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Abstract:  

A well-constructed ordinary differential equation (ODE) model is an essential tool for 

simulating the interactions between Mycobacterium tuberculosis and Mycobacterium bovis 

BCG Glaxo both quantified in RNA/fg/cell. The model can be numerically solved using 

techniques such as the fourth-order Runge-Kutta method (RK4) or Euler's method with 

Python serving as an effective platform for implementation. This model enables researchers 

to explore the dynamics between M. tuberculosis  and M. bovis BCG Glaxo across different 

scenarios. It allows for the assessment of how variations in parameters, initial conditions 

and boundary conditions impact the interaction between these microorganisms. 

Additionally, the model facilitates the examination of time-dependent changes in these 

interactions, offering valuable insights into their long-term behaviours. Furthermore, the 

model provides a means to compare the outcomes produced by different numerical 

techniques contributing to a deeper understanding of the interactions between                                   

M. tuberculosis (rna/FG/CELL) and M. bovis BCG Glaxo (RNA/fg/cell). This ODE model 

is a critical asset in advancing our understanding of these important bacterial interactions. 
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1. Introduction 

A mathematical model is used to examine M. tuberculosis (TB) dynamics while incorporating different 

vaccination strategies. By utilizing differential equations, the model simulates the transmission of           

TB and evaluates how various vaccination control measures influence disease progression. The 

research offers valuable insights into the most effective vaccination strategies and their role                           

in managing TB outbreaks [8, 22]. An advanced mathematical model is designed to analyze                                  

M. tuberculosis (TB) dynamics by integrating various intervention strategies including treatment and 

vaccination. Utilizing differential equations, the model effectively tracks the spread and development 

of TB and assesses the influence of different control measures. The results underscore the most 

effective strategies for decreasing TB incidence and enhancing public health [5,9]. Mycobacterium 

tuberculosis, the bacterium responsible for M. tuberculosis (TB) remains a leading cause of mortality 

worldwide with 10 million new cases and 1.2 million deaths reported in 2019 alone. Approximately 

25% of the global population is estimated to carry a latent TB infection, posing a risk of developing 

active disease later on (WHO, 2020). 
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The research investigates mathematical models for the dynamics of infectious diseases, with a 

particular emphasis on vaccination strategies [2].  By using differential equations, the study simulates 

disease transmission and assesses the effects of vaccination on disease spread [6]. It offers an in-depth 

examination of how various vaccination approaches influence disease rates and control measures. The 

results underscore the essential role of vaccination in managing and reducing the impact of infectious 

diseases, providing crucial insights for public health strategies [4, 19]. Phylogenetic analyses have 

extensively explored the genomic differences between virulent strains of M. bovis and M. tuberculosis 

as well as the BCG vaccine strains, focusing on the remodeling of protein complexes [1, 3, 21]. 

However, there has been less emphasis on how genetic variability influences virulence factors related 

to the lipid content and metabolism of mycobacterial cell walls [1]. 

The metabolic processes of mycobacteria have been thoroughly studied in various academic 

publications [7, 15, 16, 17, 18]. During the in vitro growth of M. tuberculosis, different energy and 

carbon sources are channelled into major metabolic pathways where they are oxidized to produce 

pyruvate and eventually carbon dioxide. The Embden-Meyerhof-Parnas (EMP) pathway is the primary 

route for glucose catabolism in mycobacteria, with 70% of glucose entering this pathway and the 

remaining 30% being processed through the pentose phosphate pathway producing C5 and C4 sugars 

and reducing equivalents like NADPH [17]. Pathogenic mycobacteria lack alternative sugar catabolic 

pathways with glycerol being the preferred carbon source. The metabolic breakdown of glycerol is 

well-documented involving glycerol kinase and glycerol-3-phosphate dehydrogenase to eventually 

produce dihydroxyacetone phosphate, which is further metabolized via the EMP pathway and the 

Krebs cycle. Notably, a single nucleotide mutation in the pykA gene encoding pyruvate kinase, has 

been identified as the cause of Mycobacterium bovis's inability to utilize glycerol in the absence of 

pyruvate [20]. In a related context of complex biological systems, research has also focused on 

multispecies ecological models, examining optimal harvesting, stability dynamics and the roles of 

functional response, refuge, migration and immigration [10, 11, 12, 13]. 

