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1.Introduction:

Let A be the class of functions f normalized by

f@)=z+
Yn=2Qn Z" (1.1
and T denote the class of functions in the form of

oo

f@=2-) a(@,20)  (12)

n=2

which are analytic in the open unit disk U = {z: z € C and |z| < 1}. This subclass was given
in . Let T*(a) and C(a) be indicate starlike and convex functions of order a, (0 < a < 1),
respectively. The classes UCV (a, o) consists of uniform o —convex functions of order @ and
SP(a, o) consists parabolic o — starlike functions of order a, —1 < @ < 1,0 > 0, generalizes
the class UCV and SP respectively, were given in such that

UCV(a,0) = {f € A:Re {1 + z]]:,"(iz)) - a} > U{Z]};’;(ZZ))},Z € U} (1.3)

and

SP(a,0) = {f € A:Re {% - a} > U{Zj{;S) - 1},2 € U}. (1.4)

It is obvious from (1.3) and (1.4) that f € UCV(a,0) if and only if zf'(2) €
SP(a,0). Some interesting situations of the class of starlike and convex of order «
associated with Bessel functions (as hypergeometric function), finding condition on the triple
p,b and ¢ such that the function w,, . is starlike and convex of order « and finding
conditions on the parameters for which the Gaussian hypergeometric functions belong to the
various classes of functions have discussed in the references [1,2,4,9,10] . Let us take into
consideration second order linear homogenous differential equation ( see [3] ).
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220" D + bzw' D + [cz2 —p? + (1 — b)p]lw(z) =0, (p,b,c €C). (1.5)
As a particular solition of (1.5) generalized Bessel function of the first kind of order p, is
defined in as following:

(_1)71 n (Z)2n+p

w(z) = Wp pc (2) = Z >

n= on'F(p+ +ﬁ)

2
where I" stands for the Euler gamma functionand 7 = p + E ¢€Z,=1{0—-1,-2,---}.

Though the series given in (1.6) is convergent everywhere, the function w,, 5, . is not univalent
in U. Specially, choosing b = ¢ = 1 in (1.6), we get Bessel function of the first kind of order
p givenin as

, z€C, (1.6)

. (=1)" 2\ 2N4D
]”(Z):zn!r(p+n+1)(§) 'z &L (1.7)
n=0

Choosing b = 1 and ¢ = —1 in (1.6), we get the modified Bessel function of the first kind
order of p given in as

(@) = T ———— (% )mp zeC. (1.8)

Further choosing b = 2 and ¢ = 1 in (1.6), the functions w,, ;, - reduces to \/— where Jp is
the spherical Bessel function of the first kind of order p, given in as

Jp(z)—fznlr( D" - (%)M,zec. (1.9)

+n+3)
The function ¥, ;, . is defined i |n as

n'F(p+n+1)

Oy pc(2) = zpr( b er 1) 1‘Ewpbc(\/') (1.10)

in terms of generalized Bessel function w,, ;, .. By the help of Pochhammer symbol, Gamma
function is defined as

and we get 9, - given in (1.10) as
()"
Up,p,c(2) _Z+Z4n@ — (1.11)

where 7 =p + T € Zoand N = {1,2,3,---}.  We will write 9, .(z) = 9, .(z) for
convenience. Now, we consider S¢ operator given as
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Sif(z) =0 (@D*f(z2)=z+ z %2n+1

(=) a ®
— n
n=

( ot b+1
@, (- DU (7" #og) F 0L (112)

where E (¢, 7,n) >

Fora = 0,0 < B < 1, we set S£(a, B) be the subclass of A consisting of functions
of the form (1.1) and satisfy

s¢
re(*L2) > a[isery -
+B (1.13)

where S¢f(z) is given by (1.12).
We further let TSE(a, B) = Sé(a, B) NT.

S Cf (2)

In this paper, we obtain coefficient inequalities, extreme points, integral means inequalities
for the functions in the class TS¢(a, £) and also subordination results for the class of function

f € Si(a,p).

2. Coefficient Estimates
Theorem 2.1. The function f defined by (1.1) is in the class S¢(a, B) if

Yn=2[1+a(n—D]E(c,7,n)lay| <1 -
B, (2.1)

where @ > 0,0 < < 1and E(c,t,n) is given by (1.12).

