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Abstract:  

Fuzzy sets have proven useful in the investigation of unclear phenomena. A number of 

researchers suggested intuitionistic fuzzy sets (IFSs) and hesitant fuzzy sets (HFSs) as an 

extension of fuzzy sets (FSs), and these sets have been applied in various contexts. The 

study of Dual hesitant fuzzy sets contains two type of hesitancy function one is membership 

and other is non-membership, they carry out the hesitation scenario and provides an 

adequate way to provide values corresponding to each element present in domain. The FSs, 

IFSs and HFSs as special cases are all included in the DHFSs. Compared with IFS and HFS, 

DHFS is more advantageous in dealing with multiple attribute decision making problems. 

In this paper, a new knowledge and accuracy measure for DHFS has been proposed. The 

main motive of this paper is to investigate knowledge and accuracy measures for DHFSs 

and to compare the performance of a proposed knowledge and accuracy measure in the DHF 

environment with other current measures. We also demonstrate the application of 

knowledge measure and accuracy measure that we have developed to tackle the problem of 

power crisis in a developing country. We demonstrate how our suggested accuracy measure 

of DHFSs outperforms certain similarity and distance measurements. 

Keywords: Dual hesitant fuzzy set, Knowledge measure, Accuracy measure, Multi attribute 

decision making. 

1. Introduction 

Since uncertainty exists in practically every aspect of our everyday lives, numerous technologies have 

been created to identify and address it. Researchers have created a number of useful instruments and 

approaches to deal with ambiguity and imprecision in practical settings, but there are still a number of 

circumstances in which people are apprehensive or suspicious for various reasons. There is a great deal 

of vagueness and uncertainty in these issues. Sometimes hesitation and uncertainty can enforce even a 

simple situation to become too complicated. There are several ways to express uncertainty, including 

unpredictability, fuzziness, incompleteness, etc. The first fuzzy theory to address uncertainty issues in 

a variety of domains was proposed by Zadeh [1]. However, it is limited in how it can handle unclear 

data. Accordingly, traditional FS has minimal limitations. Several fuzzy set extensions have been 

introduced to address this scenario, such as the type-2 fuzzy set by Dubois et al.[2], the intuitionistic 

fuzzy set (IFS) by Atanassov [3], the IVIFS by Bustince et al. and Turksen [4, 5], and so on. Boekee 

and Lubbe [6] provided an explanation of R-Norm IM in probability distributions. Additionally, 

Bhandari and Pal [7] investigates some measures like information of FSs and offers multiple methods 
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for the entropy. However, in many complex situations, people find it difficult to approach the ultimate 

agreement and hesitate to make a decision. In order to address these situations, Xia and Xu [8, 9] and 

Torra [10] defined new extensions called hesitant fuzzy sets (HFSs). Many scholars were formerly 

fascinated by HFSs, leading them to publish a variety of creative solutions in the literature, including 

as decision-making techniques, entropy measures, distance measures, and similarity measures. Types 

of HFSs were examined along with closeness, distance measure and HFEs entropy which was provided 

by Xu [11] and Zhang [12]. Furthermore, Torra [10] demonstrated the connection between HFS and 

IFS, upon which some operational laws of HFSs was provided by Xia and Xu [8] . The set of alternative 

values provides the membership and non-membership degrees for a dual hesitant fuzzy set (𝐷𝐻𝐹𝑆), 

which was proposed by Zhu and Xu [13] by combining the ideas of IFS and HFS. The correlation 

coefficient of DHFSs was defined by Jun Ye[14]. Compared to previous fuzzy set extensions like IFS 

and HFS, DHFS is able to more accurately capture human fuzziness and reluctance. It also treats IFS 

and HFS as exceptional circumstances. Additionally, Zhu et al. examined the fundamental features and 

operations of DHFSs, that include FSs, IFSs, and HFSs as specific examples. Decision-makers can 

reach judgements more softly and effectively with the help of DHFSs, that are better suited to handle 

decision-making challenges. A set that encompasses multiple existing sets, Two sets of possible values 

indicate the membership degrees of DHFS, which is a complete set. Scholars have given entropy a lot 

of attention, and many positive outcomes have been attained. The concept of entropy for IFSs was 

initially introduced by Burillo and Bustince [15]. Mao [16] improved the entropy constructive principle 

for IFSs. Xu and Xia [9] defined entropy and created a number of entropy measurements specifically 

for HFS. Zhao and Xu [17] defined entropy measures for DHFSs. Several basic distance measures for 

DHFSs were developed by Su et al. [18] and applied to pattern recognition. Ye [19] introduced cross 

entropy of DHFSs for multi attribute decision making. A new distance measure for DHFss is 

introduced by Wang et.al. [20] and applied on MADM problem. Later on, Zhang [21] constructed 

distance and entropy measures for DHFSs. A novel knowledge measure was presented by Szmidt et 

al. [22] for IFSs, these were examined by Attanassov. Recently, a knowledge measure for IFSs was 

proposed by Nguyen [23]. Joshi [24] talked about using innovative fuzzy knowledge measures to 

support MCDM. [25] provide new information measure for HFSs. Singh and Kumar [26] explained 

Intuitionistic fuzzy entropy based on knowledge and accuracy measure. Dual-hesitant fuzzy sets are 

the basis for Singh’s [27] knowledge and accuracy measure. For fuzzy sets, the knowledge measure 

can be viewed as a counterpart measure of entropy. 

However, to the best of our knowledge, not much study has been done on the DHFSs knowledge 

measure. In this manuscript, a new knowledge and accuracy measure is proposed for DHFSs. With the 

help of entropy we can quantify the randomness related to any DHFSs, whereas the knowledge passed 

by any DHFSs is quantified by knowledge measure. For fuzzy sets, the knowledge measure can be 

viewed as a counterpart measure of entropy. The hesitant fuzzy information relating to each alternative 

was aggregated using the hesitant fuzzy weighted averaging operator. Then, the alternatives were 

ranked, and the most desirable one or ones were chosen based on the scoring function for hesitant 

fuzzy sets. The HFSs hypothesis and methodology are widely applied in MADM. In this manuscript, 

we solve MADM problem in DHF environment with the help of new knowledge measure. The MADM 

problem is described as choosing the right alternative from the given alternative(s) in order to 

accomplish a goal. Every option has a set of requirements. Making decisions in a scenario with several 
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homogeneous options and determining the best ones are part of the MADM process. While we’re 

making decisions, attribute weighting is quite important. The MADM theory and mechanism have 

been applied recently to modern decision science and management science. MADM issues have been 

discussed by Bajaj and Kumar [28] using the Pythagorean fuzzy intuitive distance measure. As a result, 

numerous decision-making strategies based on real-world issues were suggested. Popular methods for 

approaching MADM are TOPSIS, VIKOR and ELECTRE. These techniques typically combine near-

optimal alternatives with DHFSs to get a better option. While selecting the best alternative, different 

decision makers have different priorities based on how much risk they are willing to take. A new mode 

that combines TOPSIS method of MADM has been used in this knowledge and accuracy based paper, 

that takes into account people’s risk priorities. Using an exact measure of "closeness" to the positive 

ideal solution, this method determines which alternative is optimal. The proposed knowledge measure 

is effectively applicable to solve MADM problems where the attribute weights are completely 

unknown.The intended effort is motivated by the following factors: Researchers have recently created 

a variety of distance metrics. The concepts and importance of it demonstrate how divergent these 

measures are. Furthermore, most applications have not produced consistent and dependable findings 

from several measures. In order to address these issues, we present a novel solution to DHF entropy, 

which we refer to as DHF knowledge measure. Moreover, a situation is deemed paradoxical if a 

comparison measure—such as distance, divergence, similarity, etc. It is unable to distinguish between 

two DHFSs that appear to be distinct from one another. False classification results can occur under 

unreasonable settings, such as when two or more separate datasets cannot be distinguished from one 

another. Therefore, we require an ideal set of metrics that minimizes the drawbacks of the current 

metrics and produces more precise and categorical answers in order to address pattern recognition 

concerns. This led us to develop a different type of comparison measure for DHFSs, which we call the 

dual hesitant accuracy measure.The paper’s primary contribution can be summed up as follows. We 

suggest utilizing dual-hesitant fuzzy sets as the foundation for a knowledge and accuracy metric. We 

show that the proposed DHF knowledge measure is beneficial in the calculation problem for attribute 

weight. Additionally, we compare how well the suggested measures work in a MADM situation. Using 

the suggested dual-hesitant accuracy measure, we examine the numerical analysis of a few pattern 

recognition issues and compare the results with certain traditional comparison measures within the 

dual-hesitant structure. The paper is organized as follows, Firstly it provides an overview of the HFSs, 

Secondly, contains the definitions and fundamental ideas of DHFSs. After that it presents a proposed 

DHF knowledge measure. The validity of the proposed measure is verified by comparing its outcome 

with many existing measures. In addition, a DHF accuracy measure has generalization of the DHF 

knowledge measure is presented in this section. Next, TOPSIS method of MADM is used in decision-

making process based on the suggested knowledge measure. It presents a real-world example to 

demonstrate the suitability of this innovative approach to decision-making. The use of pattern detection 

is provided in to evaluate the suggested accuracy measure’s performance with that of some other 

measures.  Finally settles the conclusion.  