2. Mathematical Model for M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo 

(RNA/fg/cell) 

The density of the prey population is the variable M.T.(RNA). The predator population density and 

instantaneous growth rates of the two populations are represented by the variable M.BCG (RNA), 

where t is a time variable. The parameters of the prey 𝛼1 and 𝛽1 represent the maximum growth rate 

of the prey per capita and the impact of predators on the prey growth rate respectively. The 

characteristics of the predator, denoted as 𝛾1, 𝛿1 respectively, depict the rate of mortality per unit of 

the predator and the impact of prey on the predator's growth rate. Every parameter is actual and positive 

[14]. 

 The initial conditions are 𝛼1 = 1. 

 Mortality rate due to predators, 𝛽1 = 1, 𝛿1 = 1, 𝛾1 = 2, x0 = 232, y0 =13.3, t=30 days, tmax = 2.40 

      
𝑑(𝑀.𝑇.(𝑅𝑁𝐴))

𝑑𝑡
= 𝛼1(𝑀. 𝑇. (𝑅𝑁𝐴)) − 𝛽1(𝑀. 𝑇. (𝑅𝑁𝐴))(𝑀. 𝐵𝐶𝐺(𝑅𝑁𝐴))                                      ...(1) 

    
𝑑(𝑀.𝐵𝐺(𝑅𝑁𝐴))

𝑑𝑡
= 𝛿1(𝑀. 𝑇. (𝑅𝑁𝐴)(𝑀. 𝐵𝐶𝐺(𝑅𝑁𝐴)) − 𝛾1(𝑀. 𝐵𝐶𝐺(𝑅𝑁𝐴)))                                   ...(2) 
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We obtain equation (1) and (2) two equilibrium points (0,0) and (
𝛿1

𝛾1
,

𝛼1

𝛽1
) from equations (1) and (2). 

The Jacobian matrix can be used to ascertain whether these equilibrium points are stable. Each time 

the Jacobian is evaluated at an equilibrium point, we obtain 

𝐽(𝑀. 𝑇(𝑅𝑁𝐴), 𝑀. 𝐵𝐶𝐺(𝑅𝑁𝐴)

= (𝛼1 + 𝛽1(𝑀. 𝐵𝐶𝐺(𝑅𝑁𝐴) 𝛽1(𝑀. 𝑇(𝑅𝑁𝐴)  − 𝛾1(𝑀. 𝐵𝐶𝐺(𝑅𝑁𝐴) 𝛿1

− 𝛾1(𝑀. 𝑇(𝑅𝑁𝐴) ) 

Every equilibrium point's Jacobian is evaluated, and the result is 

(𝛼1 0 0 𝛿1 )𝐽 (
𝛿1

𝛾1

,
𝛼1

𝛽
1

) = (𝛼1 𝛽1 (
𝛼1

𝛽
1

)  − 𝛾1 (
𝛿1

𝛾1

) 𝛿1 ) 

The stability [18] of (0,0) is dependent on the signs of a and d since the eigen values of J (0,0) are            

λ1 = 𝛼1and λ2 = 𝛼2. (0,0) is a stable node if both 𝛼1 < 0 and 𝛿1 < 0.  If 𝛼1 < 0 and 𝛿1 < 0, then the 

node (0,0) is unstable. A saddle point is (0,0) if 𝛼1 < 0 and 𝛿1 < 0. If (0,0) is an unstable node, then 

𝛿1>0. (0,0) is a saddle point if 𝛼1𝛿1 < 0. The eigenvalues of of 𝐽 (
𝛿1

𝛾1
,

𝛼1

𝛽1
) are 𝜆1 = 𝛼1 +

𝛽1

𝛾1
𝛿1 and                  

𝜆2 = 𝛿1 −
𝛾1

𝛽1
𝛼1, therefore the signs of 𝛼1 +

𝛽1

𝛾1
𝛿1 and 𝛿1 −

𝛾1

𝛽1
𝛼1 determine the stability of (

𝛿1

𝛾1
,

𝛼1

𝛽1
) 

Since the sign of both eigenvalues is the same, (
𝛿1

𝛾1
,

𝛼1

𝛽1
)  Depending on whether the eigen values are 

positive or negative, it can be either a staple spiral or a tip of saddle. In the event that one eigenvalue 

is zero, the stability must be ascertained using higher-order terms. 

