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1. Introduction

Since uncertainty exists in practically every aspect of our everyday lives, numerous technologies have
been created to identify and address it. Researchers have created a number of useful instruments and
approaches to deal with ambiguity and imprecision in practical settings, but there are still a number of
circumstances in which people are apprehensive or suspicious for various reasons. There is a great deal
of vagueness and uncertainty in these issues. Sometimes hesitation and uncertainty can enforce even a
simple situation to become too complicated. There are several ways to express uncertainty, including
unpredictability, fuzziness, incompleteness, etc. The first fuzzy theory to address uncertainty issues in
a variety of domains was proposed by Zadeh [1]. However, it is limited in how it can handle unclear
data. Accordingly, traditional FS has minimal limitations. Several fuzzy set extensions have been
introduced to address this scenario, such as the type-2 fuzzy set by Dubois et al.[2], the intuitionistic
fuzzy set (IFS) by Atanassov [3], the IVIFS by Bustince et al. and Turksen [4, 5], and so on. Boekee
and Lubbe [6] provided an explanation of R-Norm IM in probability distributions. Additionally,
Bhandari and Pal [7] investigates some measures like information of FSs and offers multiple methods
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for the entropy. However, in many complex situations, people find it difficult to approach the ultimate
agreement and hesitate to make a decision. In order to address these situations, Xia and Xu [8, 9] and
Torra [10] defined new extensions called hesitant fuzzy sets (HFSs). Many scholars were formerly
fascinated by HFSs, leading them to publish a variety of creative solutions in the literature, including
as decision-making techniques, entropy measures, distance measures, and similarity measures. Types
of HFSs were examined along with closeness, distance measure and HFES entropy which was provided
by Xu [11] and Zhang [12]. Furthermore, Torra [10] demonstrated the connection between HFS and
IFS, upon which some operational laws of HFSs was provided by Xia and Xu [8] . The set of alternative
values provides the membership and non-membership degrees for a dual hesitant fuzzy set (DHFS),
which was proposed by Zhu and Xu [13] by combining the ideas of IFS and HFS. The correlation
coefficient of DHFSs was defined by Jun Ye[14]. Compared to previous fuzzy set extensions like IFS
and HFS, DHFS is able to more accurately capture human fuzziness and reluctance. It also treats IFS
and HFS as exceptional circumstances. Additionally, Zhu et al. examined the fundamental features and
operations of DHFSs, that include FSs, IFSs, and HFSs as specific examples. Decision-makers can
reach judgements more softly and effectively with the help of DHFSs, that are better suited to handle
decision-making challenges. A set that encompasses multiple existing sets, Two sets of possible values
indicate the membership degrees of DHFS, which is a complete set. Scholars have given entropy a lot
of attention, and many positive outcomes have been attained. The concept of entropy for IFSs was
initially introduced by Burillo and Bustince [15]. Mao [16] improved the entropy constructive principle
for IFSs. Xu and Xia [9] defined entropy and created a number of entropy measurements specifically
for HFS. Zhao and Xu [17] defined entropy measures for DHFSs. Several basic distance measures for
DHFSs were developed by Su et al. [18] and applied to pattern recognition. Ye [19] introduced cross
entropy of DHFSs for multi attribute decision making. A new distance measure for DHFss is
introduced by Wang et.al. [20] and applied on MADM problem. Later on, Zhang [21] constructed
distance and entropy measures for DHFSs. A novel knowledge measure was presented by Szmidt et
al. [22] for IFSs, these were examined by Attanassov. Recently, a knowledge measure for IFSs was
proposed by Nguyen [23]. Joshi [24] talked about using innovative fuzzy knowledge measures to
support MCDM. [25] provide new information measure for HFSs. Singh and Kumar [26] explained
Intuitionistic fuzzy entropy based on knowledge and accuracy measure. Dual-hesitant fuzzy sets are
the basis for Singh’s [27] knowledge and accuracy measure. For fuzzy sets, the knowledge measure
can be viewed as a counterpart measure of entropy.