2  Preliminaries 

 In this section, we present numerous examples of entropy and distance measurements for DHFSs 

along with standard definitions.  
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2.1  HFSs, DHFSs and their related properties. 

Definition 2.1 (Torra and Narukawa )[10] Consider a finite collection set 𝜁, and define HFSs ℑ in 

terms of function on 𝜁. 

ℎ𝑒ℑ: 𝜁 → 𝑅(𝐽), and ℎ𝑒ℑ ≠ 𝜙 and definite set for any 𝑢 ∈ 𝜁. 

A hesitant fuzzy set usually gets expressed by ℑ = {〈𝑢, ℎ𝑒ℑ(𝑢)〉|𝑢 ∈ 𝜁} 

Here 𝑅(𝐽) represents power set of [0,1] , ℎ𝑒ℑ(𝑢) represents hesitant fuzzy element (𝐻𝐹𝐸).  

Definition 2.2 (Zhu et al.)[11] Let 𝜁 be a fixed set, a dual hesitant fuzzy set (DHFS) M on 𝜁 is defined 

as 𝑀 = {(𝑢, ℎ𝑒(𝑢), 𝑡(𝑢))|𝑢 ∈ 𝜁}, 

In which ℎ𝑒(𝑢) and 𝑡(𝑢) are two sets of some values in [0,1], denoting the possible membership 

degrees and non-membership degrees of the element 𝑢 ∈ 𝜁 to the set M, respectively.For convenience, 

DHFE are represented by the pair 𝑚𝐹(𝑢) = (ℎ𝑒𝐹(𝑢), 𝑡𝐹(𝑢)), with the condition: 

0 ≤ 𝜃, 𝜗 ≤ 1,0 ≤ 𝜃 + 𝜗 ≤ 1,  

where 𝜃 ∈ ℎ𝑒𝐹(𝑢), 𝜗  𝑖𝑛𝑡𝐹(𝑢), 𝜃+ ∈ ℎ𝑒𝐹
+(𝑢) =∪𝜃∈ℎ𝑒𝐹(𝑢) 𝑚𝑎𝑥{𝜃}, 

And 𝜗+ ∈ 𝑡𝐹
+(𝑢) =∪𝜗∈𝑡𝐹(𝑢) 𝑚𝑎𝑥{𝜗}  

Initially, we define a few unique DHFEs. Assuming a DHFE, 𝑑𝐹, we have 

(1) Complete uncertainty: 𝑑𝐹 = {{0}}, {{1}}; 

(2) Complete certainty: 𝑑𝐹 = {{1}}, {{0}}; 

(3) Complete ill-known (all is possible): 𝑑𝐹 = [0,1]; 

(4) Nonsense element: 𝑑𝐹 = Φ, 𝑖. 𝑒. , ℎ𝑒𝐹 = 𝜙, 𝑡𝐹 = 𝜙. 

Basic operations and properties of DHFSs 

Definition 2.3 (Zhu et al.)[13] Given a DHFE 𝑑𝐸, and 𝑑𝐸 ≠ Φ, its complement is as follow: 

Complement: 𝑑𝐸
𝑐 = (∪𝜃∈ℎ𝐸

{𝜃},∪𝜗∈𝑘𝐸
{𝜗}), if ℎ𝐸 ≠ 𝜙 and 𝑘𝐸 ≠ 𝜙 

(∪𝜃∈ℎ𝐸
{1 − 𝜃}, {𝜙}), if ℎ𝐸 ≠ 𝜙 and 𝑘𝐸 = 𝜙 ({𝜙},∪𝜗∈𝑘𝐸

{1 − 𝜗}), if ℎ𝐸 = 𝜙 and 𝑘𝐸 ≠ 𝜙. 

Definition 2.4 (Zhu et al.)[13] Let 𝑑𝐸1
, 𝑑𝐸2

∈ 𝐷𝐻𝐹𝐹𝑠. Then 

(a) Union: 𝑑𝐸1
∪ 𝑑𝐸2

= {𝜃 ∈ (ℎ𝐸1 ∪ ℎ𝐸2
)|𝜃 ≥ 𝑚𝑎𝑥(ℎ𝐸1

− , ℎ𝐸2

− ), 𝜗 ∈ (𝑘𝐸1
∩ 𝑘𝐸2

)|𝜗 ≤ 𝑚𝑖𝑛(𝑘𝐸1

+ , 𝑘𝐸2

+ )} 

(b)Intersection : 𝑑𝐸1
∩ 𝑑𝐸2

= {𝜃 ∈ (ℎ𝐸1 ∩ ℎ𝐸2
)|𝜃 ≤ 𝑚𝑖𝑛(ℎ𝐸1

+ , ℎ𝐸2

+ ), 𝜗 ∈ (𝑘𝐸1
∪ 𝑘𝐸2

)|𝜗 ≥

𝑚𝑎𝑥(𝑘𝐸1

− , 𝑘𝐸2

− )} 

Definition 2.5 (Zhu et al.)[13] Let 𝑑𝐸 = {ℎ𝐸 , 𝑘𝐸} be any two DHFEs. Then score function of 𝑑𝐸 is 

given as follow:  

𝑠(𝑑𝐸) =
1

𝑡ℎ𝐸

∑𝜃∈ℎ𝐸
𝜃 −

1

𝑡𝑘𝐸
∑𝜗∈𝑘𝐸

𝜗  , 

Where 𝑡(ℎ𝐸) and 𝑡(𝑘𝐸) are length of ℎ𝐸  and 𝑘𝐸, respectively. 
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The accuracy function of 𝑑𝐸 is given below:  

 𝐴𝑐(𝑑𝐸) =
1

𝑡ℎ𝐸

∑𝜃∈ℎ𝐸
𝜃 +

1

𝑡𝑘𝐸
∑𝜗∈𝑘𝐸

𝜗 

 Let 𝑑𝐸1
, 𝑑𝐸2

∈ 𝐷𝐻𝐹𝐸𝑠, the comparison rule between 𝐷𝐻𝐹𝐸𝑠 are given below: 

(a) if 𝑠(𝑑𝐸1
) < 𝑠(𝑑𝐸2

), then 𝑑𝐸1
 is superior to 𝑑𝐸2

, denoted by 𝑑𝐸1
> 𝑑𝐸2

; 

(b) if 𝑠(𝑑𝐸1
) = 𝑠(𝑑𝐸2

), then 

(i) if 𝐴𝑐(𝑑𝐸1
) = 𝐴𝑐(𝑑𝐸2

), then 𝑑𝐸1
 is equivalent to 𝑑𝐸2

, denoted by 𝑑𝐸1
∼ 𝑑𝐸2

. 

(ii) if 𝐴𝑐(𝑑𝐸1
) > 𝐴𝑐(𝑑𝐸2

), then 𝑑𝐸1
 is superior than 𝑑𝐸2

, denoted by 𝑑𝐸1
> 𝑑𝐸2

. 

Definition 2.6  (Zhang ) [21] Let 𝑑𝐸 = ({ℎ1
1, ℎ1

2, . . . , ℎ1
𝑚}, {𝑘1

1, 𝑘1
2, . . . , 𝑘1

𝑛})  and 

𝑓𝐸({ℎ1
1, ℎ1

2, . . . , ℎ1
𝑝}, {𝑘1

1, 𝑘1
2, . . . , 𝑘1

𝑞}) be two DHFEs. If an entropy 𝑒 fulfills the following axiomatic 

conditions, it is a real-valued function 𝑒: 𝐷𝐻𝐹𝐸 → [0,1]. 

(E1) 𝑒(𝑑𝐸) = 0 iff 𝑑𝐸 = ({1}, {0}) or 𝑑𝐸 = ({0}, {1}). 

(E2) 𝑒(𝑑𝐸) = 1 iff ℎ1
𝜎(𝑗)

= 𝑘1
𝜎(𝑗)

 where ℎ1
𝜎(𝑗)

 and 𝑘1
𝜎(𝑗)

 are the smallest value of ℎ1 and 𝑘1. 