3. ODE Model for M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

 

Figure 1: Interaction of ODE Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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Time t,days M.  tuberculosis 

(RNA/fg/cell) 

M. bovis BCG Glaxo 

(RNA/fg/cell) 

30 2.32000000e+02 1.33000000e+01 

30 5.36260537e-03 4.70179582e+02 

30 5.10665353e-09 4.56280426e+02 

30 7.41917016e-03 1.88274550e+01 

30 4.37982633e-03 1.82767912e+01 

30 2.62816462e-03 1.77397467e+01 

Table 1: Interaction of ODE Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

In figure 1, using equation (1) and (2), the population dynamics of two cell types, "M. tuberculosis 

(RNA/fg/cell)" and "M. bovis BCG Glaxo (RNA/fg/cell)," are plotted over a 30-day period using the 

Odeint method. The key observations from the plot are as follows: M. tuberculosis Population: 

Represented by green circles, the population of M. tuberculosis starts at around 400 and rapidly 

declines to nearly zero within the first five days, remaining at this low level for the rest of the period. 

M. bovis BCG Glaxo Population: Depicted by purple stars, the M. bovis BCG Glaxo population 

remains at zero throughout the entire 30-day study period. Duration: The x-axis displays the time span 

ranging from 0 to 30 days. Population: The y-axis represents the cell population ranging from 0 to 400. 

This plot can be used to study the behavior of these two cell populations over time offering insights 

into the dynamic interaction between these species. 

 

Figure 2: Interaction of Random Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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The graph illustrates the temporal variation in RNA content (fg/cell) of M. tuberculosis and M. bovis 

BCG Glaxo over a 30-day period. In the case of M. tuberculosis (top panel), a sharp peak in RNA 

levels is observed at the initial time point followed by a rapid decline to nearly negligible levels within 

the first day. This low level is maintained consistently throughout the observation period with a slight 

increase near the 30th day possibly indicating late-stage metabolic reactivation or model fluctuation. 

Similarly, M. bovis BCG Glaxo (bottom panel) exhibits a high initial RNA concentration that quickly 

diminishes within the first few days stabilizing at minimal levels thereafter. A modest rise in RNA 

content is also noticeable toward the end of the time frame. Overall, both strains demonstrate an early 

and significant reduction in RNA levels suggesting a swift transition into a low metabolic or dormant 

state with potential signs of late reactivation. 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG 

Glaxo 

(RNA/fg/cell) 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG 

Glaxo 

(RNA/fg/cell) 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG 

Glaxo 

(RNA/fg/cell) 

2.32000000e+02 1.33000000e+01 2.32000000e+02 1.33000000e+01 2.32000000e+02 1.33000000e+01 

7.15159481e-03 5.85028044e+02 5.36260537e-03 4.70179582e+02 4.18250166e-03 3.93679854e+02 

7.13810820e-09 5.67738228e+02 5.10665353e-09 4.56280426e+02 3.79076358e-09 3.82040177e+02 

1.44562529e-01 8.03079154e-11 7.41917016e-03 1.88274550e+01  -7.60460782e-01 8.81859962e-12 

1.48969587e-01 7.86220565e-11 4.37982633e-03 1.82767912e+01 -7.83643794e-01 8.16998368e-12 

1.53510998e-01 7.69922730e-11 2.62816462e-03 1.77397467e+01 -8.07533554e-01 7.55838277e-12 

Table 2: Interaction of Random Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

3.1. Euler’s Model for M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

A first-order numerical method called Euler's method can be used to solve ordinary differential 

equations (ODEs) starting with a given initial value. It builds the tangent at point x using the 

straightforward method to get the value of y(x+h), whose slope is 𝑦′(x). By using the tangent at each 

interval that is, a series of brief line segments we can use Euler's method to approximate the solution's 

curve at steps of h. An increase in approximation accuracy can be achieved by using small step sizes. 