However, to the best of our knowledge, not much study has been done on the DHFSs knowledge
measure. In this manuscript, a new knowledge and accuracy measure is proposed for DHFSs. With the
help of entropy we can quantify the randomness related to any DHFSs, whereas the knowledge passed
by any DHFSs is quantified by knowledge measure. For fuzzy sets, the knowledge measure can be
viewed as a counterpart measure of entropy. The hesitant fuzzy information relating to each alternative
was aggregated using the hesitant fuzzy weighted averaging operator. Then, the alternatives were
ranked, and the most desirable one or ones were chosen based on the scoring function for hesitant
fuzzy sets. The HFSs hypothesis and methodology are widely applied in MADM. In this manuscript,
we solve MADM problem in DHF environment with the help of new knowledge measure. The MADM
problem is described as choosing the right alternative from the given alternative(s) in order to
accomplish a goal. Every option has a set of requirements. Making decisions in a scenario with several
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homogeneous options and determining the best ones are part of the MADM process. While we’re
making decisions, attribute weighting is quite important. The MADM theory and mechanism have
been applied recently to modern decision science and management science. MADM issues have been
discussed by Bajaj and Kumar [28] using the Pythagorean fuzzy intuitive distance measure. As a result,
numerous decision-making strategies based on real-world issues were suggested. Popular methods for
approaching MADM are TOPSIS, VIKOR and ELECTRE. These techniques typically combine near-
optimal alternatives with DHFSs to get a better option. While selecting the best alternative, different
decision makers have different priorities based on how much risk they are willing to take. A new mode
that combines TOPSIS method of MADM has been used in this knowledge and accuracy based paper,
that takes into account people’s risk priorities. Using an exact measure of "closeness" to the positive
ideal solution, this method determines which alternative is optimal. The proposed knowledge measure
is effectively applicable to solve MADM problems where the attribute weights are completely
unknown.The intended effort is motivated by the following factors: Researchers have recently created
a variety of distance metrics. The concepts and importance of it demonstrate how divergent these
measures are. Furthermore, most applications have not produced consistent and dependable findings
from several measures. In order to address these issues, we present a novel solution to DHF entropy,
which we refer to as DHF knowledge measure. Moreover, a situation is deemed paradoxical if a
comparison measure—such as distance, divergence, similarity, etc. It is unable to distinguish between
two DHFSs that appear to be distinct from one another. False classification results can occur under
unreasonable settings, such as when two or more separate datasets cannot be distinguished from one
another. Therefore, we require an ideal set of metrics that minimizes the drawbacks of the current
metrics and produces more precise and categorical answers in order to address pattern recognition
concerns. This led us to develop a different type of comparison measure for DHFSs, which we call the
dual hesitant accuracy measure.The paper’s primary contribution can be summed up as follows. We
suggest utilizing dual-hesitant fuzzy sets as the foundation for a knowledge and accuracy metric. We
show that the proposed DHF knowledge measure is beneficial in the calculation problem for attribute
weight. Additionally, we compare how well the suggested measures work in a MADM situation. Using
the suggested dual-hesitant accuracy measure, we examine the numerical analysis of a few pattern
recognition issues and compare the results with certain traditional comparison measures within the
dual-hesitant structure. The paper is organized as follows, Firstly it provides an overview of the HFSs,
Secondly, contains the definitions and fundamental ideas of DHFSs. After that it presents a proposed
DHF knowledge measure. The validity of the proposed measure is verified by comparing its outcome
with many existing measures. In addition, a DHF accuracy measure has generalization of the DHF
knowledge measure is presented in this section. Next, TOPSIS method of MADM is used in decision-
making process based on the suggested knowledge measure. It presents a real-world example to
demonstrate the suitability of this innovative approach to decision-making. The use of pattern detection
is provided in to evaluate the suggested accuracy measure’s performance with that of some other
measures. Finally settles the conclusion.

2 Preliminaries

In this section, we present numerous examples of entropy and distance measurements for DHFSs
along with standard definitions.
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2.1 HFSs, DHFSs and their related properties.

Definition 2.1 (Torra and Narukawa )[10] Consider a finite collection set ¢, and define HFSs J in
terms of function on ¢.

hex:{ = R(J), and hex # ¢ and definite set for any u € ¢.
A hesitant fuzzy set usually gets expressed by 3 = {(u, hex(u))|u € {}
Here R(J) represents power set of [0,1] , hex(w) represents hesitant fuzzy element (HFE).