(E3) 𝑒(𝑑𝐸) ≥ 𝑒(𝑓𝐸),  if 𝑚𝑎𝑥𝑖ℎ1
𝑖 ≤ 𝑚𝑖𝑛𝑠ℎ2

𝑠 , 𝑚𝑎𝑥𝑗𝑘1
𝑗

≤ 𝑚𝑖𝑛𝑡𝑘2
𝑡  for 𝑚𝑎𝑥𝑠ℎ2

𝑠 ≤ 𝑚𝑖𝑛𝑡𝑘2
𝑡  or 𝑚𝑖𝑛𝑖ℎ1

𝑖 ≤

𝑚𝑎𝑥𝑠ℎ2
𝑠 , 𝑚𝑎𝑥𝑗𝑔1

𝑗
≤ 𝑚𝑖𝑛𝑡𝑔2

𝑡  for 𝑚𝑖𝑛𝑠ℎ2
𝑠 ≥ 𝑚𝑎𝑥𝑡𝑔2

𝑡 , (𝑖 = 1,2, . . . , 𝑚; 𝑗 = 1,2, . . . , 𝑛; 𝑠, 𝑡 =

1,2, . . . , 𝑞). 

(E4) 𝑒(𝑑𝐸) = 𝑒(𝑑𝐸
𝑐 ), where 𝑑𝐸

𝑐  represents compliment of 𝑑𝐸 . 

Definition 2.7 (Wang )[29] For 𝑑𝐸 , 𝑓𝐸 ∈ 𝐷𝐻𝐹𝐸𝑠(𝑢) , Let 𝑑  be a mapping 𝑑: 𝐷𝐻𝐹𝐸(𝑢) ×

𝐷𝐻𝐹𝐸(𝑢) → [0,1], 𝑑(𝑑𝐸 , 𝑓𝐸) is a distance measure between 𝐷𝐻𝐹𝐸𝑠 𝑑𝐸 and 𝑓𝐸 , if 𝑑(𝑑𝐸 , 𝑓𝐸) satisfies 

the following properties: 

(i) 0 ≤ 𝑑(𝑑𝐸 , 𝑓𝐸) ≤ 0; 

(ii) 𝑑(𝑑𝐸 , 𝑓𝐸) = 0 if and only if 𝑑𝐸 = 𝑓𝐸; 

(iii) 𝑑(𝑑𝐸 , 𝑓𝐸) = 𝑑(𝑓𝐸 , 𝑑𝐸).  

2.2  Some existing entropies for DHFSs 

Here, we discussed some distance and entropy measures which are already available in literature. 

Entropies of DHFSs are extensively studied, for instance Zhao and Xu [17]:  

𝐸1(𝑑𝐸) =
1

𝑡
∑𝑡

𝑗=1 [1 −
|ℎ1

𝜎(𝑗)
+𝑘1

𝜎(𝑗)
|𝛼+|ℎ1

𝜎(𝑗)
−𝑘1

𝜎(𝑗)
|𝛼

2
]; 𝛼 ≥ 0.                                                                               (1) 

  

𝐸2(𝑑𝐸) =
1

𝑡
∑𝑡

𝑗=1 [
1−(|ℎ𝜎(𝑗)−𝑘𝜎(𝑗)|)(2−ℎ𝜎(𝑗)−𝑘𝜎(𝑗))

2
]; 𝛼 ≥ 0.                                                                                        (2) 

  

𝐸3(𝑑𝐸) =
1

𝑡
∑𝑡

𝑗=1 [1 −
(|ℎ𝜎(𝑗)−𝑘𝜎(𝑗)|)2(1−ℎ𝜎(𝑗)+𝑘𝜎(𝑗)|)

2
]; 𝛼 ≥ 0.                                                                           (3) 
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 2.2.1  Existing distance based entropy for DHFSs 

Zhang [21] defined distance based entropy for DHFEs as follow:  

𝐸4(𝑑𝐸 , 𝑓𝐸) = 1 − [
0.5

𝑚+𝑝
(∑𝑚

𝑖=1 min
𝑗

|ℎ𝑖
1 − ℎ𝑗

2|
𝛼

2−𝛽 + ∑𝑝
𝑗=1 min

𝑖
|ℎ𝑗

1 − ℎ𝑖
2|

𝛼

2−𝛽) +
0.5

𝑛+𝑝
(∑𝑛

𝑖=1 min
𝑗

|𝑘𝑖
1 −

𝑘𝑗
2|

𝛼

2−𝛽 + ∑𝑞
𝑗=1 min

𝑖
|𝑘𝑗

1 − 𝑘𝑖
2|

𝛼

2−𝛽)]
2−𝛽

𝛼                                                                                                                

(4) 

2.3  Knowledge measure of DHFS 

We present the notion of the DHF set knowledge measure in this section. 

Definition 2.8  Let 𝑑𝐸 = ({ℎ1
1, ℎ1

2, . . . , ℎ1
𝑚}, {𝑘1

1, 𝑘1
2, . . . , 𝑘1

𝑛})  and 𝑓𝐸 =

({ℎ2
1, ℎ2

2, . . . , ℎ2
𝑝}, {𝑘2

1, 𝑘2
2, . . . , 𝑘2

𝑞}) be two DHFEs. If knowledge measure 𝑁𝑀  fulfills the following 

axiomatic conditions, it is a real-valued function 𝑁𝑀: 𝐷𝐻𝐹𝐸 → [0,1] 

(𝑁1) 𝑁𝑀(𝑑𝐸) = 1 iff 𝑑𝐸 = ({1}, {0}) or 𝑑𝐸 = ({0}, {1}). 

(𝑁2) 𝑁𝑀(𝑑𝐸) = 0 iff 𝑑𝐸 = ({0}, {0}) 

(𝑁3) 𝑁𝑀(𝑑𝐸) ≤ 𝑁𝑀(𝑓𝐸),  if 𝑚𝑎𝑥𝑖ℎ1
𝑖 ≤ 𝑚𝑖𝑛𝑠ℎ2

𝑠 , 𝑚𝑎𝑥𝑗𝑘1
𝑗

≤ 𝑚𝑖𝑛𝑡𝑘2
𝑡  for 𝑚𝑎𝑥𝑠ℎ2

𝑠 ≤ 𝑚𝑖𝑛𝑡𝑘2
𝑡  or 

𝑚𝑖𝑛𝑖ℎ1
𝑖 ≤ 𝑚𝑎𝑥𝑠ℎ2

𝑠 , 𝑚𝑎𝑥𝑗𝑔1
𝑗

≤ 𝑚𝑖𝑛𝑡𝑔2
𝑡  for 𝑚𝑖𝑛𝑠ℎ2

𝑠 ≥ 𝑚𝑎𝑥𝑡𝑔2
𝑡 , (𝑖 = 1,2, . . . , 𝑚; 𝑗 = 1,2, . . . , 𝑛; 𝑠, 𝑡 =

1,2, . . . , 𝑞). 

(𝑁4)𝑁𝑀(𝑑𝐸) = 𝑁𝑀(𝑑𝐸
𝑐 ), where 𝑑𝐸

𝑐  represents compliment of 𝑑𝐸 .  

Definition 2.9 Attribute weights computation  

In modeling, a multi-attribute decision-making issue, attributes weights plays a vital role. Chen and Li 

[29] provided a method to find out the weight. 

𝑤𝑗 =
𝑁𝑀(𝑟𝑖𝑗)

∑𝑚
𝑖=1 𝑁𝑀(𝑟𝑖𝑗)

 

Set 𝑤 = {𝑤1, 𝑤2, . . . , 𝑤𝑇} is said to be weight of attributes if 𝑤𝑗 ≥ 0 and ∑𝑇
𝑗=1 𝑤𝑗 = 1 

3  Proposed knowledge measure for DHFSs 

We propose a DHF- knowledge measure that is described as: 

𝑁𝑀(𝑑𝐸) = [∑𝑛
𝑖=1 (

1

𝑡
∑𝑡

𝑗=1 |ℎ𝜎(𝑗)(𝑢𝑖) − 𝑘𝜎(𝑗)(𝑢𝑖)|
𝛼

2−𝛽)]
2−𝛽

𝛼 , 𝛼 > 0,0 < 𝛽 < 2.    (5) 

We now assess the validity of the proposed measure 𝑁𝑀(𝑑𝐸). 

Theorem 1 The DHF knowledge measure 𝑁𝑀(𝑑𝐸), as stated in Eq. (5) is valid. 

Proof (N1) Suppose that 𝑑𝐸 = ({1}, {0}) or 𝑑𝐸 = ({0}, {1}), we have, 𝑁𝑀(𝑑𝐸) = 1. 

Now, suppose 𝑁𝑀(𝑑𝐸) = 1, we have  

 (
1

𝑡
∑𝑡

𝑗=1 |ℎ𝜎(𝑗)(𝑢𝑖) − 𝑘𝜎(𝑗)(𝑢𝑖)|
𝛼

2−𝛽)
2−𝛽

𝛼 = 1  
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This is possible only if 𝑑𝐸 = ({1}, {0}) or 𝑑𝐸 = ({0}, {1}).  