Given a position b and an interval width (size of each step) of h, the general formula for the functional 

value at any given location b is y(b).  
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Assuming h to be the time step, we can write:  

                                                   y(b) =y(a) + h * ∑ 𝑓(𝑥𝑖−1, 𝑦𝑖−1)𝑛
𝑖=1   

                                                 Where 𝑥𝑖 = 𝑥𝑖−1 + ℎ 

𝑦𝑖 = 𝑦𝑖−1 + ℎ ∗ 𝑓(𝑥𝑖−1, 𝑦𝑖−1) 

Here, f (x, y) is the derivative of y with respect to x. 

Using equations (1) and (2), we have 

 

Figure 3: Interaction of Euler Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

 

Time t, 

days 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG 

Glaxo 

(RNA/fg/cell) 

30 5.98558559e+00 1.19729730e+00 

30 5.98558559e+00 1.19729730e+00 

30 5.90707973e+00 1.59176437e+00 

30 2.10905127e-05 2.10073104e-04 

30 2.17237017e-05 2.03764869e-04 

30 2.23759056e-05 1.97646069e-04 

Table 3: Interaction of Euler Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 1 (2025) 

  

442 
https://internationalpubls.com 

In figure 3, the population dynamics of two cell types, M. tuberculosis (RNA/fg/cell) and M. bovis 

BCG Glaxo (RNA/fg/cell), are plotted over a 30-second interval using the Euler method.                                              

M. tuberculosis (green circles): The population starts at a relatively high level and rapidly declines 

within the first few seconds reaching near zero around the 10-second mark. The population remains at 

zero until around 18 seconds, where it rapidly increases again towards the end of the period.                              

M. bovis BCG Glaxo (red crosses): This population initially grows peaking shortly before the                          

5-second mark and then decreases sharply stabilizing near zero between 10 and 15 seconds. Following 

this period, the population begins to increase again after 18 seconds, mirroring the behavior of                        

M. tuberculosis. Time Axis (x-axis): The time is represented from 0 to 30 seconds. Population Axis 

(y-axis): The population is measured ranging from 0 to 3.0 RNA/fg/cell.  

Therefore, the figure suggests that both M. tuberculosis and M. bovis BCG Glaxo populations exhibit 

cyclical behavior with distinct phases of growth and decline. Initially, M. tuberculosis declines rapidly 

while M. bovis increases followed by a period where both populations stabilize near zero. After 18 

seconds, both populations experience rapid growth indicating a possible interaction or competition 

between the two species that affects their population dynamics over time. 

 

Figure 4: Phase graph of Euler Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

 The figure 4 presents a phase plane analysis of M. tuberculosis (RNA/fg/cell) against M. bovis BCG 

Glaxo (RNA/fg/cell) using the Euler method. The trajectories depicted in the graph suggest a non-

linear relationship between the two populations over time. Cyclical Dynamics: The phase plane shows 

a clear cyclic pattern, indicating that the populations of M. tuberculosis and M. bovis BCG Glaxo 

undergo oscillations. This suggests that the interaction between these two cell types is dynamic with 

each population affecting the growth and decline of the other. Population Interactions: At the beginning 

of the cycle, when M. tuberculosis population is low, M. bovis BCG Glaxo population increases 

sharply. As the M. tuberculosis population starts to grow, the M. bovis population begins to decline, 

suggesting a competitive or inhibitory interaction. Multiple Cycles: The presence of multiple loops in 

the graph indicates that the system might experience repeated cycles of population growth and decline, 

potentially reflecting periods of dominance by one species followed by the other. 
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This phase plane analysis highlights the complex interplay between the two bacterial populations and 

provides insights into their competitive dynamics under the modelled conditions. 

