On Soft Strongly \mathbb{b}^* – **Closed Via Soft Ideal**

Abdelaziz E. Radwan¹, Essam El-Seidy², Saif Z. Hameed^{*, 3}

^{1, 2}Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
³Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq Email address:

¹zezoradwan@yahoo.com, ²esam_elsedy@hotmail.com, ³saif.zuhar.edbs@uomustansiriyah.edu.iq ³https://orcid.org/0000-0001-6197-3525

Article History:	Abstract:
Received: 01-02-2024	In this paper, we introduce the soft strongly b^* –closed via soft ideal and
Revised: 15-04-2024	study the behavior of intersection and union of this level. Also, we define the soft strongly b^*I –continuous, irresolute, soft strongly b^*I –open map and soft strongly
Accepted: 04-05-2024	b^*I –closed map with some properties. Moreover, the relationship between another closed sets and soft strongly b^*I –closed with counterexamples are discuss.
	Keywords : soft ideal, sSb [*] –closed set, sSb [*] Ĭ –closed, sSb [*] Ĭ –continuous, sSb [*] Ĭ –irresolute.
	Mathematics Subject Classification: 54A05, 54A10, 54A20, 54A40.

1. Introduction and Preliminaries

Molodtsov [1], instigated the concept of soft set as a new mathematical tool to deal with uncertainties problems in different fields of science. I. Arockiarani and A. Arokialancy [2] studied the soft β –open sets and continuous. Akdag and Ozkan [3, 4] introduced the soft α -open and define soft b-open and continuous. Hameed, S. Z., Hussein, A. K [5] defined the soft bc –open set. The soft b^* – closed, sb^* – continuous, sSb^* -closed sets and sSb^* -continuous functions are studied by Saif at el. in [6], [7] and [8]. Kandil et al. [9] define soft ideal and introduced the soft local function. These concepts are discussed with a view to find new soft topologies from the original one, called STSs with soft ideal $(\mathcal{Z}, \mathfrak{W}, \Delta, \check{I})$. Mustafa and Sleim [10] studied the notion of a soft ideal and they introduced the soft generalized closed sets with respect to a soft ideal and studied their properties in detail, which is extension of the concept of soft generalized closed sets. Later, K. Kannan [11] introduced the soft g-closed soft sets in a STS. In this work, we study the concept of sSb^* -closed set via soft ideal, Also, we study the relationship between sSb*Ĭ-closed sets and other existing soft sets have been investigated. Moreover, the $sSb^{*}I$ – continuous, irresolute, $sSb^{*}I$ – open map and $sSb^{*}I$ – closed map with counterexamples are discuss.

Definition 1.1: [1] Let Z be an initial universe set and E be a set of parameters. Let P(Z) denote the power set of Z, and $\Delta \subset E$. A pair (γ, Δ) is called a soft set over Z. Where γ is a mapping given by $\gamma: \Delta \to P(Z)$. The family of all soft sets over Z denote by $SS(Z, \Delta)$

Definition 1.2: [12] The soft set $(\delta, \Delta) \in SS(Z, \Delta)$, where $\delta(c) = \emptyset$, for every $c \in \Delta$ is called A-null soft set of $SS(Z, \Delta)$ and denoted by $\tilde{\emptyset}$. The soft set $(\delta, \Delta) \in SS(Z, \Delta)$, where $\delta(c) = Z$, for every $c \in \Delta$ is called the A-absolute soft set of $SS(Z, \Delta)$ and denoted by \tilde{Z} .

Definition 1.3: [12] For two sets $(\gamma, \Delta), (\delta, B) \in SS(\mathcal{Z}, \Delta)$, we say that (γ, Δ) is a soft subset of (δ, B) denoted by $(\gamma, \Delta) \subseteq (\delta, B)$, if

(1) $\Delta \subseteq B$.

 $(2) \gamma(\nabla) \subseteq \delta(\nabla), \forall \nabla \in \Delta.$

In this case, (γ, Δ) is said to be a soft superset of (δ, B) , if (δ, B) is a soft subset of (γ, Δ) , $(\gamma, \Delta) \supseteq (\delta, B)$.

Definition 1.4: [13] Let (γ, Δ) be a soft set over \mathcal{Z} and $z \in \mathcal{Z}$. We say that $z \in (\gamma, \Delta)$ read as z belongs to the soft set (γ, Δ) whenever $z \in \gamma$ (∇) for all $\nabla \in \Delta$. The soft set (γ, Δ) over \mathcal{Z} such that γ (∇) = { z } $\forall \nabla \in \Delta$ is called singleton soft point and denoted by z_{Δ} or (z, Δ) .

Definition 1.5: [13] Let \mathfrak{W} be a collection of soft sets over Z, then \mathfrak{W} is said to be STS on Z if

- (1) $\widetilde{\emptyset}$ and \widetilde{Z} belong to \mathfrak{W} .
- (2) The union of any subcollection of soft sets of \mathfrak{W} belongs to \mathfrak{W} .
- (3) The intersection of any two soft sets in \mathfrak{W} belongs to \mathfrak{W} .

It is denoted by STS $(Z, \mathfrak{W}, \Delta)$ and briefly Z.

Definition 1.6: [13] Let $(Z, \mathfrak{W}, \Delta)$ be a soft space over Z, then the members of \mathfrak{W} are said to be soft open sets in \mathfrak{W} .

Definition 1.7: [13] Let $(\mathcal{Z}, \mathfrak{W}, \Delta)$ be a soft space over \mathcal{Z} . A soft set (P, Δ) over \mathcal{Z} is said to be a soft closed set in \mathcal{Z} , if its relative complement $(\gamma, \Delta)'$ belongs to \mathfrak{W} .

Definition 1.8: [14] Let $(\mathcal{Z}, \mathfrak{W}, \Delta)$ be a *S*TS and $(\gamma, \Delta) \in SS(\mathcal{Z}, \Delta)$. Then

(1) The soft closure of (γ, Δ) is the soft set

 $cl(\gamma, \Delta) = \cap \{ (L, \Delta) : (L, \Delta) \in \mathfrak{W}^{c}, (\gamma, \Delta) \subseteq (L, \Delta) \}.$

(2) The soft interior of (γ, Δ) is the soft set

 $int(\gamma, \Delta) = \cup \{(H, \Delta) : (H, \Delta) \in \mathfrak{M}, (H, \Delta) \subseteq (\gamma, \Delta)\}.$

Definition 1.9: [4, 5, 7, 19] A soft set (δ, Δ) of a STS $(\mathcal{Z}, \mathfrak{W}, \Delta)$ is said to be

- (1) soft α open if $(\delta, \Delta) \subset int(cl(int((\delta, \Delta))))$.
- (2) soft preopen if $(\delta, \Delta) \subset int(cl((\delta, \Delta)))$.