(N2) Suppose ℎ1
𝜎(𝑗)

= 𝑘1
𝜎(𝑗)

, we have 𝑁𝑀(𝑑𝐸) = 0. 

Conversely, Suppose 𝑁𝑀(𝑑𝐸) = 0, we have  

 (
1

𝑡
∑𝑡

𝑗=1 |ℎ𝜎(𝑗)(𝑢𝑖) − 𝑘𝜎(𝑗)(𝑢𝑖)|
𝛼

2−𝛽)
2−𝛽

𝛼 = 0, 

 to ℎ𝜎(𝑗)=𝑘𝜎(𝑗) = 0. 

(N3) Let 𝑑𝐸 = (ℎ1
𝜎(𝑗)

, 𝑘1
𝜎(𝑗)

)=({ℎ1
1, ℎ1

2, . . . , ℎ1
𝑚}, {𝑘1

1, 𝑘1
2, . . . , 𝑘1

𝑛}) 

𝑓 = (ℎ2
𝜎(𝑗)

, 𝑘2
𝜎(𝑗)

)=({ℎ1
1, ℎ1

2, . . . , ℎ1
𝑝

}, {𝑘1
1, 𝑘1

2, . . . , 𝑘1
𝑞

}) be two DHFSs. we have  

𝑁𝑀(𝑑𝐸) = (
1

𝑡
∑

𝑡

𝑗=1
|ℎ1

𝜎(𝑗)
− 𝑘1

𝜎(𝑗)
|

𝛼
2−𝛽)

2−𝛽
𝛼 , 𝛼 > 0,0 < 𝛽 < 2. 

𝑁𝑀(𝑓𝐸) = (
1

𝑡
∑𝑡

𝑗=1 |ℎ2
𝜎(𝑗)

− 𝑘2
𝜎(𝑗)

|
𝛼

2−𝛽)
2−𝛽

𝛼 , 𝛼 > 0,0 < 𝛽 < 2.  

If 𝑚𝑎𝑥𝑖ℎ1
𝜎(𝑗)

≤ 𝑚𝑖𝑛𝑖ℎ2
𝜎(𝑗)

, 𝑚𝑖𝑛𝑖𝑘1
𝜎(𝑗)

≥ 𝑚𝑎𝑥𝑖𝑘2
𝜎(𝑗)

 for 𝑚𝑎𝑥𝑖ℎ2
𝜎(𝑗)

≤ 𝑚𝑖𝑛𝑖𝑔2
𝜎(𝑗)

, we have 

ℎ1
𝜎(𝑗)

− 𝑘1
𝜎(𝑗)

≤ ℎ2
𝜎(𝑗)

− 𝑘2
𝜎(𝑗)

≤ 0 and 

𝑘1
𝜎(𝑗)

− ℎ1
𝜎(𝑗)

≤ 𝑘2
𝜎(𝑗)

− ℎ2
𝜎(𝑗)

≤ 0, 

Therefore, 

|ℎ1
𝜎(𝑗)

− 𝑘1
𝜎(𝑗)

| ≥ |ℎ2
𝜎(𝑗)

− 𝑘2
𝜎(𝑗)

| 

(
1

𝑡
∑

𝑡

𝑗=1
|ℎ1

𝜎(𝑗)
− 𝑘1

𝜎(𝑗)
|

𝛼
2−𝛽)

2−𝛽
𝛼 ≥ (

1

𝑡
∑

𝑡

𝑗=1
|ℎ2

𝜎(𝑗)
− 𝑘2

𝜎(𝑗)
|

𝛼
2−𝛽)

2−𝛽
𝛼  

𝑁𝑀(𝑑) ≥ 𝑁𝑀(𝑓) 

Similarly, if 𝑚𝑖𝑛𝑖ℎ1
𝜎(𝑗)

≥ 𝑚𝑎𝑥𝑖ℎ2
𝜎(𝑗)

, 𝑚𝑎𝑥𝑖𝑘1
𝜎(𝑗)

≤ 𝑚𝑖𝑛𝑖𝑘2
𝜎(𝑗)

 for 𝑚𝑖𝑛𝑖ℎ2
𝜎(𝑗)

≥ 𝑚𝑎𝑥𝑖𝑘2
𝜎(𝑗)

, We have 

𝑁𝑀(𝑑𝐸) ≥ 𝑁𝑀(𝑓𝐸) 

(N4) We have 

𝑁𝑀(𝑑𝐸) = (
1

𝑡
∑

𝑡

𝑗=1
|ℎ1

𝜎(𝑗)
− 𝑘1

𝜎(𝑗)
|

𝛼
2−𝛽)

2−𝛽
𝛼 , 𝛼 > 0,0 < 𝛽 < 2. 

So, 𝑁𝑀(𝑑𝐸
𝑐 ) = (

1

𝑡
∑𝑡

𝑗=1 |𝑘1
𝜎(𝑗)

− ℎ1
𝜎(𝑗)

|
𝛼

2−𝛽)
2−𝛽

𝛼 = (
1

𝑡
∑𝑡

𝑗=1 |ℎ1
𝜎(𝑗)

− 𝑘1
𝜎(𝑗)

|
𝛼

2−𝛽)
2−𝛽

𝛼 = 𝑁𝑀(𝑑𝐸) 

Hence, 𝑁𝑀(𝑑𝐸
𝑐 ) = 𝑁𝑀(𝑑𝐸) 

As a result, 𝑁𝑀(𝑑𝐸) is an acceptable DHF knowledge measure. 

The comparison of the DHF knowledge measure with a few DHF entropy measures that are currently 

in use is presented in the next section.  
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3.1  Comparative Study 

Applying the weight calculation mechanism, we evaluate the existing DHF entropy measurements 

given in Eq.(1)-(3) and compare these with our suggested DHF knowledge measure given in Eq.(5). 

Assume that we have a MADM issue with two attributes {𝑄1, 𝑄2}, and three alternatives {𝐴1, 𝐴2, 𝐴3}. 

The weight calculating process is displayed in Singh et al.’s 2019 publication. In Examples 1-3, we 

use DHF entropy and DHF knowledge measure to compute weights. Examples 1–3 given below show 

how our suggested DHF knowledge measure performs in comparison to some of the existing DHF 

entropies. 

Example 1 Consider 𝐷1 is a decision matrix corresponding to set of alternatives {𝐴1, 𝐴2, 𝐴3} and a set 

of attributes {𝑄1, 𝑄2} established in an hesitant fuzzy environment. 

𝐷1 = Q_1, Q_2   

A_1 = ({.3, .4, .6,}, {.1, .2, .4}), ({.3, .5, .6}, {.5, .6, .7}) 

A_2 = ({.5, .6, .7,}, {.3, .5, .6}), ({.2, .3, .4}, {.4, .5, .6}) 

A_3 = ( {.4, .5, .6,}, {.2, .3, .4} ), ( {.1, .2, .4}, {.4, .5, .6})   

3.2  Comparative Study 

Applying the weight calculation mechanism, we evaluate the existing DHF entropy measurements 

given in Eq.(1)-(3) and compare these with our suggested DHF knowledge measure given in Eq.(5). 

Assume that we have a MADM issue with two attributes {𝑄1, 𝑄2}, and three alternatives {𝐴1, 𝐴2, 𝐴3}. 

The weight calculating process is displayed in Singh et al.’s 2019 publication. In Examples 1-3, we 

use DHF entropy and DHF knowledge measure to compute weights. Examples 1–3 given below show 

how our suggested DHF knowledge measure performs in comparison to some of the existing DHF 

entropies. 

Example 1 Consider 𝐷1 is a decision matrix corresponding to set of alternatives {𝐴1, 𝐴2, 𝐴3} and a set 

of attributes {𝑄1, 𝑄2} established in an hesitant fuzzy environment. 

𝐷1 = Q_1, Q_2 

A_1 = ({.3, .4, .6,}, {.1, .2, .4}), ({.3, .5, .6}, {.5, .6, .7}) 

A_2 = ({.5, .6, .7,}, {.3, .5, .6}), ({.2, .3, .4}, {.4, .5, .6}) 

A_3 = ({.4, .5, .6,}, {.2, .3, .4}), ({.1, .2, .4}, {.4, .5, .6})   

3.3  Comparative Study 

Applying the weight calculation mechanism, we evaluate the existing DHF entropy measurements 

given in Eq.(1)-(3) and compare these with our suggested DHF knowledge measure given in Eq.(5). 

Assume that we have a MADM issue with two attributes {𝑄1, 𝑄2}, and three alternatives {𝐴1, 𝐴2, 𝐴3}. 