3.2. Runge-kutta Model for M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

             A numerical approach for solving ordinary differential equations (ODEs) of the form                                              

dy/dx = f(x, y), y (x (0)) = y (0) is the fourth-order Runge-Kutta method. It is an improvement on the 

first-order Euler's approach that yields greater accuracy with fewer computations. 1. One of the most 

popular Runge-Kutta techniques for determining the solution to differential equation 2 is the fourth-

order method. Although the RK4 approach requires more computing power, it is also more accurate 

than the Euler's method. Because of the method's precision and adaptability, scientific computing uses 

it extensively 12. 

Let h be the time step, then  

                                                            𝑦𝑖+1 = 𝑦𝑖 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

Where                                                    𝑘1 = ℎ𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑘2 = ℎ𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘1

2
) 

𝐾3 = ℎ𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑘2

2
) 

𝑘4 = ℎ𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑘3) 

Using equations (1) and (2), we have 

 

Figure 5: Interaction of RK-Method Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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Time t, 

days 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG Glaxo 

(RNA/fg/cell) 

30 6.00000000e+00 9.00000000e-01 

30 5.94990280e+00 1.25084405e+00 

30 5.81328647e+00 1.72893963e+00 

30 6.97317631e-01 6.52172901e-05 

30 7.18573994e-01 6.60367011e-05 

30 7.40478292e-01 6.69531236e-05 

   Table 4: Interaction of RK-method model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

The figure 5 illustrates the dynamics of two cell types: M. tuberculosis (RNA/fg/cell) and M. bovis 

BCG Glaxo (RNA/fg/cell) over a 30-second period analysed using the RK4 method. Key observations 

are as follows: M. tuberculosis Population: Represented by "x" markers, the population of                                  

M. tuberculosis increases rapidly reaches a peak and then declines sharply. M. bovis BCG Glaxo 

Population: Indicated by "+" markers, this population also rises quickly but peaks slightly later than 

M. tuberculosis before starting to decrease. Time Frame: The x-axis represents time from 0 to 30 

seconds. Population Levels: The y-axis displays cell populations ranging from 0 to 10. 

This figure reveals that both cell types exhibit a growth pattern followed by a decline with M. bovis 

BCG Glaxo peaking after M. tuberculosis. The observed patterns suggest a dynamic interplay between 

these populations where the growth of one influence the decline of the other. 

 

       

Figure 6: Interaction of RK-method model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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Phase Plane Analysis: The figure 6 presents a phase plane comparison of M. tuberculosis 

(RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) using the RK4 method, examining their 

respective phases over time. Key features include: M. tuberculosis Population: Shown on the x-axis 

ranging from 0 to 6 reflecting the RNA per cell for M. tuberculosis. M. bovis BCG Glaxo Population: 

Depicted on the y-axis, ranging from 0 to 10 representing the RNA per cell for M. bovis BCG Glaxo. 

Phase Plane Dynamics: Starting from the origin, the blue curve rises sharply, reaches a peak around 2 

on the x-axis and then gradually declines. This analysis illustrates the phase relationship between the 

two cell types highlighting how their populations change relative to one another over the observed 

period. 

4. Generation Time 

The tubercle bacillus known for its complex cell envelope, slow growth rate, intracellular 

pathogenicity, dormancy and genetic uniformity exhibits a generation time of approximately 24 hours 

in both infected hosts and synthetic media. 

 

Figure 7: Interaction of ODE model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

 

Generation Time 

t,days 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG Glaxo 

(RNA/fg/cell) 

240 2.32000000e+02 1.33000000e+01 

240 2.19437254e+02 3.94572760e+01 

240 1.86785548e+02 1.05583869e+02 

240 -8.10538564e-10 4.41667655e+01 

240 -7.65049933e-10 4.40607865e+01 

240 -7.16852963e-10 4.39550618e+01 

Table 5: Interaction of ode model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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The figure 7 depicting Generation Time BCG (Glaxo) illustrates the population dynamics of                         

M. tuberculosis and M. bovis over time. The x-axis represents time spanning from 0 to 2.5, measured 

in Generation Time BCG (Glaxo). The y-axis displays the population of the bacteria ranging from 0 to 

10. M. tuberculosis is indicated by blue circles which show a rapid increase in population followed by 

a decline suggesting that this bacterium eventually reaches a peak. In contrast, M. bovis BCG (Glaxo), 

represented by green plus markers also shows population growth but peaks later and at a lower level 

before beginning to decrease. 