- (3) soft semi open if $(\delta, \Delta) \subset cl(int((\delta, \Delta)))$.
- (4) soft β -open if $(\delta, \Delta) \subset cl(int(cl((\delta, \Delta))))$.
- (5) soft **b** –open if $(\delta, \Delta) \subset int(cl((\delta, \Delta))) \cup cl(int((\delta, \Delta))))$.

Definition 1.15: [8] A soft set (γ, Δ) of a $STS(Z, \mathfrak{M}, \Delta)$ is called a soft strongly \mathfrak{b}^* –closed (briefly $sS\mathfrak{b}^*$ –closed) if $cl(int(\gamma, \Delta)) \subseteq (\delta, \Delta)$, whenever $(\gamma, \Delta) \subset (\delta, \Delta)$ and (δ, Δ) is soft \mathfrak{b} –open. The complement of a $\mathfrak{b}^* \mathfrak{b}^*$ –closed set is called $\mathfrak{b}^* \mathfrak{b}^*$ –open set. The family of all $\mathfrak{b}^* \mathfrak{b}^*$ –open sets denoted by $sS\mathfrak{b}^*OS(Z)$.

Theorem 1.16: [8] The following statements are true.

- (i) Every soft open is sSb^* –open.
- (ii) Every $s\alpha$ –open is sSb^* –open.
- (iii) Every sSb^* –open set is sb –open.
- (iv) Every $s\omega$ –open is sSb^* –open.

Definition 1.17: [9] Let \check{I} be a non-null collection of soft sets over a universe Z with the same set of parameters Δ . Then, $\check{I} \in SS(Z, \Delta)$ is called a soft ideal on Z with the same set Δ if

- (1) $(\gamma, \Delta) \in \check{I}$ and $(\delta, \Delta) \in \check{I} \Rightarrow (\gamma, \Delta) \cup (\delta, \Delta) \in \check{I}$,
- (2) $(\gamma, \Delta) \in \check{I}$ and $(\delta, \Delta) \subseteq (\gamma, \Delta) \Rightarrow (\delta, \Delta) \in \check{I}$.

i.e., Ĭ is closed under finite soft unions and soft subsets.

Definition 1.18: [10] A soft set $(\gamma, \Delta) \in SS(\mathbb{Z}, \Delta)$ is called soft generalized closed set with respect to soft ideal \check{I} (soft \check{Ig} -closed set) in $STS(\mathbb{Z}, \mathfrak{W}, \Delta)$ if $cl(\gamma, \Delta) \setminus (\delta, \Delta) \in \check{I}$ whenever $(\gamma, \Delta) \subset (\delta, \Delta)$ and $(\delta, \Delta) \in \mathfrak{W}$.

2. SS b* -closed via soft ideal

In this section, we define sSb^* –closed set via soft ideal and study some of their properties.

Definition 2.1: A soft set (γ, Δ) of a *S*TS $(\mathcal{Z}, \mathfrak{W}, \Delta)$ is called a soft strongly b^* -closed with respect to soft ideal \check{I} (briefly $sSb^*\check{I}$ -closed) if $cl(int(\gamma, \Delta)) \setminus (\delta, \Delta) \in \check{I}$, whenever $(\gamma, \Delta) \subset (\delta, \Delta)$ and (δ, Δ) is sSb^* -open.

Example 2.2. Let $Z = \{\varepsilon, \mu\}$ and $\Delta = \{\nabla_1, \nabla_2\}$. Let $(\gamma_1, \Delta), (\gamma_2, \Delta)$ and (γ_3, Δ) be three soft sets, where $(\gamma_1, \Delta) = \{(\nabla_1, \emptyset), (\nabla_2, \{\varepsilon\})\},$ $(\gamma_2, \Delta) = \{(\nabla_1, \{\mu\}), (\nabla_2, \emptyset)\}$ and $(\gamma_3, \Delta) = \{(\nabla_1, \{\mu\}), (\nabla_2, \{\varepsilon\})\}.$ Then $(\gamma_1, \Delta), (\gamma_2, \Delta)$ and (γ_3, Δ) are soft sets over Z and $\mathfrak{W} = \{\widetilde{Z}, \widetilde{\emptyset}, (\gamma_1, \Delta), (\gamma_2, \Delta), (\gamma_3, \Delta)\}$ is the soft topology over Z. Let $\breve{I} = \{\widetilde{\emptyset}, (\delta_1, \Delta), (\delta_2, \Delta), (\delta_3, \Delta)\}$ be a soft ideal on Z, where $(\delta_1, \Delta) = \{(\nabla_1, \{\mu\}), (\nabla_2, \emptyset)\},$

 $(\delta_{2}, \Delta) = \{ (\nabla_{1}, \{\mu\}), (\nabla_{2}, \{\varepsilon\}) \} \text{ and} \\ (\delta_{3}, \Delta) = \{ (\nabla_{1}, \emptyset), (\nabla_{2}, \{\varepsilon\}) \}. \\ \text{The soft sets } (\vartheta_{1}, \Delta), (\vartheta_{2}, \Delta), (\vartheta_{3}, \Delta) \text{ are } sSb^{*}I - closed, where} \\ (\vartheta_{1}, \Delta) = \{ (\nabla_{1}, \emptyset), (\nabla_{2}, Z) \}, \\ (\vartheta_{2}, \Delta) = \{ (\nabla_{1}, Z), (\nabla_{2}, \{\varepsilon\}) \} \text{ and} \\ (\vartheta_{3}, \Delta) = \{ (\nabla_{1}, \{\mu\}), (\nabla_{2}, \{\mu\}) \}. \end{cases}$

And we see the soft set (ξ, Δ) is not $sSb^*\check{I}$ –closed, where $(\xi, \Delta) = \{(\nabla_1, \emptyset), (\nabla_2, \{\varepsilon\})\}$.