The weight calculating process is displayed in Singh et al.’s 2019 publication. In Examples 1-3, we 

use DHF entropy and DHF knowledge measure to compute weights. Examples 1–3 given below show 

how our suggested DHF knowledge measure performs in comparison to some of the existing DHF 

entropies. 
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Example 1 Consider 𝐷1 is a decision matrix corresponding to set of alternatives {𝐴1, 𝐴2, 𝐴3} and a set 

of attributes {𝑄1, 𝑄2} established in an hesitant fuzzy environment. 

𝐷1 = Q_1, Q_2 

A_1 = ({.3, .4, .6,}, {.1, .2, .4}), ({.3, .5, .6}, {.5, .6, .7}) 

A_2 = ({.5, .6, .7,}, {.3, .5, .6}), ({.2, .3, .4}, {.4, .5, .6}) 

A_3 = ({.4, .5, .6,}, {.2, .3, .4} ), ({.1, .2, .4}, {.4, .5, .6})   

 

Table  1: Comparison of 𝑵𝑴 with 𝑬𝟏 

    𝑁𝑀(𝛼 = 2, 𝛽 = 1)   𝐸1(𝛼 = 2)  

 𝑤𝑄1
   0.5279   0.5000  

𝑤𝑄2
   0.4721   0.5000  

  

Table 1 shows that both attributes have the same weights assigned to them by the ambiguity content 

as assessed by the current entropy measure. However, it is evident that the suggested 𝑁𝑀 gives various 

weights. 

Example 2 Let us consider the 𝐷2 decision matrix. 

𝐷2 = Q_1, Q_2 

A_1 = ({.2, .3, .5}, {.1, .4, .6}), ({.2, .3, .6}, {.3, .4, .6}) 

A_2 = ({.3, .4, .6}, {.2, .3, .6}), ({.3, .4, .6}, {.2, .5, .5}) 

A_3 = ({.2, .4, .6}, {.3, .5, .5} ), ({.1, .3, .6}, {.2, .4, .5})  

 

Table  2: Comparison of 𝑵𝑴 with 𝑬𝟐 

    𝑁𝑀(𝛼 = 2, 𝛽 = 1)   𝐸2(𝛼 = 2)  

 𝑤𝑄1
   0.5279   0.5000  

𝑤𝑄1
   0.4721   0.5000  

  

Table 2 shows that both attributes have the same weights assigned to them by the ambiguity content 

as assessed by the current entropy measure. However, it is evident that the suggested 𝑁𝑀 gives various 

weights. 

Example 3 Consider the decision matrix 𝐷3. 𝐷3 = Matrix Example  

𝑄1, 𝑄2 
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𝐴1 = ({0.2,0.4,0.8}, {0.3,0.6,0.7})({0.3,0.4,0.401}, {0.1,0.2,0.37}) 

𝐴2 = ({0.21,0.3,0.9}, {0.6,0.7,0.8})({0.2,0.6,0.7}, {0.3,0.4,0.8}) 

𝐴3 = ({0.2,0.6,0.9}, {0.3,0.4,0.4})({0.2,0.3,0.9}, {0.5,0.6,0.7}) 

 

Table  3: Comparison of 𝑵𝑴 with 𝑬𝟑 

    𝑁𝑀(𝛼 = 2, 𝛽 = 1)   𝐸3(𝛼 = 2)  

 𝑤𝑄1
   0.4613   0.5000  

𝑤𝑄2
   0.5387   0.5000  

  

We note that the existing entropy measure, which determines the ambiguity content, gives equal 

weights to the two attributes. Nonetheless, it is evident that the suggested knowledge measure gives 

various weights. We note from example 1-3 that we obtain the same weights for all the qualities when 

we use the current entropy measures. However, we obtain different weights if we apply our proposed 

DHF knowledge measure. As such, a new strategy is always required.  

Furthermore, we compare our proposed knowledge measure given in Eq.(5) with distance based 

entropy given in Eq.(4). 

Example 4 Let 𝑑𝐸  and 𝑓𝐸  be two DHFEs, and 𝑑𝐸 = {{.1, .3, .6}, {.2, .5, .7}} , 𝑓𝐸 =

{{.2, .4, .6}, {.3, .7, .7}}. 

Table  4: Comparison of 𝑵𝑴 with 𝑬(𝒅𝑬, 𝒇𝑬) 

  DHFEs   𝐸(𝑑𝐸 , 𝑓𝐸)(𝛼 = 2, 𝛽 = 1)   𝑁𝑀(𝛼 = 2)  

 𝑑𝐸   0.1000   0.1414  

𝑓𝐸    0.1000   0.1915  

  

The data in Table 4 show that the entropy 𝐸(𝑑𝐸 , 𝑓𝐸) have no difference between DHFEs 𝑑𝐸 and 𝑓𝐸 . 

However, the proposed knowledge measure of 𝑁𝑀 can clearly distinguish the entropy of DHFEs 𝑑𝐸 

and 𝑓𝐸 . Our knowledge measure is better than the entropy measure proposed by Zhang [21] for this 

example. 

3.4  Proposed DHF accuracy measure 

There is a correspondence between the amount of reluctant fuzzy knowledge and the quantity of 

hesitant fuzzy accuracy. As a generalization of the DHF knowledge measure, we propose DHF 

accuracy measure.  

𝐼𝑎𝑐𝑐(𝑑𝐸 , 𝑓𝐸) = (
1

𝑙
∑𝑛

𝑖=1 ∑𝑡
𝑗=1 |(ℎ1

𝜎(𝑗)
(𝑢𝑖))

1

2(ℎ2
𝜎(𝑗)

(𝑢𝑖))
1

2 − (𝑘1
𝜎(𝑗)

(𝑢𝑖))
1

2(𝑘2
𝜎(𝑗)

(𝑢𝑖))
1

2|
𝛼

2−𝛽)
2−𝛽

𝛼 , 𝛼 > 0,        

(6) 
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Where 𝑑𝐸 = ((ℎ1
𝜎(𝑗)

(𝑢𝑖), 𝑘1
𝜎(𝑗)

(𝑢𝑖)) and 𝑓𝐸 = ((ℎ2
𝜎(𝑗)

(𝑢𝑖), 𝑘2
𝜎(𝑗)

(𝑢𝑖)) are two DHFSs. 

𝑑𝐸 = 𝑓𝐸  in Eq.(6) yields 𝐼𝑎𝑐𝑐(𝑑𝐸 , 𝑓𝐸) = 𝑁𝑀(𝑑𝐸). 

By multiplying with 𝑤𝑖, we obtain the weighted version 𝐼𝑎𝑐𝑐
𝑤 (𝑑𝐸 , 𝑓𝐸) of the DHF accuracy from Eq.(6). 

It is evident from Eq.(6) that the DHF accuracy 𝐼𝑎𝑐𝑐(𝑑𝐸 , 𝑓𝐸) for 𝑑𝐸 = 𝑓𝐸 is obtained as a particular 

instance of the DHF knowledge measure 𝑁𝑀(𝑑𝐸) . We suggest using 𝐼𝑎𝑐𝑐(𝑑𝐸 , 𝑓𝐸)  as an accuracy 

measure to identify the asymmetric comparison of two sets. We demonstrate the use of the TOPSIS 

approach to apply our proposed DHF knowledge measure in MADM in the next section.  

4  Evaluation method of MADM 

MADM difficulties are related to discrete choice spaces where there are several predefined 

alternatives. It is employed to select the best option from a range of options. Making decisions in a 

scenario with several homogeneous options and determining the best ones are part of the MADM 

process. While we’re making decisions, attribute weighting is quite important. The MADM 

mechanism and theory have been employed recently in modern decision science and management 

science. As an objective weight computation tool, the TOPSIS technique of MADM in a DHF 

environment with a DHF knowledge measure is introduced in this part. Suppose 𝑆 = {𝐴1, 𝐴2, . . . , 𝐴𝑛}, 

𝑄 = {𝑄1, 𝑄2, . . . , 𝑄𝑇}, where 𝐴𝑖′𝑠 represent alternatives and 𝑄𝑗′𝑠 represent attributes.  

Let 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑇), where 𝑤𝑖′𝑠 are weight of attributes and 𝑤𝑗 ≥ 0 ; ∑𝑇
𝑗=1 𝑤𝑗 = 1 

If dual-hesitant fuzzy elements are used by the maker of decisions to assess the attributes of the 

available alternative. We therefore have a decision matrix of dual-hesitant fuzzy elements, 𝐷 =

(𝑎𝑖𝑗)𝑛𝑚. The optimum alternative can be obtained by following a few MADM procedures. In light of 

our proposed knowledge measure, we now take into consideration the TOPSIS approach with minor 

modifications. 