Definition 2.2 (Zhu et al.)[11] Let ¢ be a fixed set, a dual hesitant fuzzy set (DHFS) M on ¢ is defined
as M = {(u, he(u), t(u))|u € {},

In which he(u) and t(u) are two sets of some values in [0,1], denoting the possible membership
degrees and non-membership degrees of the element u € ¢ to the set M, respectively.For convenience,
DHFE are represented by the pair mz(u) = (heg(w), t(u)), with the condition:

0<60,9<10<60+9 <1,

where 6 € hep(w),9 intp(u), 0% € hef () =Ugenepu) max{6},

And 9* € tF (u) =Uyer, ) max{d}

Initially, we define a few unique DHFESs. Assuming a DHFE, d, we have

(1) Complete uncertainty: d = {{0}}, {{1}};

(2) Complete certainty: dp = {{1}}, {{0}};

(3) Complete ill-known (all is possible): dr = [0,1];

(4) Nonsense element: dr = ®,i.e.,hep = ¢, tr = ¢.

Basic operations and properties of DHFSs

Definition 2.3 (Zhu et al.)[13] Given a DHFE dg, and d; # &, its complement is as follow:
Complement: d = (Ugen, {6}, Ugek, (93), if hy # ¢ and kg # ¢

(Ugeng {1 =63, {¢}), if hy # ¢ and kp = ¢ ({p}Uger, {1 —9}), if hy = p and ky # ¢.
Definition 2.4 (Zhu et al.)[13] Let dg ,dg, € DHFFs. Then

(@) Union: dg, Udg, = {6 € (hgy U hg,)|0 = max(hg,, hg,),9 € (kg, N kg9 < min(ks, ki,)}
(b)Intersection :dg, Ndg, = {0 € (hg; N hg,)|0 < min(hg, hE), 9 € (kg, Ukg)[9 =
max(kb?l, kgz)}

Definition 2.5 (Zhu et al.)[13] Let di = {hg, kg} be any two DHFEs. Then score function of dg is
given as follow:

1 1
s(dg) = EZGEhE 0 — EZﬁekE 9,

Where t(hg) and t(kg) are length of hg and kg, respectively.
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The accuracy function of d is given below:

Ac(dg) = 5= Zoens 0 + - Toer, O

Let dg,,dg, € DHFEs, the comparison rule between DHFE's are given below:
(@) if s(dg,) < s(dg,), then dg, is superior to dg,, denoted by dg, > dg,;
(b) if s(dg,) = s(dg,), then

(i) if Ac(dg,) = Ac(dg,), then dg, is equivalent to dg,, denoted by dg, ~ dg, .
(i) if Ac(dg,) > Ac(dg,), then dg, is superior than dg,, denoted by dg, > dp,.

Definition 2.6 (Zhang ) [21] Let dgy = ({h},h3...,n"}, (ki k?,...,k}}) and
fe({h}, h2, ... WP}, (ki k2,...,k1}) be two DHFEs. If an entropy e fulfills the following axiomatic
conditions, it is a real-valued function e: DHFE — [0,1].

(E1) e(dg) = 0iff dp = ({1},{0}) or dg = ({0}, {1}).

(E2) e(dy) = 1iff k7P = k79 where k7Y and k7 are the smallest value of h; and k;.

(E3) e(dg) = e(fy), if max;h} < min, §,maxjk{ < min k& for maxshs < min.ké or min;hl <
maxghs maxjg{ < min.g5 for minghd >max, g, (i=12,....m;j=12,...,n;s,t =
1,2,...,9).

(E4) e(dp) = e(dg), where dg represents compliment of d.

Definition 2.7 (Wang )[29] For dg, fz € DHFEs(u) , Let d be a mapping d: DHFE (u) X
DHFE(u) = [0,1],d(dg, fr) is a distance measure between DHFEs dg and fz, if d(dg, fz) satisfies
the following properties:

(1) 0 < d(dg, fg) < 0;

(i) d(dg, fg) = 0ifand only if dg = fz;
(i) d(dg, fg) = d(fe, dE).

2.2 Some existing entropies for DHFSs

Here, we discussed some distance and entropy measures which are already available in literature.
Entropies of DHFSs are extensively studied, for instance Zhao and Xu [17]:

RSPk D e D e D

Ei(dg) = 1%y [1 . Jia=0. (1)

—(lhe) —ol) —hoD) o)
1-(|h k |2)(2 h k )];a >0, 2

Ey(dp) =% |

oD koD N2(1=no) 470D
| L D) > 0. 3)

E3(dg) =255, [1 -
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2.2.1 Existing distance based entropy for DHFSs

Zhang [21] defined distance based entropy for DHFESs as follow:

— 0.5 Rl 21725 p Rl 21525 0.5 el

Ey(dg, fp) =1- [m_+p (0 mjm|hi - hj |28 + Z]’:l milnlhj — hi[*>=F) + m(Z?ﬂ rnj1n|ki -
o @ 2-B

kP 7P + X5, min|k} — kf )] @

(4)

2.3 Knowledge measure of DHFS

We present the notion of the DHF set knowledge measure in this section.

