SPMF

V. CONCLUSION AND FUTURE DIRECTION OF RESEARCH

In the process of Knowledge Discovery from Data (KDD), the analysis of Frequent Itemset

Mining (FIM) produces very useful information such as how the items or data are correlated

with each other and how frequently it is found in the database, particularly in transaction data

and its report is critical for decision-makers to procure and stock items. As the stock is the

company's asset and the company's profit is dependent on the asset's liquidity, Frequent Itemset

mining was given more importance. Finding Frequent Item Sets is a crucial and time-

consuming task in the field of data mining. The variety and volume of data are increasing

dramatically in the current Big Data era, making it difficult to mine valuable information in a

timely manner. Despite the fact that many researchers proposed many different types of

algorithms for Frequent Item Set mining, they are not capable of finding the frequent itemsets

using the normal computing facility from the real-life big-sized dataset particularly when the

support count was low and they could not perform efficiently when the dataset was big.

This paper presented an innovative approach to overcoming this difficulty and gaining new

insights from data sources. Instead of a Complex Data Structure, all itemsets, whether frequent

or infrequent, will be stored in the form of a simple label structure. Hashing technique is used

to store the CGPLN-Labels and Frequent Itemsets and used temporary files to store the

CGPLN-Label representations to reduce the use of huge volume of main memory. As a result,

the amount of memory used is uniformly reduced throughout the algorithm implementation.

This paper presents the Jagged Itemset Counting algorithms. Despite the prevalence of itemset

mining algorithms in the literature, the JIC algorithm will read the database twice, regardless

of its size or the number of transactions, without transforming the database layout from

horizontal to vertical or constructing any conditional databases. When compared to the Apriori

and Eclat algorithms, all frequent Itemsets up to size k can be found from the database in two

passes.

When compared to the Apriori and Eclat algorithms, the JIC algorithm's use of compact and

unique label representation with a simple counting mechanism outperforms the Apriori and

Eclat algorithms for small and medium data and shows better performance in execution time

even at the lowest support threshold. The Frequent Itemsets identified by this proposed JIC

algorithm consistent with the results of state-of-the-art methods. In the case of Big Data, while

the FP-Growth and Eclat algorithms failed to perform, the proposed technique performed better

in terms of execution time, main memory consumption and disc memory utilization.

In the future, the JIC algorithm will be improved to reduce the number of subsets and

implementing the JIC algorithm in parallel or distributed computing will almost certainly result

in greater efficiency in all aspects. The JIC algorithm can also be further modified to mine the

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

541

https://internationalpubls.com

frequent itemsets from the data-streams. The JIC algorithm can be further modified to mine the

high-utility itemsets, top-k-rank itemsets, maximal-frequent itemsets, closed-frequent itemsets

and fault-tolerant itemsets.

REFERENCES

[1] Ilamchezhian, J & Cyril Raj, V 2021, ‘A Novel Approach For Frequent Itemset Mining

Using Geometric Progression Number Labeling’, Turkish Journal of Computer and

Mathematics Education, vol. 12, no. 10, pp. 3529–3538

[2] Ilamchezhian, J., Raj, V.C. and Kannan, A., 2021. Jagged Itemset Counting for Mining

Frequent Itemsets. Design Engineering, pp.1144-1161.

[3] Wu, X, Zhu, X, Gong–Qing Wu & Ding, W 2014, ‘Data mining with big data’, IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no. 1, pp. 97–107

[4] Agrawal, R, Imielinski, T & Swami, AN 1993, In Proceedings of the 1993 ACM

SIGMOD International Conference on Management of Data (ICDM '93), May 26–28,

Mining association rules between sets of items in large databases, Washington, DC, USA,

pp. 207–216

[5] Agrawal, R & Srikant, R 1994, In Proceedings of the 20th International Conference on

Very Large Data Bases (VLDB '94), September 12 – 15, Fast algorithms for mining

association rules, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 487–

499

[6] Zaki, MJ 2000, ‘Scalable Algorithms for Association Mining’, IEEE Transactions on

Knowledge and Data Engineering, vol. 12, no. 3, pp. 372–390

[7] Jiawei Han, Jian Pei, Yiwen Yin & Runying Mao 2004, ‘Mining frequent patterns

without candidate generation A frequent–pattern tree approach’, Data Mining and

Knowledge Discovery, vol. 8, pp. 53–87

[8] Ashok Savasere, Edward Omiecinski & Shamkant Navathe 1995, In Proceedings of 21st

International Conference on Very Large Data Bases, September 11 – 15, An Efficient

Algorithm for Mining Association Rules in Large Databases, Zurich, Switzerland, pp.