Algorithm 

Step1: Build the DHF decision matrix 𝐷 = [𝑎𝑖𝑗]𝑛𝑚 with the decision-maker’s ratings in it.. 

Step2: Applying the optimistic principle—that is, repeating the maximum value in DHFEs-make all 

DHFEs the same length. 

Step3: Convert the 𝐷 = [𝑎𝑖𝑗]𝑛𝑚 decision matrix into a normalized decision matrix 𝑅 = [𝑟𝑖𝑗]𝑛𝑚 as 

𝑟𝑖𝑗 = {ℎ𝜎(𝑗)(𝑢𝑖), 𝑘𝜎(𝑗)(𝑢𝑖)}, 𝑣𝑗  is benefit criteria; 

{𝑘𝜎(𝑗)(𝑢𝑖), ℎ𝜎(𝑗)(𝑢𝑖)}, 𝑣𝑗 is cost criteria. 

Step4: Find the DHF ideal solutions, 𝑆+ and 𝑆−, that are fuzzy positive and negative, respectively. 

𝑆+ = {𝑚𝑎𝑥ℎ𝜎(𝑗)(𝑢𝑖), 𝑚𝑖𝑛𝑘𝜎(𝑗)(𝑢𝑖), 𝑣𝑗  is benefit criteria; 

{𝑚𝑖𝑛ℎ𝜎(𝑗)(𝑢𝑖), 𝑚𝑎𝑥𝑘𝜎(𝑗)(𝑢𝑖), 𝑣𝑗  is cost criteria. 

𝑆− = {𝑚𝑖𝑛ℎ𝜎(𝑗)(𝑢𝑖), 𝑚𝑎𝑥𝑘𝜎(𝑗)(𝑢𝑖), 𝑣𝑗  is benefit criteria; 

{𝑚𝑎𝑥ℎ𝜎(𝑗)(𝑢𝑖), 𝑚𝑖𝑛𝑘𝜎(𝑗)(𝑢𝑖), 𝑣𝑗  is cost criteria. 
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Step5: Calculate the attribute weights using the DHF knowledge measure.  

𝑤𝑗 =
𝑁𝑀(𝑟𝑖𝑗)

∑𝑚
𝑖=1 𝑁𝑀(𝑟𝑖𝑗)

                                                                                                                                      

(7) 

Step6: Determine the distance between the dual-hesitant fuzzy positive ideal solutions or the negative 

ideal solutions and the alternative 𝐴𝑖 as:  

𝑈+ = 𝐼𝑤
𝑎𝑐𝑐(𝐴𝑖, 𝑆+)                                                                                                                                               

(8) 

𝑈− = 𝐼𝑤
𝑎𝑐𝑐(𝐴𝑖, 𝑆−)                                                                                                                                               

(9) 

Step7: Find the relative closeness coefficients from 𝑈+ and 𝑈− for each of the alternatives.  

𝐶𝑖 =
𝑈−

𝑈++𝑈−                                                                                                                                           

(10) 

Step8: Rank each alternative by closeness coefficient in descending order. 

5  Application of proposed knowledge measure in MADM problem 

Many developing nations are currently experiencing a serious power crisis as a result of rapidly 

growing needs and a significant discrepancy between supply and demand. The planning commission 

must choose the business that is thought to offer the finest service based on consumer satisfaction in 

order to resolve this problem. There are four alternatives in this situation: 𝐴1 Power Company 1, 𝐴2 

Power Company 2, 𝐴3  Power Company 3, and 𝐴4  Power Company 4. While assessing these four 

potential power producing companies, the following four key attributes have been identified: 

(a) Cost and Tariff (𝑄1): The rate, fee, and terms and conditions for the production of electricity, as 

well as the transmission and distribution of services to consumers. 

(b) Reliability and performance (𝑄2): The extent to which consumers receive electric power within 

predetermined parameters. 

(c) Installing and being accountable (𝑄3): The assurance that all work, wiring, and equipment are 

installed and maintained safely by the business for the benefit of its clients. 

(d) Safety and protection (𝑄4): Enclosures that prevent employees from unintentionally coming into 

contact with electrical equipment and prevent unauthorised use of the electric service. 
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Figure  1: Step-by-step flowchart of the suggested methodology. 

Assume that a group of decision-makers consisting of professionals from four related fields has been 

given permission to assess each alternative’s degree of satisfaction and determine which one has the 

finest qualities. This issue can be seen as a MADM issue and solve it with the algorithm described in 

Sect. 4. Figure 1. stands for the proposed approach’s operational steps. 

Table  5:  DHF decision matrix 

    𝑄1   𝑄2   𝑄3   𝑄4 

 𝐴1   ({.2, .3, .4},{.1, .2})   ({.1, .3, .5},{.3})   ({.1, .3, .4},{.2, .3})   ({.2, .3, .4},{.1, .2})  

𝐴2   ({.1, .3, .3},{.2})  ({.2, .4, .4},{.1, .2})  ({.2, .3, .4},{.1, .2})   ({.3, .4, .5},{.3, .4}) 

𝐴3   ({.4, .5, .5},{.3, .4, .5})  ({.1, .2, .3},{.2, .3})  ({.3, .4, .5},{.3, .4})   ({.1, .2, .3},{.3}) 

𝐴4   ({.2, .4, .4},{.2})  ({.1, .4, .5},{.2, .3})  ({.1, .2, .3},{.3})   ({.2, .4, .4},{.2}) 
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Table  6:  Modified DHF decision matrix 

    𝑄1   𝑄2   𝑄3   𝑄4 

 𝐴1   ({.2, .3, .4},{.1, .2, 

.2})  

 ({.1, .3, .5},{.3, .3, 

.3})  

 ({.1, .3, .4},{.2, .3, 

.3})  

 ({.2, .3, .4},{.1, .2, .2})  

𝐴2   ({.1, .3, .3},{.2, .2, 

.2}) 

 ({.2, .4, .4},{.1, .2, 

.2}) 

 ({.2, .3, .4},{.1, .2, 

.2})  

 ({.3, .4, .5},{.3, .4, .4}) 

𝐴3   ({.4, .5, .5},{.3, .4, 

.5}) 

 ({.1, .2, .3},{.2, .3, 

.3}) 

 ({.3, .4, .5},{.3, .4, 

.4})  

 ({.1, .2, .3},{.3, .3, .3}) 

𝐴4   ({.2, .4, .4},{.2, .2, 

.2}) 

 ({.1, .4, .5},{.2, .3, 

.3}) 

 ({.1, .2, .3},{.3, .3, 

.3})  

 ({.2, .4, .4},{.2, .2, .2}) 

  

Table  7:  DHFPIS and DHFNIS 

    𝑄1   𝑄2   𝑄3   𝑄4 

 𝑆+   ({.4, .5, .5},{.1, .2, .2})  ({.2, .4, .5},{.1, .2, .2})  ({.3, .4, .5},{.1, .2, .2})   ({.3, .4, .5},{.1, .2, .2})  

𝑆−   ({.1, .3, .3},{.3, .4, .5}) ({.1, .2, .3},{.3, .3, .3}) ({.1, .2, .3},{.3, .4, .4})   ({.1, .2, .3},{.3, .4, .4}) 

      

Table  8: Objective weights 

    𝑄1   𝑄2   𝑄3   𝑄4 

 𝑁𝑀   .2517   .2887   .3266   .2582  

𝑤𝑗   .2237   .2566   .2903   .2294 

  

Table  9: Positive (𝑼+) and negative (𝑼−) accuracy measure and distance measure (𝜶 = 𝟐, 𝜷 =

𝟏) 

    𝐼𝑎𝑐𝑐
𝑤  𝐷𝑎 

  𝑈+                                                    𝑈−   𝑈+                                                         𝑈− 

 𝐴1   .3693                                             .1720   .1200                                                  .1347 

𝐴2   .3489                                             .1532   .1148                                                  .1490 

𝐴3   .2906                                             .2213   .1493                                                  .1155 

𝐴4   .3487                                             .2022   .1191                                                  .1300 

  

Table  10: Positive (𝑼+) and negative (𝑼−) accuracy measure and distance measure (𝜶 =

𝟏. 𝟓, 𝜷 = 𝟏. 𝟓) 

   𝐼𝑎𝑐𝑐
𝑤  𝐷𝑎 

  𝑈+                                                   𝑈−   𝑈+                                                      𝑈− 

𝐴1   .3141                                             .1626   .1229                                                 .1503 

𝐴2   .2888                                             .1384   .1432                                                 .1613 

𝐴3   .2512                                             .1885   .1587                                                 .1404 
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𝐴4   .2991                                             .1800   .1216                                                 .1419 

  

Table  11: Closeness coefficient using positive and negative measures (𝜶 = 𝟐, 𝜷 = 𝟏) 