 

 

Figure 8 : Interaction of Random Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

 

Generation 

Time t,days 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG Glaxo 

(RNA/fg/cell) 

240 2.32000000e+02 1.33000000e+01 

240 2.20703642e+02 3.95586887e+01 

240 1.90722401e+02 1.07128381e+02 

240 -4.45439739e-11 4.89605233e+01 

240 -4.97911525e-11 4.88430416e+01 

240 2.32000000e+02 1.33000000e+01 

240 2.16933659e+02 3.92565763e+01 

240 1.79289445e+02 1.02639024e+02 

240 1.30580440e-10 3.69804982e+01 

240 2.23545942e-10 3.68917628e+01 

240 3.20791575e-10 3.68032403e+01 

Table 6: Interaction of Random Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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The figure 8 presents RNA concentration (in fg/cell) over time for two bacterial strains:                                        

M. tuberculosis and M. Bovis BCG (Glaxo). In the upper plot, M. tuberculosis exhibits a sharp initial 

decline in RNA concentration, dropping from a high level at t=0 to a much lower and stable level as 

time progresses. This suggests that M. tuberculosis undergoes rapid RNA degradation or a decrease in 

metabolic activity early on, stabilizing quickly. In contrast, the lower plot shows that M. Bovis BCG 

(Glaxo) also starts with a high RNA concentration, but its decline is more gradual, with the 

concentration decreasing steadily over time. The two lines in this plot indicate slight variations under 

different conditions but overall, the decline is less steep than in M. tuberculosis. This comparison 

suggests that M. Bovis BCG (Glaxo) maintains RNA levels longer possibly indicating differences in 

their physiological or metabolic processes. 

 

Figure 9: Interaction of Random Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

Generation 

Time t, days 

M.  tuberculosis 

(RNA/fg/cell) 

M. bovis BCG 

Glaxo 

(RNA/fg/cell) 

240 2.32000000e+02 1.33000000e+01 

240 2.16933659e+02 3.92565763e+01 

240 1.79289445e+02 1.02639024e+02 

240 1.30580440e-10 3.69804982e+01 

240 2.23545942e-10 3.68917628e+01 

240 3.20791575e-10 3.68032403e+01 

Table 7: Interaction of Random Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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In figure 9, The analysis explores the phase plane differences in RNA content per cell (fg/cell) 

between M. tuberculosis and M. bovis BCG (Glaxo). The x-axis of the graph shows the RNA levels 

for M. tuberculosis, ranging from 0 to 6 fg/cell, while the y-axis represents the RNA levels for                           

M. bovis BCG (Glaxo), ranging from 0 to 10 fg/cell. Various initial conditions are depicted by colored 

lines on the graph spanning from x₀ = 1.0 to x₀ = 6.0. These lines demonstrate how the population of 

M. bovis BCG (Glaxo) varies in relation to M. M. tuberculosis under different starting scenarios. 

 

Figure 10: Interaction of Euler Model M. tuberculosis  (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

Generation 

Time t, days 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG 

Glaxo 

(RNA/fg/cell) 

240 6.00000000e+00 1.00000000e+00 

240 5.99423423e+00 1.05285285e+00 

240 5.98664734e+00 1.10844079e+00 

240 7.35170095e-05 1.36107994e-01 

240 7.38125507e-05 1.35454118e-01 

240 7.41095582e-05 1.34803384e-01 

Table 8: Interaction of Euler Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

In figure 10, the population of M. tuberculosis and M. bovis BCG(Glaxo) over time measured in 