Theorem 2.3:

- (1) Every soft g -closed set is $sSb^{*}I$ -closed.
- (2) Every closed soft set is $sSb^{*}I$ -closed.
- (3) Every soft Ig –closed set is sSb^*I –closed.

Proof.

- (1) Let $(\gamma, \Delta) \subseteq (\delta, \Delta)$ and (δ, Δ) is sSb^* open. Since (γ, Δ) is soft g closed \Rightarrow $cl(\gamma, \Delta) \subseteq (\delta, \Delta)$ and $cl(int(\gamma, \Delta)) \subseteq cl(\gamma, \Delta)$. So, $cl(int(\gamma, \Delta)) \setminus (\delta, \Delta) = \emptyset \in \check{I}$. Therefore, (γ, Δ) is $sSb^*\check{I}$ – closed.
- (2) Let $(\gamma, \Delta) \subseteq (\delta, \Delta)$ and (δ, Δ) is sSb^* –open. Since (γ, Δ) is soft closed, then $cl(int(\gamma, \Delta)) \subseteq cl(\gamma, \Delta) = (\gamma, \Delta) \subseteq (\delta, \Delta)$. Hence, $cl(int(\gamma, \Delta)) \setminus (\delta, \Delta) = \emptyset \in I$. Therefore, (γ, Δ) is sSb^*I –closed.
- (3) Let $(\gamma, \Delta) \subseteq (\xi, \Delta)$ and (ξ, Δ) is sSb^* -open. Then $cl(int(\gamma, \Delta)) \setminus (\xi, \Delta) \subseteq cl(\gamma, \Delta) \setminus (\xi, \Delta) \in \check{I}$, $(\xi, \Delta) \in \check{I}$ Hence, (γ, Δ) is $sSb^*\check{I}$ -closed.

The converse of the above theorem is not true in general. The following examples support our claim.

Example 2.4: Let $\mathcal{Z} = \{\varepsilon, \mu\}$. Let $\Delta = \{\nabla_1, \nabla_2\}$. Let $(\gamma_1, \Delta), (\gamma_2, \Delta), (\gamma_3, \Delta)$ and (γ_4, Δ) be four soft sets, where

 $\begin{aligned} (\gamma_1, \Delta) &= \{ (\nabla_1, \{\varepsilon\}), (\nabla_2, Z) \}, \\ (\gamma_2, \Delta) &= \{ (\nabla_1, \{\varepsilon\}), (\nabla_2, \emptyset) \}, \\ (\gamma_3, \Delta) &= \{ (\nabla_1, \{\varepsilon\}), (\nabla_2, \{\mu\}) \} \text{ and} \\ (\gamma_4, \Delta) &= \{ (\nabla_1, \{\varepsilon\}), (\nabla_2, \{\varepsilon\}) \}. \end{aligned}$ Then, $\mathfrak{W} = \{ \widetilde{Z}, \widetilde{\emptyset}, (\gamma_1, \Delta), (\gamma_2, \Delta), (\gamma_3, \Delta), (\gamma_4, \Delta) \} \text{ is the soft topology over } Z.$ Let $\widecheck{I} = \{ \widetilde{\emptyset}, (\delta_1, \Delta), (\delta_2, \Delta), (\delta_3, \Delta) \}$ be a soft ideal on Z, where $(\delta_1, \Delta) = \{ (\nabla_1, \{\varepsilon\}), (\nabla_2, \emptyset) \}, \\ (\delta_2, \Delta) &= \{ (\nabla_1, \{\varepsilon\}), (\nabla_2, \{\varepsilon\}) \} \text{ and} \\ (\delta_3, \Delta) &= \{ (\nabla_1, \emptyset), (\nabla_2, \{\varepsilon\}) \}. \end{aligned}$ The soft sets (ϑ, Δ) is $sSb^*\widecheck{I}$ -closed but not soft g -closed, where $(\vartheta, \Delta) = \{ (\nabla_1, \emptyset), (\nabla_2, \{\mu\}) \}. \end{aligned}$

Example 2.5: In Example 2.2, the soft set $(\Gamma, \Delta) = \{ (\nabla_1, Z), (\nabla_2, \{\varepsilon\}) \}$ is sSb^*I –closed but not closed soft se.

Example 2.6: In Example 2.4, the soft set (ζ, Δ) is sSb^*I –closed but not soft Ig –closed set, where $(\zeta, \Delta) = \{(\nabla_1, \emptyset), (\nabla_2, \{\mu\})\}.$

Remark 2.7: If a soft subset (γ, Δ) of a STS $(\mathcal{Z}, \mathfrak{W}, \Delta)$ is soft open, then it is sSb^*I –closed if and only if it is soft Ig –closed.

Theorem 2.8: A soft set (ϑ, Δ) is sSb^*I –closed in a $STS(\mathcal{Z}, \mathfrak{W}, \Delta)$ if and only if $(\gamma, \Delta) \subseteq cl(int(\vartheta, \Delta)) \setminus (\vartheta, \Delta)$ and (γ, Δ) is soft closed implies $(\gamma, \Delta) \in I$.

Proof. (\Rightarrow) Let $(\gamma, \Delta) \subseteq cl(int(\vartheta, \Delta)) \setminus (\vartheta, \Delta)$ and (γ, Δ) is soft closed. Then, $(\vartheta, \Delta) \subseteq (\gamma, \Delta)^c$. By hypothesis, $cl(int(\vartheta, \Delta)) \setminus (\gamma, \Delta)^c \in I$. But $(\gamma, \Delta) \subseteq cl(int(\vartheta, \Delta)) \cap (\gamma, \Delta) = cl(int(\vartheta, \Delta)) \setminus (\gamma, \Delta)^c$. Thus, $(\gamma, \Delta) \in I$ from Definition 1.17.

(\Leftarrow) Assume that $(\vartheta, \Delta) \subseteq (\delta, \Delta)$ and (δ, Δ) is sSb^* –open. Then, $cl(int(\vartheta, \Delta)) \setminus (\delta, \Delta) = cl(int(\vartheta, \Delta)) \cap (\delta, \Delta)^c$ is a sSb^* –closed set and $cl(int(\vartheta, \Delta)) \setminus (\delta, \Delta) \subseteq cl(int(\vartheta, \Delta)) \setminus (\delta, \Delta)$. By assumption, $cl(int(\vartheta, \Delta)) \setminus (\delta, \Delta) \in I$. So, (ϑ, Δ) is sSb^*I –closed.