Proof. It suffices to show that

a|(SEf(2) — Scf(z) —Re {S’C];(Z) - 1} <1-p.
We have
e|(ser ) - Scf(z) _ Re {STC];(Z) 3 1}
< 4 Yo ,(n—1) E(c, T,M)a, 2" Yo, E (¢, n)anzn‘
z z

IA

@) (= DECETmlan] + ) E(crmlal
n=2 n=2

= 2[1 +am—1D]E(c,t,n)|ay|.

The last expression is bounded above by (1 — B) if

Z 1+an—1D]E(,t,n)a,<1-p
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and the proof of theorem is completed.

In the following theorem, we obtain necessary and sufficient conditions for functions in
TSE(a, B).

Theorem 2.2. Fora > 0,0 < f < 1, afunction f of the form (1.2) to be in the class
TSE(a, B) ifand only if
2[1 +atn—D]EC,tm)la,] <1— 8.

n=2

Proof. Suppose f(z) of the form (1.2) is in the class TS¢(a, ). Then
{Sff (Z)} St f(z)
Re —-a

Z Z

(Sif@) - ‘ = B.

Equivalently

Re

n=2
Letting z to be real values and as |z| — 1, we have

1-) E@nmlayl—a ) (= DEC Ll > 6
n=2 n=2

which implies

Yl +at-DIEEnmlal <15,

n=2

1= z E(r, ”)|an|Z"_1] —a [z(n — D E(c,1,n)a,z" | = B.

where a >0, 0 < B < 1,E(c,t,n) is given by (1.12) and the sufficiency follows from

Theorem 2.1.
Corollary 2.3. If f € TSE(a, ) then

1-B
An S et DIECon)

Equality holds for the function

o 1-8 n
f(Z) =z [1+a(n—1)]E(c.T.n)Z ’

a>0, 0<pB<1,E(ct,n)isgivenby (1.12).
3. Extreme Points

Theorem 3.1. Let f,(z) = zand f,,(z) = z — ol zZ"n=2fora=>00<pB<

[1+a(n—-1)]E(c,T,n)
1, E(c,t,n) is given by (1.12) Then f(z) is in the class E (c, T,n) if and only if it can be
expressed in the form

f(2) = YoeiAn fun(2), where A,, and Y7, 1, = 1.
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Proof. If f(z) = Y1 An fun(z) with 1, = 0and };7_; 4, = 1. Then
HOREDWHAG
n=1

=Mhfi(2) + i An fn(2)
=)
_ (1 _ ;An> z+ ; [xln (z e a(nl__lﬁg(c, o) Zn>]
=z= i M+ atn 1—_1)[;E(c, o
Now Z Lraln 1__1)/;]3(6’ - [1+ a(nl—_l)ﬁE(c, ok

(o]

=) h=1-4 <1

n=2
Then f € TSE(a, B). Conversely suppose that f € TSE(a, ). Then Corollary 2.3 gives
1-8

S ¥ am=DlECc o) =2
[1+a(n—-1)]E(c,T,n)
n=?2

=3 A, N =

where A4, = 1—2/1,1.

set A, =

Then

LN 1-p
_Z_nz::/ln[l+a(n—1)]E(crn)
z—[1 ZA Za £.(2)

=LA@ + Z In ()

Za fa@.

The poof of theorem is completed

N
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4. Integral Means Inequalities

Definition 4.1. (Subordination principle) for analytic function g and h with g(0) =
h(0), g is said to be subordinate to h, denoted by g < h if there exists an analytic function w
such that w(0) = 0, |w(2z)| < 1and g(z) = h(w(2)), forall z € U.

Lemma 4.2. [6] If the function f(z) and g(z) are analytic in U with g(z) < h(z) then

[ |g(re®)|” do < [|f(re®)|"do (0 <7< 1,p>0).
Theorem 4.3. Suppose f € TSE(a, B),p > 0,a = 0,0 < B < 1and f(z) is defined by
fo(2) =z - —F

T A+@ECcTn)

Thenforz=re®, 0 <r <1,

If@1Pdo < [1f(2)IP b (4.1)

Proof. For f(z) = z — Yn—,|a,| z", (4.1) is equivalent to proving that
p
[ ws

o
z—Zlanlzn
0 n=2 0

By applying Little wood’s subordination theorem (Lemma 4.2),
it would be sufficient to show that

2T 21T

1-p
1+ a)E(c,T,n)

14
do, (p > 0).