Definition 2.8 Let dg = ({h}, h2,... K", (ki K2, k1)) and fr =
({h}, h%,..., K0}, {k3, K2,..., k1Y) be two DHFEs. If knowledge measure Ny, fulfills the following
axiomatic conditions, it is a real-valued function Ny,: DHFE — [0,1]

(N1) Ny(dg) = 1iff dp = ({1},{0}) or dg = ({0}, {1}).

(N2) Ny (dg) = 0 iff d = ({0}, {0})

(N3) Ny (dg) < Ny(fy), if max;hi < ming §,maxjk{ < min.k: for max;h5 < mink: or
minh} < maxgh$, maxjg{ < min.g5 for minghs > max.gs, (i =1,2,...,m;j =1,2,...,n;s,t =
1,2,...,9).

(N4)Ny(dg) = Ny(dg), where df; represents compliment of d.

Definition 2.9 Attribute weights computation

In modeling, a multi-attribute decision-making issue, attributes weights plays a vital role. Chen and Li
[29] provided a method to find out the weight.

- Ny (7))

7Y Ny ()
Setw = {wy,w,,...,wr} is said to be weight of attributes if w; > 0 and ZJT-zl w; =1
3 Proposed knowledge measure for DHFSs

We propose a DHF- knowledge measure that is described as:
. . o 2-p
Nu(dg) = (B GZboy 10D () = kD (u)[FF)] @ ,a > 0,0 < f < 2. (5)
We now assess the validity of the proposed measure Ny, (dg).
Theorem 1 The DHF knowledge measure Ny, (dg), as stated in Eq. (5) is valid.

Proof (N1) Suppose that d; = ({1},{0}) or d; = ({0}, {1}), we have, Ny, (dg) = 1.

Now, suppose Ny (dg) = 1, we have

1 ) ) @ 2=
(? 5:1 |ha(1)(ui) — kG(J)(ui)|2—ﬁ) a =1
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This is possible only if dg = ({1},{0}) or d; = ({0}, {1}).

(N2) Suppose K9 = k79, we have Ny, (dj) = 0.

Conversely, Suppose Ny, (dg) = 0, we have

ESiy 170 () — K7D () PFY @ =0,

to h*N=k7D) = 0.

(N3) Let d = (h7D, k7)=({h}, h2,..., K1}, (kL K2, ..., k}Y)

f =3P, kI=({h}, h3,..., hP}, (kL k2,..., k7}) be two DHFSs. we have

1IN o0 _ o) gy
NM(dE)z(?Z_lml — kDAY a,a>00< B <2
]=

Nu(fe) = Gy 1D — KPR a>00<p <2,

If max;h?Y < minghl9, minik?? = max;k? for max;hIY < min;g7%, we have
hf(j) _ kf(]') < h;’(f) _ kg(f) < 0and

kf(j) _ hi‘(j) < k;f(j) _ htzf(j) <0,

Therefore,

|hf(1) _ kf(])l > |h;’(1) _ k;’(])l

1t , N 2= It ; ) i 2B

(?z |hf(]) _ k;’(l)lz_ﬁ) a > (?Z Ih;(l) _ kg(])lz_ﬁ) i
Jj=1 j=1

Ny (d) = Nu(f)
Similarly, if minihf(j) > maxihg(j),maxikla(j) < minikg(j) for minihg(j) > maxik;(j), We have

Ny(dg) =2 Nu(fe)
(N4) We have

INY o0) _ o) gopy 258
1\/M(d,5)=(zzll|h1 kDR T ,a > 00< B <2
]:

1 ; N % 2-B 1 ; N @ 2-8
S0, Ny (df) = GXiy 1k]P = R{ PRy a = Gy [i{P — k] PF)a = Ny (dp)

Hence, Ny, (dg) = Ny (dg)
As aresult, Ny, (dg) is an acceptable DHF knowledge measure.