Theorem 2.9: If (γ, Δ) is $sSb^*\check{I}$ -closed in a STS $(Z, \mathfrak{M}, \Delta)$ and $(\gamma, \Delta) \subseteq (\delta, \Delta) \subseteq cl(int(\gamma, \Delta))$, then (δ, Δ) is $sSb^*\check{I}$ -closed.

Proof. Let $(\delta, \Delta) \subseteq (\xi, \Delta)$ and (ξ, Δ) is sSb^* –open. Then, $(\gamma, \Delta) \subseteq (\xi, \Delta)$. Since (γ, Δ) is sSb^*I –closed, then $cl(int(\gamma, \Delta)) \setminus (\xi, \Delta) \in I$. Now, $(\delta, \Delta) \subseteq cl(int(\gamma, \Delta))$ implies that $cl(\delta, \Delta) \subseteq cl(int(\gamma, \Delta))$. Thus, $cl(int(\delta, \Delta)) \setminus (\xi, \Delta) \subseteq cl(\delta, \Delta) \setminus (\xi, \Delta) \subseteq cl(int(\gamma, \Delta)) \setminus (\xi, \Delta)$. So, $cl(int(\delta, \Delta)) \setminus (\xi, \Delta) \in I$ from Definition 1.17. Thus, (δ, Δ) is sSb^*I –closed.

The intersection of two sSb^*I –closed sets need not be a sSb^*I –closed as shown by the following example.

Example 2.10: In Example 2.2, the soft sets (ϑ, Δ) , (δ, Δ) are sSb^*I –closed. But $(\xi, \Delta) = (\vartheta, \Delta) \cap (\delta, \Delta)$ is not sSb^*I –closed, where $(\xi, \Delta) = \{(\nabla_1, \emptyset), (\nabla_2, \{\varepsilon\})\}$.

Theorem 2.11: If (ϑ, Δ) is sSb^*I -closed and (γ, Δ) is soft closed in a $STS(Z, \mathfrak{W}, \Delta)$. Then, $(\vartheta, \Delta) \cap (\gamma, \Delta)$ is sSb^*I -closed. **Proof.** Let $(\vartheta, \Delta) \cap (\gamma, \Delta) \subseteq (\delta, \Delta)$ and (δ, Δ) is a sSb^* -open. Then $(\vartheta, \Delta) \subseteq (\delta, \Delta) \cup (\gamma, \Delta)^c$. Since (ϑ, Δ) is sSb^*I -closed, so $cl(int(\vartheta, \Delta)) \setminus ((\delta, \Delta) \cup (\gamma, \Delta)^c) \in I$. Now, $cl(int((\vartheta, \Delta) \cap (\gamma, \Delta))) \subseteq cl(int(\vartheta, \Delta)) \cap cl(int(\gamma, \Delta)) \subseteq cl(int(\vartheta, \Delta)) \cap cl(\gamma, \Delta) =$ $cl(int(\vartheta, \Delta)) \cap (\gamma, \Delta) = [cl(int(\vartheta, \Delta)) \cap (\gamma, \Delta)] \setminus (\gamma, \Delta)^c$. Thus, $cl(int((\vartheta, \Delta) \cap (\gamma, \Delta))) \setminus (\delta, \Delta) \subseteq [cl(int(\vartheta, \Delta)) \cap (\gamma, \Delta)] \setminus ((\delta, \Delta) \cup (\gamma, \Delta)^c)$

 $\subseteq cl(int(\vartheta, \Delta)) \setminus ((\delta, \Delta) \cup (\gamma, \Delta)^c) \in \check{\mathsf{I}}$

So, $(\vartheta, \Delta) \cap (\gamma, \Delta)$ is sS $\mathfrak{b}^* \check{I}$ –closed.

Theorem 2.12: Let $(\mathcal{Z}, \mathfrak{W}, \Delta)$ is STS and $(\gamma, \Delta), (\delta, \Delta)$ are sSb^{*}Ĭ –closed. Then $(\gamma, \Delta) \cup (\delta, \Delta)$ are sSb^{*}Ĭ –closed.

Proof. Let (γ, Δ) and (δ, Δ) are sSb^*I –closed. Suppose that $(\gamma, \Delta) \cup (\delta, \Delta) \subseteq (\vartheta, \Delta)$ and (ϑ, Δ) is sSb^* –open. Then $(\gamma, \Delta) \subseteq (\vartheta, \Delta)$ and $(\delta, \Delta) \subseteq (\vartheta, \Delta)$. Since (γ, Δ) and (δ, Δ) are sSb^*I –closed sets, then $cl(int(\gamma, \Delta)) \setminus (\vartheta, \Delta) \in I$ and $cl(int(\delta, \Delta)) \setminus (\vartheta, \Delta) \in I$. Therefore, $cl(int((\gamma, \Delta) \cup (\delta, \Delta))) \setminus (\vartheta, \Delta) = [cl(int(\gamma, \Delta)) \setminus (\vartheta, \Delta)] \cup [cl(int(\delta, \Delta)) \setminus (\vartheta, \Delta)] \in I$. Hence, we obtain that $(\gamma, \Delta) \cup (\delta, \Delta)$ are sSb^*I –closed.

Theorem 2.13: Let $(\mathcal{D}, \mathcal{V}, \Delta)$ be a soft subspace of a $\mathcal{S}TS(\mathcal{Z}, \mathfrak{W}, \Delta)$, and (\mathfrak{R}, Δ) is a soft subset of $(\mathcal{D}, \mathcal{V}, \Delta)$ and $(\gamma, \Delta) \subseteq (\mathfrak{R}, \Delta)$ and (γ, Δ) is a sSb^{*}I –closed in $(\mathcal{Z}, \mathfrak{W}, \Delta)$. Then, (γ, Δ) is a sSb^{*}I_D –closed in $(\mathcal{D}, \mathcal{V}, \Delta)$.

