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Abstract The integration of renewable energy sources into the power grid has gained 

significant attention due to the increasing demand for clean and sustainable energy. 

Among various renewable sources, photovoltaic (PV) systems have emerged as a 

promising solution for electricity generation. However, integrating PV systems with 

the grid presents several challenges, including power quality issues, harmonic 

distortion, and voltage instability. To address these challenges, this paper proposes an 

advanced control strategy for grid integration of PV systems using a Cascade 

Multilevel Inverter (CMLI) and Convolutional Neural Network (CNN)-based control. 

The primary objective is to enhance power quality, minimize harmonics, and improve 

overall system efficiency. 
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1. Introduction  

The global demand for clean energy has accelerated the adoption of PV systems. However, 

integrating PV systems into the grid presents several challenges, including power quality degradation 

due to harmonics, voltage instability, and reactive power variations. Traditional inverter-based 

integration methods struggle to address these issues efficiently. The cascade multilevel inverter 

(CMLI) provides an effective solution by generating high-quality sinusoidal output voltage with 

reduced harmonic content. Furthermore, machine learning (ML) techniques enhance system 

adaptability and real-time performance monitoring, ensuring improved power quality and grid 

stability[11-15]. The increasing global demand for clean and sustainable energy has led to the rapid 

growth of renewable energy sources (RESs), particularly photovoltaic (PV) systems. As concerns 

about climate change and fossil fuel depletion intensify, solar energy has emerged as one of the most 

viable alternatives due to its abundance, scalability, and declining costs. Governments and energy 

policymakers worldwide are encouraging the integration of PV systems into the electrical grid to 

meet energy demands while reducing carbon emissions[16-18]. However, the large-scale integration 

of PV systems introduces several challenges, particularly concerning power quality, grid stability, 

and efficiency. 

Among the most significant issues associated with grid-connected PV systems are voltage 

fluctuations, harmonic distortions, frequency deviations, and reactive power imbalances. These 

problems arise primarily due to the intermittent nature of solar energy, which depends on weather 
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conditions such as sunlight intensity and cloud cover. Additionally, conventional two-level inverters 

used in PV grid integration contribute to power quality problems, as they generate output waveforms 

rich in harmonic distortions[19-22]. These distortions can lead to heating effects, reduced equipment 

lifespan, and operational inefficiencies, making it imperative to develop advanced inverter 

technologies that can enhance power quality[21-23]. 

To address these challenges, this study proposes the implementation of a cascade multilevel inverter 

(CMLI)-based grid integration system for PV applications. The CMLI topology is capable of 

generating high-quality multilevel voltage waveforms, significantly reducing total harmonic 

distortion (THD) and improving overall power conversion efficiency. Furthermore, to optimize the 

performance of the PV system, machine learning (ML) algorithms are incorporated into the control 

strategy to enable real-time adaptive adjustments, ensuring optimal power quality and stability[25-

27]. 

 

2. Research Objectives and Contributions 

The primary objective of this research is to enhance power quality in PV grid integration systems 

using a CMLI-based inverter with ML-based control. The key contributions of this study include: 

Creation of an inverter architecture based on CMLI to lower THD and enhance waveform quality. 

ML algorithms are included for improved power quality and real-time control. Inverter switching 

techniques are optimized to reduce power losses and increase efficiency. Simulations are used for 

performance study to confirm that the suggested solution improves power quality.The rest of the 

paper is organized as follows: 

Section 2 provides a detailed review of related works in the field of PV grid integration, multilevel 

inverters, and machine learning-based control techniques. 

Section 3 describes the methodology, including system design, CMLI topology, and machine 

learning implementation. 

Section 4 presents simulation results, performance evaluation, and comparative analysis. 

Section 5 discusses the key findings, challenges, and future research directions. 

Section 6 concludes the study with final remarks on the contributions and potential impact of the 

proposed approach. 

 

3. Literature Review Numerous studies have explored power quality issues in PV grid 

integration. Traditional inverter-based systems, such as pulse-width modulation (PWM) inverters, 

often suffer from harmonic distortions and low efficiency. The CMLI topology has gained attention 

due to its ability to synthesize a near-sinusoidal output waveform with lower total harmonic 

distortion (THD). Recent advancements in ML algorithms have enabled predictive control strategies 

for optimizing inverter performance. Various ML techniques, including artificial neural networks 

(ANNs), support vector machines (SVMs), and reinforcement learning (RL), have been explored for 

improving grid stability and power quality. The increasing adoption of grid-connected photovoltaic 

(PV) systems has introduced several power quality issues, including harmonics, voltage instability, 

and reactive power imbalance [1]. Conventional inverters used in PV integration often generate 

significant total harmonic distortion (THD), necessitating advanced control strategies to ensure grid 
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stability [2]. Several studies have proposed multilevel inverter (MLI) topologies and machine 

learning (ML)-based optimization techniques to enhance power quality in PV systems. 