The comparison of the DHF knowledge measure with a few DHF entropy measures that are currently
in use is presented in the next section.
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3.1 Comparative Study

Applying the weight calculation mechanism, we evaluate the existing DHF entropy measurements
given in Eq.(1)-(3) and compare these with our suggested DHF knowledge measure given in Eq.(5).
Assume that we have a MADM issue with two attributes {Q;, Q,}, and three alternatives {A;, 4,, A3}.
The weight calculating process is displayed in Singh et al.’s 2019 publication. In Examples 1-3, we
use DHF entropy and DHF knowledge measure to compute weights. Examples 1-3 given below show
how our suggested DHF knowledge measure performs in comparison to some of the existing DHF
entropies.

Example 1 Consider D, is a decision matrix corresponding to set of alternatives {A;, 4,, A3} and a set
of attributes {Q,, Q,} established in an hesitant fuzzy environment.

D;=0Q1,0Q2

A 1=({3 4, 6}{1 .2 4}, {3, .5 .6} {5 6.7}
A 2=({5.6,.7}{3 .5 .6}), {2 3 4} {4, .5 6}
A 3=({4, 5 6}{2 .3 .4}) ({1, .2 4} {4, 5 6}
3.2 Comparative Study

Applying the weight calculation mechanism, we evaluate the existing DHF entropy measurements
given in Eq.(1)-(3) and compare these with our suggested DHF knowledge measure given in Eq.(5).
Assume that we have a MADM issue with two attributes {Q;, Q,}, and three alternatives {A;, 45, A3}.
The weight calculating process is displayed in Singh et al.’s 2019 publication. In Examples 1-3, we
use DHF entropy and DHF knowledge measure to compute weights. Examples 1-3 given below show
how our suggested DHF knowledge measure performs in comparison to some of the existing DHF
entropies.

Example 1 Consider D, is a decision matrix corresponding to set of alternatives {4,, 4,, A3} and a set
of attributes {Q,, Q,} established in an hesitant fuzzy environment.

D;=0Q1,Q°2

Al1=({3 46}{1 .2 4}), ({3, 5.6} {5 .6,.7}
A 2=({5, .67} {3, 5 .6}, {2 .3 4} {4 5 6}
A3=({4 5 6}{2 .3 4D, {1, .2 .4} {4 5 6}
3.3 Comparative Study

Applying the weight calculation mechanism, we evaluate the existing DHF entropy measurements
given in Eq.(1)-(3) and compare these with our suggested DHF knowledge measure given in Eq.(5).
Assume that we have a MADM issue with two attributes {Q;, @,}, and three alternatives {4, A,, A3}.
The weight calculating process is displayed in Singh et al.’s 2019 publication. In Examples 1-3, we
use DHF entropy and DHF knowledge measure to compute weights. Examples 1-3 given below show
how our suggested DHF knowledge measure performs in comparison to some of the existing DHF
entropies.
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Example 1 Consider D, is a decision matrix corresponding to set of alternatives {4,, 4,, A3} and a set
of attributes {Q, Q,} established in an hesitant fuzzy environment.

D;=Q1Q2

A1=({3 4,6} {1 .2 .4}, {3 5 6}{5 6 .73
A 2=({5 6.7} {3 5 .6}). {2 3 4} {4, 5, 6})
A3=({4,5 6} {2.3.4}) {1 .2 4} {4 5.6}

Table 1: Comparison of Ny, with E4

Wo, 0.5279 0.5000
Wo, 0.4721 0.5000

Table 1 shows that both attributes have the same weights assigned to them by the ambiguity content
as assessed by the current entropy measure. However, it is evident that the suggested N,, gives various
weights.

Example 2 Let us consider the D, decision matrix.
D,=Q.1Q2

A 1=({2 3,5} {1, .4, 6}), {2 3, 6} {3, 4, .6}
A 2=({3 4, .6}{2 3, .6}), {3, .4, 6} {2 5 59
A 3=({2, .4,.6}{3, .5 .5}) ({1 .3 .6}{2 4,5}

Table 2: Comparison of Ny with E,

Nu(a=2,8=1) Ey(a = 2)
Wo, 0.5279 0.5000
Wo, 0.4721 0.5000

Table 2 shows that both attributes have the same weights assigned to them by the ambiguity content
as assessed by the current entropy measure. However, it is evident that the suggested N,, gives various
weights.