Proof. Assume that $(\gamma, \Delta) \subseteq (\mathcal{L}, \Delta) \cap (\mathfrak{R}, \Delta)$ and $(\mathcal{L}, \Delta) \in \mathfrak{W}$. Then $(\mathcal{L}, \Delta) \cap (\mathfrak{R}, \Delta) \in \mathfrak{V}$ and $(\gamma, \Delta) \subseteq (\mathcal{L}, \Delta)$. Since (γ, Δ) is a sSb*Ĭ-closed in $(\mathcal{Z}, \mathfrak{W}, \Delta)$, then $cl(int(\gamma, \Delta)) \setminus (\mathcal{L}, \Delta) \in \check{I}$. Now,

 $[cl(int(\gamma, \Delta)) \cap (\mathfrak{R}, \Delta)] \setminus [(\mathcal{L}, \Delta) \cap (\mathfrak{R}, \Delta)] = [cl(int(\gamma, \Delta)) \setminus (\mathcal{L}, \Delta)] \cap (\mathfrak{R}, \Delta) \in \check{I}_{\mathcal{D}}$ Thus, (γ, Δ) is a sSb^{*} $\check{I}_{\mathcal{D}}$ -closed in $(\mathcal{D}, \mho, \Delta)$.

3. Soft Strongly **b*** –open via soft ideal

In this section, we define sSb^* –open set via soft ideal in STSs.

Definition 3.1: A soft set (γ, Δ) in STS $(Z, \mathfrak{M}, \Delta)$, is called a soft stongly b^*I –open set with respect to soft ideal I (sSb*I –open) if and only if its relative complement $(\gamma, \Delta)^c$ is sSb*I –closed in $(Z, \mathfrak{M}, \Delta)$.

Example 3.2: In Example 2.2. the soft sets $(\gamma_1, \Delta)^c, (\gamma_2, \Delta)^c$ and $(\gamma_3, \Delta)^c$ are sSb* \check{I} –open where $(\gamma_1, \Delta)^c, (\gamma_2, \Delta)^c$ and $(\gamma_3, \Delta)^c$ are given by $(\gamma_1, \Delta)^c = \{(\nabla_1, \mathcal{Z}), (\nabla_2, \emptyset)\}, (\gamma_1, \Delta)^c = \{(\nabla_1, \emptyset), (\nabla_2, \{\mu\})\}$ and $(\gamma_3, \Delta)^c = \{(\nabla_1, \{\varepsilon\}), (\nabla_2, \{\mu\})\}.$

Theorem 3.3: A soft set (ϑ, Δ) is sSb^*I – open in a $STS(\mathcal{Z}, \mathfrak{W}, \Delta)$ if and only if $(\gamma, \Delta) \setminus (\mathcal{L}, \Delta) \subseteq cl(int(\vartheta, \Delta))$ for some $(\mathcal{L}, \Delta) \in I$, whenever $(\gamma, \Delta) \subseteq (\vartheta, \Delta)$ and (γ, Δ) is soft closed in $(\mathcal{Z}, \mathfrak{W}, \Delta)$.

Proof. (\Rightarrow) Let $(\gamma, \Delta) \subseteq (\vartheta, \Delta)$ and (γ, Δ) is soft closed. Then $(\vartheta, \Delta)^c \subseteq (\gamma, \Delta)^c$, $(\vartheta, \Delta)^c$ is a sSb^{*}Ĭ -closed and $(\gamma, \Delta)^c \in \mathfrak{M}$. By assumption, $cl(int(\vartheta, \Delta)^c) \setminus (\gamma, \Delta)^c \in I$. Then $cl(int(\vartheta, \Delta)^c) \setminus (\gamma, \Delta)^c = (\eta, \Delta)$ for some $(\eta, \Delta) \in I$. Thus, $cl(int(\vartheta, \Delta)^c) \setminus (\gamma, \Delta)^c = cl(int(\vartheta, \Delta)^c) \cap (\gamma, \Delta) \in I$. So,

 $[cl(int(\vartheta, \Delta)^c) \cap (\gamma, \Delta)] \cup (\gamma, \Delta)^c = (\eta, \Delta) \cup (\gamma, \Delta)^c.$ This implies that, $cl(int(\vartheta, \Delta)^c) \subseteq cl(int(\vartheta, \Delta)^c) \cup (\gamma, \Delta)^c = (\mathcal{L}, \Delta) \cup (\gamma, \Delta)^c.$ Hence, $cl(int(\vartheta, \Delta)^c) \subseteq (\eta, \Delta) \cup (\gamma, \Delta)^c$ for some $(\eta, \Delta) \in \check{I}.$ Furthermore, $(\eta, \Delta) \cup (\gamma, \Delta)^c \subseteq [cl(int(\vartheta, \Delta)^c)]^c = cl(int(\vartheta, \Delta)).$ Therefore, $(\gamma, \Delta) \setminus (\eta, \Delta) = (\gamma, \Delta) \cap (\eta, \Delta)^c \subseteq cl(int(\vartheta, \Delta)).$

(\Leftarrow) Let $(\gamma, \Delta)^c \subseteq (\delta, \Delta)$ such that (δ, Δ) is sSb^* -open. Then, $(\delta, \Delta)^c \subseteq (\vartheta, \Delta)$. By assumption, $(\delta, \Delta)^c \setminus (\Gamma, \Delta) \subseteq cl(int(\vartheta, \Delta)) = [cl(cl(\vartheta, \Delta)^c)]^c$ for some $(\Gamma, \Delta) \in \check{I}$. Thus, $cl(int(\vartheta, \Delta)^c) = cl(cl(\vartheta, \Delta)^c) \subseteq [(\delta, \Delta)^c \setminus (\Gamma, \Delta)]^c = (\delta, \Delta) \cup (\Gamma, \Delta)$. So,

 $cl(int(\vartheta, \Delta)^{c}) \setminus (\delta, \Delta) \subseteq [(\delta, \Delta) \cup (\Gamma, \Delta)] \cap (\delta, \Delta)^{c} = (\Gamma, \Delta) \cap (\delta, \Delta)^{c} \subseteq (\Gamma, \Delta) \in \check{I}$

This shows that, $cl(int(\vartheta, \Delta)^c) \setminus (\delta, \Delta) \in \check{I}$. Therefore, $(\vartheta, \Delta)^c$ is $sSb^*\check{I}$ -closed and hence (ϑ, Δ) is $sSb^*\check{I}$ -open.