    𝐶𝑖(𝐼𝑎𝑐𝑐
𝑤 )   Rank   𝐶𝑖(𝐷𝑎)   Rank 

 𝐴1   .3178   3   .5289   4 

𝐴2   .3051   4   .4128   1 

𝐴3   .4323   1   .4362   2 

𝐴4   .3670   2   .5219   3 

 

 

Figure  2: 𝑼+ and 𝑼−, Closeness coefficients and Rank of proposed accuracy measure 

 

Figure  3: 𝑼+ and 𝑼−, Closeness coefficients and Rank of distance measure 

Table  12: Closeness coefficient using positive and negative measures (𝜶 = 𝟏. 𝟓, 𝜷 = 𝟏. 𝟓) 

    𝐶𝑖(𝐼𝑎𝑐𝑐
𝑤 )   Rank   𝐶𝑖(𝐷𝑎)   Rank 

 𝐴1   .3410   3   .5501   4 

𝐴2   .3240   4   .5297   2 
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𝐴3   .4287   1   .4694   1 

𝐴4   .3757   2   .5385   3 

  

 

Figure  4: 𝑼+ and 𝑼−, Closeness coefficients and Rank of proposed accuracy measure 

 

Figure  5: 𝑼+ and 𝑼−, Closeness coefficients and Rank of distance measure 

Table  13: Ranking of alternatives 

𝐼𝑎𝑐𝑐
𝑤 (𝛼 = 2, 𝛽 = 1)   𝐴3 > 𝐴4 > 𝐴1 > 𝐴2 

𝐼𝑎𝑐𝑐
𝑤 (𝛼 = 1.5, 𝛽 = 1.5)   𝐴3 > 𝐴4 > 𝐴1 > 𝐴2 

𝐷1(𝛼 = 2, 𝛽 = 1)   𝐴1 > 𝐴4 > 𝐴3 > 𝐴2 

𝐷1(𝛼 = 1.5, 𝛽 = 1.5)   𝐴1 > 𝐴4 > 𝐴2 > 𝐴3 

  

The algorithm is implemented step-by-step as follows: 

Step1: Build the DHF decision matrix 𝐷 = [𝑎𝑖𝑗]5×4 with the decision-maker’s ratings in it. In Table 

5 , the fuzzy decision matrix is displayed. 
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Step2: Apply the optimistic principle to ensure that every DHFE has the same length by repeating the 

maximum value in each DHFE. The outcomes are displayed in Table 6.  

Step3: Since every attribute belongs to the benefit type, Table 6’s normalised decision matrix 

corresponds to it.  

Step4: Using Eqs.(8) and (9) determine the DHFPIS and DHFNIS; the findings are displayed in Table 

7. 

Step5: Using Eq. (7) and the DHF knowledge measure Eq.(5), determine the attribute weights. The 

findings are displayed in Table 8. 

Step6: Utilizing equations (8) and (9) compute DHFPIS and DHFNIS; the results are displayed in 

Tables 9 and 10. We conducted a comparison between the outcomes produced with our proposed DHF 

accuracy measure and the results produced by the currently used DHF distance measurement. We use 

the following comparison measure as a point of reference. 

𝐷𝛼(𝐴, 𝐵) = (∑𝑚
𝑗=1 𝑤𝑗{

1

2𝑙𝑥𝑖

∑
𝑙𝑥𝑖

𝑖=1
|ℎ𝐴

𝜎(𝑗)
− ℎ𝐵

𝜎(𝑗)
|𝛼 +

1

2𝑙𝑥𝑖

∑
𝑙𝑥𝑖

𝑖=1
|𝑘𝐴

𝜎(𝑗)
− 𝑘𝐵

𝜎(𝑗)
|𝛼}); 𝛼 > 0 Su et al. [?]  

Step7: Using Equation (10), get the closeness coefficient. The findings are displayed in Tables 11 and 

12. 

Step8: Table 13 and Fig. 2, 3, 4 and 5 presents the ranking of all the alternatives based on the closeness 

coefficient in descending order. Table 13 and Fig.2, 4 shows that, with our proposed DHF weighted 

accuracy measure, the optimum alternative stays the same for a range of 𝛼 and 𝛽 values; the parameter 

changes, though. However, even when the value of parameter 𝛼 and 𝛽 are changed, the overall ranking 

of the alternatives change for the current distance measure as shown in Fig.3 and 5.  

6  Detecting patterns using the suggested DHF accuracy measure 

Next, the accuracy measure is applied to address the pattern detection problem with DHF-set.  

Problem: Examining n patterns, which are represented by a DHF-set  

𝑅𝑗 = {〈𝑢𝑖 , ℎ𝑅𝑖

𝜎(𝑗)
(𝑢𝑖), 𝑘𝑅𝑖

𝜎(𝑗)
(𝑢𝑖): 𝑢𝑖 ∈ 𝑈〉}, (𝑖 = 1,2, . . . , 𝑛) defined on non empty set 𝑈 =

{𝑢1, 𝑢2, . . . , 𝑢𝑛}. Consider any unknown pattern 𝑇 = {〈𝑢𝑖 , ℎ𝑇
𝜎(𝑗)

(𝑢𝑖), 𝑘𝑇
𝜎(𝑗)

(𝑢𝑖): 𝑢𝑖 ∈ 𝑈〉}. The objective 

is to assign pattern 𝑇 to one of the identified patterns 𝑅𝑖 the following methods to solve the above 

mentioned issue. 

Similarity/ accuracy measure based detection: If 𝑆(𝑅𝑖, 𝑇) be the 𝑇’s similarity/ accuracy pattern 

from 𝑅𝑖 ., at that point 𝑇 is identified as pattern 𝑅𝑖∗ , where  

𝑆(𝑇, 𝑅𝑖∗) = 𝑚𝑎𝑥𝑖=1,2,...,𝑛{𝑆(𝑇, 𝑅𝑖)}. 

Dissimilarity measure based detection: If 𝐷(𝑅𝑖, 𝑇) represents distance of pattern 𝑇 from 𝑅𝑖. Then 𝑇 

is recognized as pattern 𝑅𝑖∗ ,  

Where  𝐷(𝑇, 𝑅𝑖∗) = 𝑚𝑖𝑛𝑖=1,2,...,𝑛{𝐷(𝑇, 𝑅𝑖)}, 
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We identify the pattern with our proposed DHF accuracy measure in the empirical investigations that 

follow, and we compare the recognition outcomes with well-known DHF distance and similarity 

measures.The distance measures 𝐷𝑖(𝐴, 𝐵)(𝑖 = 1,2) and similarity measures 𝑆𝑖(𝐴, 𝐵)(𝑖 = 1,2) that are 

currently in use are first listed as follows: 

𝐷1(𝐴, 𝐵) =
1

2𝑛
∑𝑛

𝑖=1 {
1

𝑙𝑥𝑖

∑
𝑙𝑥𝑖

𝑗=1
|ℎ𝐴

𝜎(𝑗)
− ℎ𝐵

𝜎(𝑗)
| +

1

𝑚𝑥𝑖

∑
𝑚𝑥𝑖

𝑗=1
|𝑘𝐴

𝜎(𝑗)
− 𝑘𝐵

𝜎(𝑗)
|},                                   Singh[31] 

𝐷2(𝐴, 𝐵) = ∑𝑛
𝑖=1 {

1

𝑛
(

1

𝑙𝑥𝑖

∑
𝑙𝑥𝑖

𝑗=1
|ℎ𝐴

𝜎(𝑗)
− ℎ𝐵

𝜎(𝑗)
|𝛼 +

1

𝑚𝑥𝑖

∑
𝑚𝑥𝑖

𝑗=1
|𝑘𝐴

𝜎(𝑗)
− 𝑘𝐵

𝜎(𝑗)
|𝛼)}

1

𝛼,                  Wang et 

al.[29] 

𝑆1(𝐴, 𝐵) =
1

2𝑛
∑𝑛

𝑖=1

∑
𝑙𝑥𝑖
𝑗=1

[𝑚𝑖𝑛{|ℎ𝐴
𝜎(𝑗)

,ℎ𝐵
𝜎(𝑗)

|}]+∑
𝑚𝑥𝑖
𝑗=1

[𝑚𝑖𝑛{|𝑘𝐴
𝜎(𝑗)

,𝑘𝐵
𝜎(𝑗)

|}]

∑
𝑙𝑥𝑖
𝑗=1

[𝑚𝑎𝑥{|ℎ𝐴
𝜎(𝑗)

,ℎ𝐵
𝜎(𝑗)

|}]+∑
𝑚𝑥𝑖
𝑗=1

[𝑚𝑎𝑥{|𝑘𝐴
𝜎(𝑗)