Example 3 Consider the decision matrix D;. D; = Matrix Example

Qll QZ
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A, = ({0.2,0.4,0.8},{0.3,0.6,0.7})({0.3,0.4,0.401}, {0.1,0.2,0.37})
A, = ({0.21,0.3,0.9},{0.6,0.7,0.8})({0.2,0.6,0.7},{0.3,0.4,0.8})
A; = ({0.2,0.6,0.93,{0.3,0.4,0.4})({0.2,0.3,0.9},{0.5,0.6,0.7})

Table 3: Comparison of Ny with E3

Ny(a=2,=1) Es(a =2)
Wo, 0.4613 0.5000
W, 0.5387 0.5000

We note that the existing entropy measure, which determines the ambiguity content, gives equal
weights to the two attributes. Nonetheless, it is evident that the suggested knowledge measure gives
various weights. We note from example 1-3 that we obtain the same weights for all the qualities when
we use the current entropy measures. However, we obtain different weights if we apply our proposed
DHF knowledge measure. As such, a new strategy is always required.

Furthermore, we compare our proposed knowledge measure given in Eq.(5) with distance based
entropy given in Eq.(4).

Example 4 Let dp and f; be two DHFEs, and dp ={{1,.3,.6},{2,.5.7}} , fg=
{2, 4,.6},{3,.7,.7}}.

Table 4: Comparison of Ny with E(dg, fg)

DHFEs Edg fo)(@=2=1) |Ny(a=2)
dp 0.1000 0.1414
fe 0.1000 0.1915

The data in Table 4 show that the entropy E (dg, fz) have no difference between DHFES dg and fz.
However, the proposed knowledge measure of N,, can clearly distinguish the entropy of DHFES dj
and f5. Our knowledge measure is better than the entropy measure proposed by Zhang [21] for this
example.

3.4 Proposed DHF accuracy measure

There is a correspondence between the amount of reluctant fuzzy knowledge and the quantity of
hesitant fuzzy accuracy. As a generalization of the DHF knowledge measure, we propose DHF
accuracy measure.

lace (i fi) = GBIy oy 1R @) (hSP i)’ — (k7P oD @)l & > 0,
©)
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Where d; = (A9 (), k7P (u) and £ = (A9 (), k3P (uy)) are two DHFSs.

dg = fg in EQ.(6) yields Ic.(dg, fg) = Ny(dEg)-

By multiplying with w;, we obtain the weighted version 1}..(dg, f¢) of the DHF accuracy from Eq.(6).
It is evident from Eq.(6) that the DHF accuracy I,..(dg, fg) for di = fz is obtained as a particular
instance of the DHF knowledge measure Ny, (dg). We suggest using I,..(dg, fg) as an accuracy
measure to identify the asymmetric comparison of two sets. We demonstrate the use of the TOPSIS
approach to apply our proposed DHF knowledge measure in MADM in the next section.

4 Evaluation method of MADM

MADM difficulties are related to discrete choice spaces where there are several predefined
alternatives. It is employed to select the best option from a range of options. Making decisions in a
scenario with several homogeneous options and determining the best ones are part of the MADM
process. While we’re making decisions, attribute weighting is quite important. The MADM
mechanism and theory have been employed recently in modern decision science and management
science. As an objective weight computation tool, the TOPSIS technique of MADM in a DHF
environment with a DHF knowledge measure is introduced in this part. Suppose S = {44, 4,,..., 4, },
Q ={Q1,Q2, ..., Qr}, where A;,s represent alternatives and Q;,s represent attributes.

Letw = (wq,wy,...,wr), Where wy,s are weight of attributes and w; = 0 ; Z]T-zl w; =1

If dual-hesitant fuzzy elements are used by the maker of decisions to assess the attributes of the
available alternative. We therefore have a decision matrix of dual-hesitant fuzzy elements, D =
(a;j)nm. The optimum alternative can be obtained by following a few MADM procedures. In light of

our proposed knowledge measure, we now take into consideration the TOPSIS approach with minor
modifications.

Algorithm

Stepl: Build the DHF decision matrix D = [a;;] ., With the decision-maker’s ratings in it..

Step2: Applying the optimistic principle—that is, repeating the maximum value in DHFEs-make all
DHFEs the same length.