432–444

[9] Jong Soo Park, Ming–Syan Chen & Philip S.Yu 1995, In Proceedings of the SIGMOD

'95 ACM SIGMOD International Conference on Management of data, May 22–25, An

Effective Hash Based Algorithm for Mining Association Rules, San Jose California USA,

vol. 24, no. 2, pp. 175–186

[10] Brin, S, Motwani, R, Ullman, JD & Tsur, S 1997, In Proceedings of the 1997 ACM

SIGMOD International Conference on Management of Data, May 11 – 15, Dynamic

itemset counting and implication rules for market basket data, Tucson, Arizona, USA,

pp. 255–264

[11] Veloso, A, Otey, ME, Parthasarathy, S & Meira, W 2003, In Proceedings of 10th

International Conference on High–Performance Computing(HiPC 2003), December 17–

20, Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets, Springer,

Berlin, Heidelberg, vol. 2913

[12] Goethals, B 2003, ‘Survey on frequent pattern mining’, University of Helsinki Journal,

vol. 19, pp. 840–852

[13] Sivanandam, SN, Sumathi, S, Hamsapriya, T & Babu, K 2004, ‘Parallel Buddy Prima –

A Hybrid Parallel Frequent itemset mining algorithm for very large databases’, Academic

Open Internet Journal, vol. 13, Corpus ID: 14102089

[14] Yun, U & Leggett, J 2005, In Proceedings of the SIAM International Conference on Data

Mining (SDM 2005), April 21–23, WFIM: Weighted frequent itemset mining with a

weight range and a minimum weight, Newport Beach, CA, USA

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

542

https://internationalpubls.com

[15] Gouda, K, Hassaan, M & Zaki, MJ 2010, ‘Prism: An effective approach for frequent

sequence mining via prime–block encoding’, Journal of Computer and System Sciences,

vol. 76, no. 1, pp. 88–102

[16] Yu, X & Wang, H 2014, ‘Improvement of Eclat Algorithm Based on Support in Frequent

Itemset Mining’, Journal of Computers, vol. 9, no. 9, pp. 2116–2123

[17] Cagliero, L & Garza, P 2014, ‘Infrequent weighted itemset mining using frequent pattern

growth’, IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 4, pp.

903–915

[18] Essalmi, H Far, M, El, Mohajir, M, El & Chahhou, M 2016, In Proceedings of 2016 4th

IEEE International Colloquium on Information Science and Technology (CiSt), October

24–26, A novel approach for mining frequent itemsets: AprioriMin, Institute of

Electrical and Electronics Engineers (IEEE), Tangier, Morocco, pp. 286–289

[19] Vo, B, Le, T, Coenen, F & Hong, TP 2016, ‘Mining frequent itemsets using the N–list

and subsume concepts’, International Journal of Machine Learning and Cybernetics, vol.

7, no. 2, pp. 253–265

[20] Zhang, C, Zhang, X & Tian, P 2017, In Proceedings of IEEE 2nd International

Conference on Data Science in Cyberspace, June 26–29, An Approximate Approach to

Frequent Itemset Mining, Institute of Electrical and Electronics Engineers (IEEE),

Shenzhen, China. pp. 68–73

[21] Klangwisan, K & Amphawan, K 2017, In Proceedings of 2017 9th International

Conference on Knowledge and Smart Technology (KST), February 1–4, Mining

weighted–frequent–regular itemsets from transactional database, ECTI, Pattaya,

Thailand, pp. 66–71

[22] Djenouri, Y, Djenouri, D, Belhadi, A & Cano, A 2018, ‘Exploiting GPU and cluster

parallelism in single scan frequent itemset mining. Information Sciences’, Information

Sciences, vol. 496, pp. 363–377

[23] Yasir, M, Habib, MA, Ashraf, M, Sarwar, S, Chaudhry, MU, Shahwani et al. 2019,