Multilevel inverters (MLIs) have gained popularity due to their ability to generate near-sinusoidal 

waveforms with reduced harmonic distortions. Among various MLI topologies, the cascaded H-

bridge multilevel inverter (CMLI) is widely used in PV systems due to its modular structure, 

scalability, and lower switching losses [3]. Studies have demonstrated that CMLI significantly 

improves power conversion efficiency and voltage quality compared to traditional two-level 

inverters [4]. 

Research by Gupta et al. [5] analyzed the performance of neutral point clamped (NPC) inverters, 

flying capacitor (FC) inverters, and cascaded H-bridge (CHB) inverters for grid-connected 

applications. The study found that CHB inverters provided the best power quality performance, with 

THD values below 3%, meeting IEEE-519 standards. Saravanan et al. [6] further optimized 

switching strategies to minimize switching losses and improve voltage regulation, highlighting the 

importance of advanced pulse width modulation (PWM) techniques. 

Machine learning (ML) algorithms have been increasingly applied in power systems to enhance grid 

stability, fault detection, and power quality regulation [7]. ML techniques, including artificial neural 

networks (ANNs), support vector machines (SVMs), and reinforcement learning (RL), have been 

used to optimize inverter performance. 

Artificial Neural Networks (ANNs) have been widely implemented in power electronics for real-time 

voltage regulation and harmonic mitigation. Reddy et al. [8] demonstrated an ANN-based control 

strategy that dynamically adjusted inverter parameters to compensate for voltage fluctuations and 

minimize harmonics in a grid-connected PV system. Their study showed that ANN-based controllers 

outperformed conventional proportional-integral (PI) controllers in terms of response time and 

accuracy. 

SVMs have been effectively used for fault detection and classification in power systems. A study by 

Kumar and Singh [9] proposed an SVM-based fault detection mechanism for grid-connected PV 

systems, enabling real-time identification of voltage sags, frequency deviations, and harmonic 

distortions. The implementation of SVM classifiers improved the reliability of PV systems by 

reducing fault detection time by 35% compared to traditional methods. 

Reinforcement learning (RL) has emerged as a powerful technique for adaptive power quality 

management. Chen et al. [10] introduced an RL-based reactive power compensation strategy, 

optimizing power factor correction and improving grid synchronization. Their results indicated a 

20% reduction in reactive power losses, leading to enhanced power quality and grid efficiency. 

Several studies have compared different ML algorithms for power quality enhancement in PV 

systems. Patel et al. [11] conducted a comparative study of ANN, SVM, and RL-based control 

strategies, highlighting the strengths and limitations of each technique. Their findings suggest that: 

ANNs are highly effective for voltage regulation and harmonic compensation but require extensive 

training data. 

SVMs provide fast and reliable fault detection but struggle with real-time adaptability. 

RL-based controllers offer dynamic optimization but require high computational resources. 
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4. Research methodology 

This research aims to address these gaps by proposing a hybrid ML-based control system for CMLI-

based PV grid integration, ensuring real-time adaptability, enhanced power quality, and scalability 

for future smart grids. Artificial Neural Networks (ANNs) have revolutionized the fields of artificial 

intelligence and machine learning by mimicking the computational capabilities of the human brain. 

These networks, composed of interconnected neurons, are capable of learning patterns, making 

predictions, and solving complex problems in various domains such as healthcare, finance, image 

recognition, and natural language processing. This paper explores the fundamentals of ANNs, their 

architecture, learning mechanisms, applications, challenges, and future prospects. Artificial Neural 

Networks (ANNs) are computational models inspired by the structure and function of the human 

brain. They have gained prominence due to their ability to process large volumes of data, recognize 

patterns, and perform tasks such as classification, regression, and clustering. This paper provides an 

in-depth exploration of ANNs, discussing their architecture, types, learning techniques, applications, 

and challenges. The fundamental unit of an ANN is the artificial neuron, which mimics the behavior 

of biological neurons. A neuron receives inputs, applies weights, sums them, passes the result 

through an activation function, and produces an output. Mathematically, a neuron can be represented 

as: 

𝑦 = 𝑓(∑𝑤𝑖𝑥𝑖 + 𝑏)    (1) 

𝑥𝑖 Are the input features 

𝑤𝑖  Are the associated weights 

𝑏 Is the bias term 

𝑓 Is the activation function 

y is the output. 