Theorem 3.4:

- (1) Every open soft set is $sSb^{*}I$ –open.
- (2) Every soft Ig –open set is sSb*I –open.

Proof. Immediate from Theorem 2.3.

The converse of the above theorem is not true in general as shall show in the following examples.

Example 3.5: In Example 2.2, the soft set (ψ, Δ) is sSb^{*}Ĭ –open but not open soft set, where $(\psi, \Delta) = \{(\nabla_1, \emptyset), (\nabla_2, \{\mu\})\}.$

Example 3.6: In Example 2.5, the soft set (η, Δ) is sSb^{*}I –open but not soft Ig –open, where $(\eta, \Delta) = \{ (\nabla_1, \mathcal{Z}), (\nabla_2, \{\varepsilon\}) \}.$

The soft intersection (resp. union) of two $sSb^{*}I$ –open sets need not be a $sSb^{*}I$ –open as shown by the following example.

Example 3.7: In Example 2.2, the soft sets $(\gamma_1, \Delta)^c$, $(\gamma_2, \Delta)^c$, $(\gamma_3, \Delta)^c$ are sSb*Ĭ –open. But $(\mathcal{L}, \Delta) = (\gamma_1, \Delta)^c \cup (\gamma_2, \Delta)^c$ is not sSb*Ĭ –open, where $(\mathcal{L}, \Delta) = \{(\nabla_1, \mathcal{Z}), (\nabla_2, \{\mu\})\}.$

Theorem 3.8: If (γ, Δ) is sSb^*I – open in a $STS(\mathcal{Z}, \mathfrak{W}, \Delta)$ and $cl(int(\gamma, \Delta)) \subseteq (\delta, \Delta) \subseteq (\gamma, \Delta)$, then (δ, Δ) is a sSb^*I – open.

Proof. Let $(\eta, \Delta) \subseteq (\delta, \Delta)$ and (η, Δ) is a sSb^{*}Ĭ -closed. Then, $(\eta, \Delta) \subseteq (\gamma, \Delta)$. Since (γ, Δ) is sS b^{*}Ĭ -open, then $(\delta, \Delta) \setminus cl(int(\eta, \Delta)) \subseteq (\gamma, \Delta) \setminus cl(int(\eta, \Delta)) \in I$. It follows that, $(\delta, \Delta) \setminus cl(int(\eta, \Delta)) \in I$. Thus, (δ, Δ) is sSb^{*}Ĭ -open.

Theorem 3.9: A soft set (ϑ, Δ) is sSb^*I -closed in a $STS(Z, \mathfrak{W}, \Delta)$ if and only if $cl(int(\vartheta, \Delta))\setminus(\vartheta, \Delta)$ is sSb^*I -open.

Proof. (\Rightarrow) Let $(\gamma, \Delta) \subseteq cl(int(\vartheta, \Delta))$ and (γ, Δ) be a soft closed set. Then, $(\gamma, \Delta) \in \check{I}$ from Theorem 2.9 so there exists $(\sigma, \Delta) \in \check{I}$ such that $(\gamma, \Delta) \setminus (\sigma, \Delta) = \check{\emptyset}$. Thus, that $(\gamma, \Delta) \setminus (\sigma, \Delta) = \check{\emptyset} \subseteq int(cl[cl(\vartheta, \Delta) \setminus (\vartheta, \Delta)])$. Hence, $cl(int(\vartheta, \Delta)) \setminus (\vartheta, \Delta)$ is a sSb* \check{I} –open from Theorem 3.3.

(\Leftarrow) Let $(\vartheta, \Delta) \subseteq (\delta, \Delta)$ such that (δ, Δ) is sSb^*I -open. Then, $cl(int(\vartheta, \Delta)) \cap (\delta, \Delta)^c \subseteq cl(int(\vartheta, \Delta)) \cap (\vartheta, \Delta)^c = cl(int(\vartheta, \Delta)) \setminus (\vartheta, \Delta)$. By hypothesis, $[cl(int(\vartheta, \Delta)) \cap (\delta, \Delta)^c] \setminus (\sigma, \Delta) \subseteq int(cl[cl(int(\vartheta, \Delta)) \setminus (\vartheta, \Delta)]) = \tilde{\emptyset}$, for some $(\sigma, \Delta) \in I$ from Theorem 3.3. So, $cl(int(\vartheta, \Delta)) \cap (\delta, \Delta)^c \subseteq (\sigma, \Delta) \in I$. Thus, $cl(int(\vartheta, \Delta)) \setminus (\delta, \Delta) \in I$. So, (ϑ, Δ) is a sS b^*I -closed.

4. SS **b*** -continuous via soft ideal

In this section, we introduce a sSb^* –continuous function with respect to a soft ideal in STSs.

Definition 4.1: Let $\Omega: (\mathcal{Z}, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathfrak{V}, \Theta)$ be a soft mapping. If $\Omega^{-1}((\delta, \Delta))$ is $sSb^{*}I$ –open in $(\mathcal{Z}, \mathfrak{W}, \Delta)$ for each soft open set (δ, Δ) of $(\mathcal{D}, \mathfrak{V}, \Theta)$, then Ω is called soft strongly $b^{*}I$ –continuous function.

Corollary 4.2: Let $\Omega: (\mathcal{Z}, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathfrak{V}, \Theta)$ be a soft function. Then:

- 1- Every soft continuous function is sSb*Ĭ –continuous functions.
- 2- Every soft Ĭg –continuous is sSb*Ĭ –continuous function.

Proof. Immediate from Theorem 3.4.

The converse of the above theorem is not true in general as shall show in the following example.