Generation time BCG(Glaxo). Here’s a brief interpretation. X-Axis (Time): The x-axis represents time 

measured in Generation time BCG(Glaxo) ranging from 0 to 2.5. Y-Axis (Population): The y-axis 

represents the population of the bacteria, ranging from 0 to 3.0. M. tuberculosis (Blue Circles): The 
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blue circles represent the population of M. tuberculosis. The population decreases sharply as time 

progresses, indicating a decline in the M. tuberculosis population over time. M. bovis BCG(Glaxo) 

(Green Plus Markers): The green plus markers represent the population of M. bovis BCG(Glaxo). The 

population remains relatively stable before it too begins to decrease though at a slower rate than                       

M. tuberculosis. 
 

 

Figure 11: Interaction of Euler Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 

The figure11 illustrates a phase plane comparison of M. tuberculosis and M. bovis BCG (Glaxo) based 

on RNA per cell (fg/cell). The x-axis shows the RNA content of M. tuberculosis, ranging from 0 to 6 

fg/cell, while the y-axis represents the RNA content of M. bovis BCG (Glaxo) ranging from 0 to 10 

fg/cell. The blue curve on the graph depicts the relationship between these two bacteria. It shows that 

as the RNA content per cell for M. tuberculosis increases, the RNA content per cell for M. bovis BCG 

(Glaxo) decreases significantly highlighting an inverse relationship between the two variables. 

 

Figure 12: Interaction of RK-Method Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell) 
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Generation Time BCG (Glaxo) measures the population dynamics of M. tuberculosis and M. bovis 

over time. The figure 12 illustrates this relationship with time displayed on the x-axis, ranging from 0 

to 2.5 units of Generation Time BCG (Glaxo). The y-axis shows the bacterium's population, ranging 

from 0 to 10. M. tuberculosis is depicted by blue circles, showing a rapid increase in population that 

eventually peaks and then declines. In contrast, M. bovis BCG (Glaxo) represented by green plus 

markers, also experiences population growth but peaks later and at a lower level before decreasing. 

This comparison highlights the differing growth patterns and peak timings of the two bacterial 

populations. 

 

Figure 13: Phase plane: Interaction of RK-Method Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo 

(RNA/fg/cell) 

Generation Time 

t,days 

M. tuberculosis 

(RNA/fg/cell) 

M. bovis BCG 

Glaxo 

(RNA/fg/cell) 

240 6.00000000e+00  1.00000000e+00 

240 5.99330780e+00  1.05424217e+00 

240 5.98470205e+00  1.11134495e+00 

240 9.57159333e-05  1.36713643e-01 

240 9.61013355e-05  1.36058461e-01 

240 9.64886532e-05  1.35406420e-01 

Table 9: Interaction of RK-Method Model M. tuberculosis (RNA/fg/cell) and M. bovis BCG Glaxo (RNA/fg/cell)                              

In figure 13, an analysis of the phase plane differences in terms of RNA per cell (fg/cell) between                          

M. tuberculosis and M. bovis BCG (Glaxo) is done. This is a succinct interpretation. The X-Axis                            
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(M. tuberculosis): 0 to 6 signifies M. tuberculosis (RNA/fg/cell). Y-Axis (M. bovis BCG1): Running 

from 0 to 10, the y-axis shows M. bovis BCG(Glaxo) (RNA/fg/cell). Blue Curve: This diagram 

illustrates the connection between M. tuberculosis and M. bovis BCG (Glaxo). M. bovis BCG (Glaxo) 

RNA per cell falls down dramatically when M. tuberculosis RNA per cell rises. This suggests that 

there is an inverse link between these two factors. 

5. Conclusion 

In conclusion, the ODE model offers a robust framework for studying and simulating the biological 

interactions between M. tuberculosis and Mycobacterium bovis BCG Glaxo. Its versatility allows for 

adjustments in parameters, initial conditions, boundary conditions, time intervals and numerical 

methods making it a powerful tool for exploring these dynamics. Whether implemented using different 

programming languages such as Python or employing various numerical techniques like Euler's 

method or the Runge-Kutta fourth order, the model remains a crucial asset in biological research. This 

flexibility underscores the significance of computational models in advancing our comprehension of 

intricate biological systems and their interactions. 
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