,𝑘𝐵
𝜎(𝑗)

|}]
,                                                   Singh 

[31] 

𝑆2(𝐴, 𝐵) =
1

2𝑛

∑𝑛
𝑗=1 (ℎ𝐴

𝜎(𝑗)
,ℎ𝐵

𝜎(𝑗)
)+∑𝑛

𝑗=1 (𝑘𝐴
𝜎(𝑗)

,𝑘𝐵
𝜎(𝑗)

)

𝑚𝑎𝑥{∑𝑛
𝑗=1 (ℎ𝐴

𝜎(𝑗)
)2+(ℎ𝐵

𝜎(𝑗)
)2,∑𝑛

𝑗=1 (𝑘𝐴
𝜎(𝑗)

)2+(𝑘𝐵
𝜎(𝑗)

)2}
,                                                         Singh 

[31] 

Example 5 Let 𝑅1 = {〈{.2, .3, .3}, {.3, .5, .5}〉, 〈{.6, .7, .8}, {.5, .5, .5}〉},  

𝑅2 = {〈{.1, .3, .3}, {.9, .9, .9}〉, 〈{.7, .9, .9}, {.7, .7, .7}〉}, 

𝑅3 = {〈{.5, .5, .5}, {.3, .4, .5}〉, 〈{.3, .7, .7}, {.4, .5, .5}〉} be three known patterns. 

Let 𝑇 = {〈{.4, .6, .6}, {.7, .8, .8}〉, 〈{.3, .3, .3}, {.7, .7, .7}〉} be unknown pattern. We use a dissimilarity 

technique to classify 𝑇 to 𝑅𝑖.   

Table  14: Pattern detection using 𝑰𝒂𝒄𝒄 and 𝑫𝟏 

    (𝑅1, 𝑇)   (𝑅2, 𝑇)   (𝑅3, 𝑇)  

 𝐼𝑎𝑐𝑐(𝛼 = 1.5, 𝛽 = 1)   .1832   .2666   .5674 

𝐷1(𝛼 = 1.5, 𝛽 = 1)   .2417   .3000   .2417 

  

Table 14 shows, 𝐼𝑎𝑐𝑐 = (𝑅3, 𝑇) is maximum. Therefore 𝑇 is classified to 𝑅1. But dissimilarity measure 

𝐷1 is unable to classify 𝑇 to 𝑅𝑖 because 𝐷1(𝑅1, 𝑇) and 𝐷1(𝑅3, 𝑇) have same values. 

Example 6 Let 𝑅1 = {〈{.3, .4, .4}, {.1, .2, .3}〉, 〈{.3, .4, .4}, {.1, .2, .3}〉}, 𝑅2 =

{〈{.4, .5, .5}, {.2, .3, .5}〉, 〈{.7, .8, .9}, {.2, .5, .6}〉}, 𝑅3 = {〈{.5, .6, .6}, {.3, .3, .3}〉, 〈{.35, .4, .4}, {.5, .6, .8}〉} 

be three known patterns. 

Let 𝑇 = {〈{.5, .6, .7}, {.8, .8, .8}〉, 〈{.4, .5, .6}, {.2, .3, .4}〉} be unknown pattern. We use a dissimilarity 

technique to classify 𝑇 to 𝑅𝑖.   

Table  15: Pattern detection using 𝑰𝒂𝒄𝒄 and 𝑫𝟐 

    (𝑅1, 𝑇)   (𝑅2, 𝑇)   (𝑅3, 𝑇)  

 𝐼𝑎𝑐𝑐(𝛼 = 1.5, 𝛽 = 1)   .1288   .3918   .2882 
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𝐷2(𝛼 = 1.5, 𝛽 = 1)   .4492   .4678   .4492 

 

Table 15 shows, 𝐼𝑎𝑐𝑐 = (𝑅3, 𝑇) is maximum. Therefore 𝑇 is classified to 𝑅1. But dissimilarity measure 

𝐷2 is unable to classify 𝑇 to 𝑅𝑖 because 𝐷2(𝑅1, 𝑇) and 𝐷2(𝑅3, 𝑇) have same values. 

Example 7 Let 𝑅1 = {〈{.7, .8, .9}, {.1, .2, .3}〉, 〈{.3, .4, .4}, {.1, .2, .3}〉}, 

𝑅2 = {〈{.4, .5, .5}, {.2, .3, .5}〉, 〈{.7, .8, .9}, {.2, .5, .5}〉}, 

𝑅3 = {〈{.1, .2, .2}, {.4, .5, .6}〉, 〈{.4, .5, .5}, {.5, .6, .8}〉} be three known patterns. 

Let 𝑇 = {〈{.2, .6, .7}, {.6, .7, .8}〉, 〈{.2, .5, .5}, {.1, .2, .3}〉}  be unknown pattern. We use a similarity 

technique to classify 𝑇 to 𝑅𝑖.   

Table  16: Pattern detection using 𝑰𝒂𝒄𝒄 and 𝑺𝟏 

    (𝑅1, 𝑇)   (𝑅2, 𝑇)   (𝑅3, 𝑇)  

 𝐼𝑎𝑐𝑐(𝛼 = 1.5, 𝛽 = 1)   .3354   .3257   .2997 

𝑆1(𝛼 = 1.5, 𝛽 = 1)   .1885   .1573   .1885 

  

Table 16 shows, 𝐼𝑎𝑐𝑐 = (𝑅2, 𝑇) is maximum. Therefore 𝑇 is classified to 𝑅2. But dissimilarity measure 

𝑆1 is unable to classify 𝑇 to 𝑅𝑖 because 𝑆1(𝑅1, 𝑇) and 𝑆1(𝑅3, 𝑇) have same values. 

Example 8 Let 𝑅1 = {〈{.6, .7, .8}, {.1, .2, .2}〉, 〈{.4, .5, .5}, {.2, .2, .2}〉}, 

𝑅2 = {〈{.3, .4, .5}, {.5, .6, .7}〉, 〈{.6, .7, .8}, {.2, .2, .2}〉},  

𝑅3 = {〈{.5, .6, .7}, {.3, .5, .7}〉, 〈{.5, .5, .5}, {.4, .6, .7}〉} be three known patterns. 

Let 𝑇 = {〈{.2, .5, .6}, {.6, .8, .8}〉, 〈{.6, .6, .6}, {.2, .3, .4}〉}  be unknown pattern. We use a similarity 

technique to classify 𝑇 to 𝑅𝑖.   

Table  17: Pattern detection using 𝑰𝒂𝒄𝒄 and 𝑺𝟐 

    (𝑅1, 𝑇)   (𝑅2, 𝑇)   (𝑅3, 𝑇)  

 𝐼𝑎𝑐𝑐(𝛼 = 1.5, 𝛽 = 1)   .1877   .3911   .5275 

𝑆2(𝛼 = 1.5, 𝛽 = 1)   .2245   .1514   .2245 

  

 Table 17 shows, 𝐼𝑎𝑐𝑐 = (𝑅3, 𝑇)  is maximum. Therefore 𝑇  is classified to 𝑅3 . But dissimilarity 

measure 𝑆2 is unable to classify 𝑇 to 𝑅𝑖 because 𝑆2(𝑅1, 𝑇) and 𝑆2(𝑅3, 𝑇) have same values. 

Comparative examinations of similarity and dissimilarity metrics show that no measure is appropriate 

for every pattern identification task in examples 4– 7. Consequently, an alternate approach is needed 

for problems involving pattern identification. The suggested accuracy measure might be more effective 

than the current similarity and dissimilarity measures in particular pattern recognition scenarios. Here, 

we offer a measure to clearly classify a pattern 𝑇 into one of the existing patterns. Therefore, for this 

pattern detection problem, the suggested accuracy measure technique performs effectively.  
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7  Conclusion 

The membership and non-membership degrees of the DHFS are represented by two sets of possible 

values. The DHFS is a comprehensive set that encompasses various existing sets. It appears to be a 

more versatile strategy and has its own set of desirable qualities and advantages. It is found that in the 

objective weight computation tasks, the DHF knowledge measure suggested in this research 

outperforms the traditional DHF entropy measures. The current study provides four instances to 

evaluate the efficacy of the proposed DHF - Knowledge measure. While dealing with MADM 

situations where the attribute weights are unknown, the suggested knowledge measure for DHFSs is 

more appropriate and very useful in a variety of scenarios. We also use the proposed DHF accuracy 

metric in pattern detection and compare its performance with that of many other measures. Compared 

to the traditional dual-hesitant measures of comparison, the suggested DHF accuracy measure is more 

effective in identifying the unknown pattern. Numerous fields, such as speech recognition, picture 

thresholding, and feature recognition, can get benefit from the application of the recommended 

knowledge and accuracy metrics. 
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