‘TRICE: Mining Frequent Itemsets by Iterative TRimmed Transaction LattICE in Sparse

Big Data’, IEEE Access, vol. 7, pp. 181688–181705

[24] Huang, PY, Cheng, WS, Chen, JC, Chung, WY, Chen, YL & Lin, KW 2021, ‘A

Distributed Method for Fast Mining Frequent Patterns From Big Data’, IEEE Access,

vol. 9, pp. 135144–135159

[25] Fournier–Viger, P, Lin, JCW, Dinh, T & Le, HB 2016, In Proceedings of 11th

International Conference on Hybrid Artificial Intelligent, April 18–20, Mining

Correlated High–Utility Itemsets using the Bond Measure, Hybrid Artificial Intelligence

Systems, Seville, Spain, vol. 18, no. 20, pp. 53–65

[26] The Instacart Online Grocery Shopping Dataset 2017, Accessed on <24–06–2019> from

https://www.instacart.com/datasets/grocery–shopping–2017

[27] https://github.com/zakimjz/IBMGenerator.git

[28] http://www.philippe–fournier–viger.com/spmf/datasets

Dr. Ilamchezhian J is a distinguished academic and researcher in the field of

Computer Science and Engineering. He holds a Ph.D. and M.Tech. in

Computer Science and Engineering from Dr. M.G.R. Educational and

Research Institute, an M.Sc. in Information Technology from the University of

Madras, an M.B.A. in HR and Systems from Anna University, and an M.Phil.

in HR from Vinayaka Missions University. He has an impressive publication

record, with 7 papers in Scopus Indexed Journals, 10 papers in National

Conferences, and 8 papers in International Conferences. His research interests encompass Big

http://www.philippe–fournier–viger.com/spmf/datasets

Communications on Applied Nonlinear Analysis

ISSN: 1074-133X

Vol 32 No. 1 (2025)

543

https://internationalpubls.com

Data Analytics, Parallel Computing, Grid Computing, Cloud Computing, and

Data Mining. Since July 2014, he has been serving as an Associate Professor

at Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai. His

dedication to teaching and research, combined with his extensive industry and

academic experience, has established him as a highly respected figure in the

field of Computer Science and Engineering.

Dr. Kannan A. is a retired Professor from the Department of Information Science and

Technology at Anna University, India. With a distinguished career in both academia and

industry, he has made significant contributions to the fields of Network Security, Data Mining,

Artificial Intelligence, and Software Engineering. His professional journey includes experience

as a Computer Programmer at Bhabha Atomic Research Centre, Mumbai. His extensive

research has led to numerous publications and books in his areas of expertise. He actively

serves as an editorial member and reviewer for several international reputed

journals, reflecting his commitment to advancing knowledge and maintaining

high standards in scientific publishing. In addition to his research and

academic roles, he has successfully completed various administrative

responsibilities and is a member of numerous international affiliations.

Prof. Dr. Vellankanni Cyril Raj is a distinguished academic and researcher

with extensive expertise in Computer Science and Engineering. He was a Professor of

Computer Science and Engineering/Information Technology and former Dean of Engineering

and Technology and at Dr. M.G.R. Educational and Research Institute University, Chennai. He

earned his Ph.D. from Jadavpur University, Kolkata, in 2009, his M.E. from the Government

College of Technology, Coimbatore, in 1995, and his B.E. from PSNA College of Engineering

& Technology in 1988. His academic career spans over three decades, during which he has

held significant positions, including Dean, Additional Dean and Head of Department at various

institutions. He has supervised numerous Ph.D. candidates, producing impactful research and

contributing to the academic growth of several institutions in South India. His dedication to

academia and research continues to inspire and influence the field of Computer Science and

Engineering. He has supervised numerous Ph.D. candidates, produced impactful research and

contributed to the academic growth of several institutions in South India. His dedication to

academia and research continues to inspire and influence the field of Computer Science and

Engineering.

N. Padmapriya completed her M.Sc. (five-year integrated programme) in

statistics at the Pondicherry University in 2013. She qualified CSIR-NET in the

year 2017. Currently, she is working as Assistant Professor in the Department

of Statistics, Sri Sarada College for Women (Autonomous), Salem-16 and

pursuing her Ph.D. in the Department of Statistics, Pondicherry University.