ANNs are composed of three main types of layers: 

Input Layer: Receives raw data inputs. 

Hidden Layers: Perform computations and extract features. 

5. Output Layer: Produces the final prediction or classification. 

The control method requires a comprehensive database that is retrieved from the controller's input 

section in order to improve accuracy. The control algorithm is trained using this database. 

Collectively, neural networks carry out tasks in parallel, and the controller based on neural networks 

provides the best voltage regulation for the input-output dataset. 

𝑉𝑒𝑟𝑟𝑜𝑟 = 𝑉𝑟𝑒𝑓 − 𝑉𝐴𝑐𝑡𝑢𝑎𝑙        (2) 

With the help of these error values, the Artificial Neural Network (ANN) is trained to identify the 

best switching angles for the inverter circuit, guaranteeing a steady output voltage within allowable 

error signal limits. The following steps make up the ANN's training procedure: a) Provisioning input-

output data sets. b) Calculations of weight. c) Modifications to weight in response to input variances. 

To properly analyze the error signals, the neural network is trained using a variety of samples at 

different intervals. Grid Integration and Performance Evaluation The PV system is integrated into the 
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grid through CMLI, and the power quality is assessed based on parameters such as THD, voltage 

stability, and power factor. Simulations are performed using MATLAB/Simulink to validate the 

proposed system’s effectiveness in Fig-5. 

6. Algorithm for Power Quality Enhancement 

The process of improving power quality in a multilevel inverter system follows a structured approach 

that begins with input data collection. Electrical parameters such as voltage, current, frequency, and 

harmonic distortion are gathered from sensors or power measurement systems. These raw signals 

often contain noise and anomalies caused by environmental disturbances, switching transients, or 

measurement errors. To ensure accurate and meaningful data, normalization and filtering techniques 

are applied. Low-pass filters, moving average filters, and anomaly detection algorithms help remove 

unwanted fluctuations, making the data suitable for further processing. Once the data is 

preprocessed, it is used to generate a multilevel voltage waveform with reduced harmonics. 

Advanced inverter topologies such as cascaded H-bridge, neutral-point clamped (NPC), or flying 

capacitor inverters are employed to synthesize output voltage with multiple levels, closely 

resembling a sinusoidal waveform. To further minimize Total Harmonic Distortion (THD), 

modulation techniques such as Sinusoidal Pulse Width Modulation (SPWM) and Space Vector 

Modulation (SVM) are implemented. These techniques enable smooth transitions between voltage 

levels, reducing harmonics and improving power quality. To enhance voltage regulation and 

harmonic compensation, an Artificial Neural Network (ANN) is trained using historical and real-

time data. The ANN learns the patterns of voltage variations, harmonic distortions, and 

corresponding compensation strategies. By leveraging supervised learning, the ANN model adapts 

dynamically to varying load conditions and improves the system’s response to disturbances. Once 

the ANN is trained, the system is designed to adjust inverter switching and control parameters 

dynamically based on real-time power quality conditions. The ANN continuously monitors output 

parameters and modifies switching sequences to maintain optimal performance, ensuring that voltage 

fluctuations are minimized and harmonic distortions are mitigated. Additionally, critical performance 

indicators such as THD, voltage stability, and power factor are continuously measured to assess 

system efficiency. The optimization process involves iterative parameter tuning, where control 

variables such as switching angles, DC-link voltage levels, and filter parameters are adjusted to 

refine performance. Optimization algorithms like genetic algorithms (GA) or particle swarm 

optimization (PSO) can be integrated to achieve the most effective control strategy. The system 

continues this optimization loop until it achieves the best possible THD, voltage stability, and power 

factor, ensuring compliance with power quality standards and improving efficiency in industrial 

applications, renewable energy systems, and microgrid operations. This intelligent, data-driven 

approach integrates ANN-based control, dynamic parameter adjustment, and iterative optimization to 

create an adaptive power quality enhancement mechanism, ultimately leading to a more stable and 

efficient electrical system. 
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Fig-1 Flowchart of a Boost Converter with PSO and ANN-based Control for optimizing 

performance in a photovoltaic (PV) system 

Flowchart of a Boost Converter with PSO and ANN-based Control for optimizing performance in a 

photovoltaic (PV) system has been represented in Fig -1. The optimization of photovoltaic (PV) 

system performance is crucial for maximizing energy efficiency, and intelligent control techniques 

such as Particle Swarm Optimization (PSO) and Artificial Neural Networks (ANN) can significantly 

enhance Maximum Power Point Tracking (MPPT).  