Example 4.3: Let $Z = \{\varepsilon, \mu\}$ and $\Delta = \{\nabla_1, \nabla_2\}$. Let $(\gamma_1, \Delta), (\gamma_2, \Delta)$ be two soft sets where $(\gamma_1, \Delta) = \{(\nabla_1, \{\varepsilon\})\}, (\gamma_2, \Delta) = \{(\nabla_1, \{\varepsilon\}), (\nabla_2, \{\mu\})\}.$ $\mathfrak{W} = \{\widetilde{Z}, \widetilde{\emptyset}, (\gamma_1, \Delta), (\gamma_2, \Delta)\}$ is the soft topology over Z. Let $\widecheck{I} = \{\widetilde{\emptyset}\}$ be a soft ideal on Z. Let $\mathcal{D} = \{\sigma, \rho\}$ and $\Theta = \{\varrho_1, \varrho_2\},$ $\mho = \{\widetilde{\mathcal{D}}, \widetilde{\emptyset}, (\delta, \Theta)\}$ is soft topology on \mathcal{D} . Where $(\delta, \Theta) = \{(\varrho_1, \{\sigma\}), (\varrho_2, \{\sigma\})\}.$ Then let $\Omega: (\mathcal{Z}, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathfrak{V}, \Theta)$ be a soft function and $u: Z \to \mathcal{D}$ and $p: \Delta \to \Theta$ denoted by $u(\varepsilon) = \sigma, \quad u(\mu) = \rho, \quad p(\nabla_1) = \varrho_1, \quad p(\nabla_2) = \varrho_2.$ Let take $(\vartheta, \Delta) = \{(\nabla_1, \{\varepsilon\}), (\nabla_2, \{\varepsilon\})\}.$ Then Ω is sSb* \widecheck{I} –continuous but not soft continuous. Since If $\Omega^{-1}((\delta, \Theta)) = (\vartheta, \Delta)$ is $sSb^*\widecheck{I}$ –open set but not soft open set.

Example 4.4: Let $Z = \{\varepsilon, \mu, \omega\}$ and $\Delta = \{\nabla_1, \nabla_2\}$. Let $(\gamma_1, \Delta), (\gamma_2, \Delta)$ and (γ_3, Δ) be soft sets where:

 $(\gamma_1, \Delta) = \{ (\nabla_1, \{\varepsilon\}, (\nabla_2, \{\varepsilon\})) \},\$ $(\gamma_2, \Delta) = \{ (\nabla_1, \{\mu\}), (\nabla_2, \emptyset) \} \text{ and }$

 $(\gamma_3, \Delta) = \{ (\nabla_1, \{\varepsilon, \omega\}), (\nabla_2, \{\varepsilon\}) \}$ and $\mathfrak{W} = \{ \widetilde{Z}, \widetilde{\emptyset}, (\gamma_1, \Delta), (\gamma_2, \Delta), (\gamma_3, \Delta) \}$ is the soft topology over Z. Let $\widecheck{I} = \{ \widetilde{\emptyset} \}$ be a soft ideal on Z. Let $\mathcal{D} = \{ \sigma, \rho, \pi \}$ and $\Theta = \{ \varrho_1, \varrho_2 \}$, $\mho = \{ \widetilde{\mathcal{D}}, \widetilde{\emptyset}, (\delta, \Theta) \}$ is soft topology on \mathcal{D} . Where $(\delta, \Theta) = \{ (\varrho_1, \{\sigma\}), (\varrho_1, \emptyset) \}$. Then let $\Omega: (Z, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathfrak{V}, \Theta)$ be a soft function and $u: Z \to \mathcal{D}$ and $p: \Delta \to \Theta$ denoted by

 $u(\varepsilon) = \sigma, \quad u(\mu) = \rho, \quad u(\omega) = \pi, \quad p(\nabla_1) = \varrho_1, \quad p(\nabla_2) = \varrho_2.$ Let take $(\vartheta, \Delta) = \{(\nabla_1, \{\varepsilon\}), (\nabla_2, \emptyset)\}$. Then Ω is sSb^*I -continuous but not soft Ig -closed set but not soft Ig -closed

set.

Definition 4.5: Let $\Omega: (\mathcal{Z}, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathfrak{V}, \Theta)$ be a soft mapping. If $\Omega^{-1}((\delta, \Delta))$ is $sSb^{*}I$ -closed in $(\mathcal{Z}, \mathfrak{W}, \Delta)$ for each sSb^{*} -closed set (δ, Δ) of $(\mathcal{D}, \mathfrak{V}, \Theta)$, then Ω is said to be soft strongly $b^{*}I$ -irresolute function.

Theorem 4.6: A map $\Omega: (\mathcal{Z}, \mathfrak{M}, \Delta) \to (\mathcal{D}, \mathfrak{V}, \Theta)$ is $sSb^* - irresolute$ if and only if the inverse image of every soft strongly $b^*I - open$ set in \mathcal{D} is soft strongly $b^* - open$ in \mathcal{Z} . **Proof.** Clearly.

Theorem 4.8: Every sSb*Ĭ –irresolute mapping is sSb*Ĭ –continuous functions.

Proof. Let $\Omega: (\mathcal{Z}, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathfrak{V}, \Theta)$ be a sSb^{*}Ĭ –irresolute mapping. Let (δ, Δ) be a soft closed set in \mathcal{D} . Then (δ, Δ) is sSb^{*}Ĭ –closed set in \mathcal{D} . Since Ω is sSb^{*}Ĭ –irresolute mapping, $\Omega^{-1}((\delta, \Delta))$ is sSb^{*}Ĭ –closed set in \mathcal{Z} . Hence, Ω is sSb^{*}Ĭ –ccontinuous function.

Definition 4.9: A soft mapping $\Omega: (\mathcal{Z}, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathcal{V}, \Theta)$ is said to be soft strongly b^*I –open (soft strongly b^*I –closed) map if the image of every soft *open* (soft *closed*) set in \mathcal{Z} is sSb^{*}I –open (sSb^{*}I –closed) set in \mathcal{D} .

Remark 4.10: (1) Every soft open map is sSb*Ĭ –open. (2) Every sSb*Ĭ –open map is sSb* –open.

In the following examples as observed the converses are not true.

Example 4.11: Let $\mathcal{Z} = \{\varepsilon, \mu\}$ and $\Delta = \{\nabla_1, \nabla_2\}$. $\mathfrak{W} = \{\widetilde{\mathcal{Z}}, \widetilde{\emptyset}, (\gamma, \Delta)\}$ is the soft topology over \mathcal{Z} where $(\gamma, \Delta) = \{(\nabla_1, \{\varepsilon\})\}$. Let $\breve{J} = \{\widetilde{\emptyset}\}$ be a soft ideal on \mathcal{Z} .