VA

1—002 la,lzt<1— 1=, (4.2)
] n 1+ a)E(c,t,n)"" '
n:

Setting

1-— OOE la, |zt <1- 1-F w(z)
] n 14+ a)E(c,1,n) '
n=

1+a)E(c,T,n)
1-8
Moreover it suffices to prove that w(z) satisfies |w(z)| < 1,z € U. Now

We have w(z) = > ,a,z" 1 and and w(z) is analytic in U with w(0) = 0.

— 1+ a)E(c,T,n) .
n=2 1-p i
(1 + a)E(c,7,n)

< |z] =5l (4.3)

n-1

lw(2)]

n=2
<|z| < 1.
Thus is view of the inequality (4.3) the subordination (4.2) follows, which proves the
Theorem.

5. Subordination Results
Definition 5.1. (Subordination factor sequence ) A sequence { b,, }5—, of complex
numbers is said to be a

https://internationalpubls.com 202



Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 2 (2024)

subordinating sequence if, whenever f(z) = Yo, a, 2", a; = 1 is regular, univalent and
convex in U, we

have Yo, by a,z™ < f(2), z € U.

Theorem 5.2. [11] The sequence { b, }.— is a subordinating factor sequence if and only if

Re{1+2%7_1b,2z"}>0,z€U.

Theorem 5.3. Let f € S¢(a, B) and g(z) any function in the usual class of convex function

C. Then

(1+ a)E(c,T,n)
20-pB)+ A+ a)E(c,T,n)

where a > 0,0 < g < 1 with E(c,t,n) is given by (1.12)

(f x9)(2) < g(2) (.1

(1-B)+(1+a)E(c,t,n)

Re{f(2)} > — (rabeem 2 €EE. (5.2)
The constant — ot @EETM e the bhest estimate.
2(1-B)+(1+a)E(c,T,n)
Proof. Let f € S¢(a,B)and g(z) =z + Yppcrn 2™ € C.
Then
1+ a)E(c,T,n)
(f *9)(2)

20-p)+ A+ a)E(c,T,n)

B (1+ a)E(c,t,n) n
T20-B) + (1 + E(,T,n) <Z + Z Cn tn? )

n=2

(1+a)E(c,T,n) *
2(l—ﬁ)+(1+a)E(c,‘L',n)}n=1 I5a

Then by Definition 5.1, the subordination result holds true if {

subordinating factor sequence with a; = 1.

In view of Theorem 5.2, this is equivalent to the following inequality.

Re{l 4 Z = A+ aEnn) zn} >0, z€U. (5.3)

A+ A+wEC )"
Now for |z| = r < 1, we have

= (1+ @)E(c,t,n) .
Re{1 " ;2(1 “AH+A+ECLm ™ }

_ e {1 N (1+ a)E(c,t,n) ; Ymo(1+ @) E(c,T, n)anzn}
A-B+@+a)E(,1,n) A-B+@+a)E(c,1,n)

- ~ (1+ a)E(c,1,n) . Ymo,(1+a)E(c, t,n)a,r"

- Q-8B+ @+ a)E(c,1,n) 1-B)+@+a)E(c,t,n)

- B 1+ a)E(c,1,n) . 1-p8 .

- A-B+@+a)E(,1,n) 1-B+@+a)E(,T,n)

> 0.
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Using (2.1) and the fact that 1 + a(n — 1)E(c, T, n) is increasing function for n > 2.

This proves the inequality (5.3) and hence also the subordination result (5.1) asserted by
Theorem 5.3.

The inequality (5.2) follows from (5.1) by taking

Now we consider the function f(z) = z —

" =
__ 1B
(1+a)E(c,T,n)

z
g(z)le—z+ZZ”EC.
n=2

z?,wherea > 0,0 < B < 1.

Clearly F € S¢(a, B). For the function (5.1) becomes

1+ a)E(c,T,n) F z
At 0+Ecrn D1

It is easily verified that

This shows that the constant

(1+ a)E(c,t,n)
20-B)+ @+ a)E(c,T,n)

(1+a)E(c,T,n)
2(1-B)+(1+a)E(c,T,n)

-1
minRe{ F(z)}=7,ze U.

F(2) < 1ZTZ is best possible.
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