7. Algorithm for voltage controller 

The proposed control strategy begins with an input stage, where real-time PV voltage and current are 

sensed and fed into a hybrid PSO-ANN controller. The PSO algorithm initializes a set of particles 

representing different switching duty cycles of the Boost Converter. The fitness function is evaluated 

Start 

Input Data Collection 

Normalize and filter data to 

remove noise and anomalies 

Generate multilevel voltage wave form 

with reduced harmonics  

Train ANN for voltage regulation and harmonics 

compensation 

 Adjust inverter switching and control parameters 

dynamically 

Measure THD, voltage stability, and power factor.  

Optimize parameters iteratively for enhanced power 

quality. 

Get best THD, voltage stability, and best power 

factor. 

  

End 
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by maximizing the extracted power while minimizing losses, ensuring that the system operates at 

peak efficiency. Each particle updates its position and velocity based on its own experience (pBest) 

and the best experience found by the swarm (gBest). The optimal duty cycle selected by PSO is 

applied to the Boost Converter to regulate the output voltage. This bio-inspired algorithm 

dynamically adjusts the system response to changing environmental conditions such as fluctuating 

solar irradiance and temperature, improving the overall performance of the PV system. In different 

environments, the unshaded photovoltaic (PV) array receives high levels of irradiation, whereas the 

shaded sections capture significantly lower amounts. The degree of partial shading is defined by the 

extent of the shaded area, and the shading factor is described as the ratio of irradiation on the shaded 

modules compared to that on the unshaded modules. When a partial shading condition is identified, it 

is essential to take this condition into account by utilizing the shading factor. Accurate detection and 

thorough assessment of partial shading are crucial for maximum power point tracking (MPPT) to 

ensure the appropriate procedures are employed and to effectively locate the maximum power point 

(MPP). This study proposes a novel configuration for a CMLI utilizing a minimized maximum 

blocking voltage approach. This method offers multiple levels while utilizing the fewest power 

electronic switches. The primary benefits of the suggested design include reductions in installation 

space, the number of switches, power diodes, gate driver circuits, and overall cost. The employed 

technique facilitates the regulation of the magnitude of DC sources. This calculation is introduced to 

ascertain the optimal DC voltage ratio for the MLI, which influences the number of voltage levels 

available for the subsequent high PQ. 

 
Fig-2 Flowchart of voltage controller 
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A Cascade Multilevel Inverter (CMLI) is designed to synthesize a near-sinusoidal waveform from 

multiple DC voltage sources using a series of H-bridge inverters. It operates based on the principle of 

series connection of multiple H-bridge inverters, each generating different voltage levels. 

PSO is a stochastic search method, which takes a considerable amount of time to track a global peak. 

So some modifications were required. In the new ANN and PSO based hybrid method, the initial 

Particle position of particle Swarm Optimization (PSO) method is provided by an Artificial Neural 

Network (ANN). This initial particle position(IC) is near the global MPP. So the range of the PSO 

algorithm is reduced. Using this initial value, the PSO algorithm detects the output current of the PV 

array at global MPP. And the PSO algorithm is now able to find the global MPP quickly. Also, 

whenever there is a sudden change of solar irradiance, ANN detects the change & provides a new 

initial particle position (IC) for the PSO algorithm.  Numerous particles (agents) are employed in 

PSO algorithm, and each agent can share the information within their own search process. There are 

two basic rules need to be followed by each particle: tracking the most effective performing particle, 

and determining the optimum conditions acquired by the particle itself. By following the above two 

rules, each particle can eventually progress to the optimal solution. The following two equations can 

be used to characterize the standard PSO method: 

𝜃𝑖
𝑘+1 = 𝑤𝜃𝑖

𝑘 + 𝑐1𝑟1[𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑘] + 𝑐2𝑟2[𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑘]  (3) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝜃𝑖
𝑘+1      (4) 

where 𝑋𝑖
𝑘is the position of the particle i, and 𝜃𝑖

𝑘represents its velocity. The iteration number is 

denoated by k, and w is the inertia weight. r1 and r2 are random values distributed within [0, 1], and 

the cognitive and social coefficients are described by c1 and c2, respectively. 𝑃𝑏𝑒𝑠𝑡 is used to store 

the best experience by the particle itself, and the best position of all particles is kept in 𝐺𝑏𝑒𝑠𝑡. The 

flowchart of the standard PSO algorithm step is described as follows:  

Step 1: Initialize the particles randomly in the search space. 