Also, let $\mathcal{D} = \{\sigma, \rho\}$ and $\Theta = \{\varrho_1, \varrho_2\}$,

 $\mathcal{U} = \{ \widetilde{\mathcal{D}}, \widetilde{\emptyset}, (\delta_1, \Theta), (\delta_2, \Theta) \} \text{ is soft topology on } \mathcal{D}. \text{ Where } (\delta_1, \Theta) = \{ (\varrho_1, \{\sigma\}), (\varrho_2, \{\rho\}) \} \text{ and } (\delta_2, \Theta) = \{ (\varrho_1, \{\rho\}), (\varrho_2, \{\sigma\}) \}. \text{ Then the soft function } \Omega: (\mathcal{Z}, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathcal{U}, \Theta) \text{ where } u: \mathcal{Z} \to \mathcal{D} \text{ and } p: \Delta \to \Theta \text{ denoted by }$

 $u(\varepsilon) = \sigma$, $u(\mu) = \rho$, $u(\omega) = \pi$, $p(\nabla_1) = \varrho_1$, $p(\nabla_2) = \varrho_2$ is sSb^*I –open but not soft open. Since for each soft open (γ, Δ) in \mathcal{Z} , $\Omega((\gamma, \Delta)) = (\vartheta, \Theta) = \{(\varrho_1, \{\sigma\})\}$ is sSb^*I –open set but not soft open set.

Example 4.12: Let $Z = \{\varepsilon, \mu\}$ and $\Delta = \{\nabla_1, \nabla_2\}$. $\mathfrak{W} = \{\tilde{Z}, \tilde{\emptyset}, (\gamma, \Delta)\}$ is the soft topology over Z where $(\gamma, \Delta) = \{(\nabla_1, Z), (\nabla_1, \{\varepsilon\})\}$. Also, let $\mathcal{D} = \{\sigma, \rho\}$ and $\Theta = \{\varrho_1, \varrho_2\}$, $\mathcal{U} = \{\tilde{\mathcal{D}}, \tilde{\emptyset}, (\delta_1, \Theta), (\delta_2, \Theta)\}$ is soft topology on \mathcal{D} , where $(\delta_1, \Theta) = \{(\varrho_1, \{\sigma\})\}$ and $(\delta_2, \Theta) = \{(\varrho_1, \{\sigma\}), (\varrho_2, \{\rho\})\}$. Let $\check{J} = P(\mathcal{D})$ be a soft ideal on \mathcal{D} . Then the soft function $\Omega: (Z, \mathfrak{W}, \Delta) \to (\mathcal{D}, \mathcal{U}, \Theta)$ where $u: Z \to \mathcal{D}$ and $p: \Delta \to \Theta$ denoted by $u(\varepsilon) = \sigma, \quad u(\mu) = \rho, \quad u(\omega) = \pi, p(\nabla_1) = \varrho_1, \quad p(\nabla_2) = \varrho_2$ is $sSb^*\check{I}$ -open but not sSb^* -open. Since for each soft open (γ, Δ) in $Z, \quad \Omega((\gamma, \Delta)) = (\vartheta, \Theta) =$ $\{(\varrho_1, \mathcal{D}), (\varrho_1, \{\sigma\})\}$ is $sSb^*\check{I}$ -open set but not sSb^* -open set.

5. Conclusions

In this work, we study the $sSb^{*}I$ –closed sets and $sSb^{*}I$ –open sets and some of their properties and investigated. Also, we define the $sSb^{*}I$ –continuous and $sSb^{*}I$ –irresolute. In future, more general types of $sSb^{*}I$ –closed sets may be defined and using of them characterizations related with soft separation axioms and soft continuity may be studied.

References

- D. Molodtsov, "Soft set theory-first results," Computers and Mathematics with Applications, vol. 37, no. 4-5, pp. 19-31, 1999.
- [2] I. Arockiarani and A. Arokialancy, "Generalized soft $g\beta$ -closed sets and soft $gs\beta$ -closed sets in STSs," International Journal of Mathematical Archive, vol. 4, no. 2, pp. 1-7, 2013.
- [3] M. Akdag and A. Ozkan, "Soft α-open sets and soft α-continuous functions," Abstr. Anal. Appl., pp. 1-7, 2014.
- [4] M. Akdag, A. Ozkan, "Soft b-open sets and soft b-continuous functions," Math Sci, vol. 8, no. 127, pp. 1-9, 2014.
- [5] Hameed, S. Z. and A. K. Hussein, "On Soft bc open Sets in STSs," Iraqi Journal of Science, pp. 238-242, 2020.
- [6] Hameed, S. Z., F. A. Ibrahem and and Essam A. El-Seidy, "On soft b*-closed sets in STS," International Journal of Nonlinear Analysis and Applications, vol. 12, no. 1, pp. 1235-1242, 2021.
- [7] Hameed, S. Z., A. E. Radwan and Essam A. El-Seidy, "On soft b* continuous functions in STSs," Measurement: Sensors, vol. 27, pp. 1-5, 2023.
- [8] Hameed, Saif Z., A. E. Radwan and Essam A. El-Seidy, "On sS b*-closed sets and sS b* continuous functions in STSs," Under the Publication, 2023.
- [9] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and A. M. Abd El-latif, "Soft ideal theory, Soft local function and generated STSs," Appl. Math. Inf. Sci., vol. 8, no. 4, pp. 1595-1603, 2014.
- [10] H. I. Mustafa and F. M. Sleim, "Soft generalized closed sets with respect to an ideal in STSs," Applied Mathematics & Information Sciences, vol. 8, no. 2, p. 665–671, 2014.
- [11] K. Kannan, "Soft generalized closed sets in STSs," Journal of Theoretical and Appl. Inform. Technology, vol. 37, no. 1, p. 17 – 21, 2012.
- [12] Maji, P. K., R. Biswas and A. R. Roy, "Soft set theory," Comput. Math. Appl., vol. 45, p. 555–562, 2003.
- [13] Shabir, M., Naz and M., "On STSs," Comput. Math. Appl., vol. 61, p. 1786–1799, 2011.
- [14] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, "Remarks on STSs," Annals of Fuzzy Mathematics and Informatics, vol. 3, no. 2, pp. 171-185, 2012.