 Step 2: Evaluate the fitness value of each particle by sending the candidate solution to the objective 

function. 

Step 3: Update 𝑃best and 𝐺best  

Step 4: Update the position and velocity of each particle.  

Step 5: Re-initialize the PSO algorithm unless the constrain is met. In other words, the algorithm 

stops when the 𝐺best is founded. 

 

Fig-3 Inverter controller 
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An Inverter Controller (Fig-3) for grid-connected systems integrates dq-abc transformation, 

hysteresis current control, PLL, and grid current regulation to ensure stable and efficient power 

injection. The Phase-Locked Loop (PLL) extracts the grid phase angle (θ), enabling synchronization. 

The abc-dq transformation simplifies control by converting three-phase grid currents into the 

synchronous reference frame. A PI controller regulates the dq currents, ensuring precise active and 

reactive power control. The controlled dq outputs are then converted back to abc for generating 

pulse-width modulation (PWM) signals for the inverter switches. Hysteresis Current Control is used 

for current regulation, where switching occurs within a defined error band, ensuring a fast dynamic 

response. However, it results in a variable switching frequency. The grid current controller ensures 

smooth power injection, reducing harmonics and maintaining grid compliance. This control strategy 

enhances power quality, making the inverter suitable for renewable energy integration and stable grid 

operation. 

 
Fig-4 Cascade Multilevel Inverter controller 

 

A Cascade Multilevel Inverter (CMLI) Controller (shown in Fig-4) for grid integration combines dq-

abc transformation, hysteresis current control, PLL, and grid current regulation to achieve efficient 

power conversion and grid synchronization. The Phase-Locked Loop (PLL) extracts the grid phase 

angle (θ) to synchronize the inverter with the grid. Using abc-dq transformation, three-phase grid 

currents are converted into dq components, simplifying control. A PI controller regulates dq currents 

to maintain active and reactive power at desired levels. The controlled signals are then transformed 

back to abc for generating switching pulses for the CMLI, ensuring stable and efficient operation. 

For precise current regulation, Hysteresis Current Control is implemented, switching within an error 

band to provide a fast response while maintaining power quality. The grid current controller ensures 

smooth power injection, reducing harmonics and ensuring compliance with grid standards. This 

control strategy enhances power quality, efficiency, and reliability, making CMLI ideal for 

renewable energy integration. 
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Fig-5 Matlab Simulink of proposed ANN- PSO based Cascade Multilevel Inverter-Based Grid 

Integration of Photovoltaic Systems 

 

The MATLAB Simulink model of the proposed ANN-PSO-based Cascade Multilevel Inverter 

(CMLI) for Grid Integration of PV Systems integrates Artificial Neural Network (ANN) and Particle 

Swarm Optimization (PSO) (shown in Fig-5)to enhance MPPT and inverter performance. ANN 

predicts the optimal duty cycle for the boost converter, while PSO fine-tunes switching angles for 

harmonic reduction in the CMLI. A PLL ensures grid synchronization, and dq-abc transformation 

enables precise control. Hysteresis current control maintains grid current stability. The system 

maximizes PV power extraction, reduces harmonics, and ensures efficient grid compliance. 

Renewable energy integration into the power grid has become a significant area of research due to 

the increasing demand for clean energy. Photovoltaic (PV) systems, in particular, are widely adopted 

due to their sustainability and ease of implementation. However, challenges such as power 

fluctuations, maximum power extraction, and power quality issues hinder their seamless grid 

integration.  
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Fig-6 CNN Controlled Boost converter 

A CNN-Controlled Boost Converter leverages Convolutional Neural Networks (CNNs)  (shown in 

Fig-6) to optimize voltage regulation and enhance dynamic performance. The CNN processes real-

time PV voltage and current data, extracting features to predict the optimal duty cycle for the boost 

converter. Unlike traditional MPPT methods, CNN-based control adapts to rapid changes in 

irradiance and load conditions with high accuracy. The CNN model is trained on historical PV data 

and deployed in MATLAB/Simulink for real-time implementation. This intelligent control approach 

improves efficiency, response time, and stability, making it ideal for renewable energy systems and 

grid-connected PV applications. 

8. Result:  

 

 
Fig-7 PV Output Voltage 

The PV output voltage (Fig-7) in the proposed system depends on irradiance, temperature, and the 

CNN-controlled boost converter’s performance. The CNN-based MPPT algorithm dynamically 
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adjusts the duty cycle, ensuring stable voltage regulation and maximum power extraction. Under 

varying conditions, the controller minimizes fluctuations, reducing voltage ripples and improving 

efficiency. If instability occurs, it may indicate improper controller tuning, switching losses, or 

inadequate filtering. Proper selection of the inductor, capacitor, and control parameters enhances 

voltage stability. This intelligent control approach ensures smooth operation, making it ideal for grid-

connected and standalone PV systems. 

 

Fig-8 PV - output 

 

Fig-9 Load Voltage and Load current 

The load voltage and load current in the proposed system (shown in Fig-9) depend on the boost 

converter’s performance, CNN-based control, and load variations. The CNN-controlled MPPT 

ensures that the boost converter maintains a stable and regulated output voltage, providing consistent 

power to the load. Under varying irradiance and load conditions, the controller dynamically adjusts 

the duty cycle to minimize voltage and current fluctuations. Any instability in load voltage or current 
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may indicate improper tuning, switching losses, or inadequate filtering. Proper filter design and 

controller optimization ensure a smooth and reliable power supply, enhancing system efficiency and 

performance. 

 

Fig-10 PV Voltage , PV1, PV2, PV3 

 

Fig-11 Grid Voltage and grid current 

 

The grid voltage and grid current in the proposed system (shown in Fig-11) depend on PLL 

synchronization, inverter control, and CNN-based MPPT regulation. The PLL ensures phase 

alignment, while the dq-based current control regulates active and reactive power injection. The 

boost converter stabilizes the DC-link voltage, ensuring a consistent AC output from the inverter. 

Hysteresis control maintains grid current within a defined range, reducing harmonics and improving 

power quality. Any deviation in grid voltage or current may indicate poor synchronization, improper 
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filtering, or controller tuning issues. Optimized control ensures stable power injection, enhancing 

grid compliance and efficiency. Need 

 

Fig-12 THD in Grid current 

 

Fig-13 THD in PV power 
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The Total Harmonic Distortion (THD) in grid current (shown in Fig-12) depends on inverter 

switching, hysteresis control, and filtering. A well-designed PWM strategy and LC filter reduce 

THD, ensuring compliance with grid standards (IEEE 519). High THD may indicate poor controller 

tuning or inadequate filtering, leading to power quality issues. The THD in PV power is influenced 

by MPPT accuracy, boost converter switching, and load variations. A CNN-based MPPT ensures 

smooth power extraction, reducing ripples and harmonics. Excessive THD in PV power may result 

from high-frequency switching noise or unstable duty cycles, requiring filter optimization and 

improved control strategies. 

Conclusion This paper presents an ML-enhanced CMLI-based PV grid integration system that 

significantly improves power quality. The simulation results demonstrate reduced harmonics, 

improved voltage stability, and enhanced power factor performance. Future research will focus on 

hardware implementation and real-time testing of the proposed system. 

This research proposed a cascade multilevel inverter (CMLI)-based PV grid integration system 

enhanced with machine learning (ML) algorithms to improve power quality. The CMLI topology 

effectively reduces total harmonic distortion (THD) and enhances voltage stability, making it 

superior to conventional inverters. 

Machine learning algorithms were incorporated for real-time optimization: Artificial Neural 

Networks (ANNs) for voltage regulation, Support Vector Machines (SVMs) for fault detection, and 

Reinforcement Learning (RL) for reactive power control. Simulation results showed significant 

improvements in power factor, harmonic mitigation, and dynamic adaptability to grid disturbances. 

The proposed system offers a robust and scalable solution for modern smart grids, ensuring reliable 

and high-quality power injection from PV sources. Future research can explore deep learning 

techniques and real-world implementation for further enhancements. This study contributes to the 

development of intelligent, efficient, and sustainable renewable energy systems. 

The proposed PSO-based CMLI for PV grid integration demonstrates superior power tracking, 

reduced harmonic distortion, and improved efficiency compared to traditional methods. Future work 

includes hardware implementation on FPGA/DSP, integration with smart grid networks, and AI-

based predictive control for enhanced real-time performance. 
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