Step3: Convert the D = [a; ]y, decision matrix into a normalized decision matrix R = [1;],m as
ri; = {h°D (W), kYD) (u;)}, v; is benefit criteria;
{k°D (w;), koD (u;)}, v is cost criteria.
Step4: Find the DHF ideal solutions, S* and S, that are fuzzy positive and negative, respectively.
S* = {maxh?YD (u;), mink 9 (u;), v; is benefit criteria;

{minh° D (u;), maxk’ Y (u,), v; is cost criteria.
S~ = {minh°D (w;), maxkP (u;), v; is benefit criteria;

{maxh®9 (u;), mink’ V) (u,), v; is cost criteria.
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Step5: Calculate the attribute weights using the DHF knowledge measure.
- Npm(rij)
Y NM())
(7)
Step6: Determine the distance between the dual-hesitant fuzzy positive ideal solutions or the negative
ideal solutions and the alternative A; as:

U—+— — I‘%CC(AL',5+)

(8)

U™ =L (4,57)

(9)

Step7: Find the relative closeness coefficients from U* and U~ for each of the alternatives.
i = g

(10)

Step8: Rank each alternative by closeness coefficient in descending order.
5 Application of proposed knowledge measure in MADM problem

Many developing nations are currently experiencing a serious power crisis as a result of rapidly
growing needs and a significant discrepancy between supply and demand. The planning commission
must choose the business that is thought to offer the finest service based on consumer satisfaction in
order to resolve this problem. There are four alternatives in this situation: A; Power Company 1, A,
Power Company 2, A; Power Company 3, and A, Power Company 4. While assessing these four
potential power producing companies, the following four key attributes have been identified:

(@) Cost and Tariff (Q): The rate, fee, and terms and conditions for the production of electricity, as
well as the transmission and distribution of services to consumers.

(b) Reliability and performance (Q,): The extent to which consumers receive electric power within
predetermined parameters.

(c) Installing and being accountable (Q5): The assurance that all work, wiring, and equipment are
installed and maintained safely by the business for the benefit of its clients.

(d) Safety and protection (Q,): Enclosures that prevent employees from unintentionally coming into
contact with electrical equipment and prevent unauthorised use of the electric service.
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Expert evaluation of
alternatives

v

Create Dual Hesitant
Fuzzy decision
matrix

v

Modified dual hesitant

fuzzy decision matrix
Calculate DHFPIS Calculate DHFNIS

(S*+) l (S*-)
Calculate positive Calculate negative
accuracy measure (UM+) Calculate knowledge accuracy measure (U*-)
and existing positive measure for each and existing negative
distance measure attribute distance measure
between DHFPIS and between DHFNIS and
alternatives ¥ alternatives

Calculate weight of
each atiribute

Ly

Calculate closeness coefficient using
positive and negative measures

'

Give ranking and find
best alternative

Figure 1: Step-by-step flowchart of the suggested methodology.

Assume that a group of decision-makers consisting of professionals from four related fields has been
given permission to assess each alternative’s degree of satisfaction and determine which one has the
finest qualities. This issue can be seen as a MADM issue and solve it with the algorithm described in
Sect. 4. Figure 1. stands for the proposed approach’s operational steps.

Table 5: DHF decision matrix

Q1 Q> Q3 Q4
4, €23 {120 |d1 3 54{3) (L3 45{2 3) {2 3 4341 2D
4, {1, 3, 33{2D) {2, 4, 4341 2D 2 3 45.{1, 2 |{3, 4 53{3 4}
A, ({4, 5 5}{3 4 5NEL 2 3h{2 3N {3 4 5:{3 4D {1, 2 3L{3}
A, {2, 4, 43{2D) {1, 4 51{2 3L 2 3.{3) |{2 4 43{2)
1101
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Table 6: Modified DHF decision matrix

Q1 Q2 Q3 Q4
Ay {2, 3, 43{1, 2|({1, .3, 5}{3, 3/({1 3, 4}{2 3/({2 3 .4}{1 2.2}
2}) 3}) 3})
A, {1, 3, 3}{2 2|({2 4, 4}3{1, 2/({2 .3, 4}{1, 2|({3, 4,.5}{3 4, .4}
2}) 2}) .2})
As {4, .5 53{3 4,{1 .2, 3}3{2, .3,{3, 4, 5}{3 4,1 .2 3}{3 .3 .3}
5}) 3}) A})
Ay {2, 4, 43{2, 2|({1, 4, 5r{2, 3/{1 .2, 3}{3 3/({2 4 .4}{2 2.2}
23) 3}) 3}
Table 7: DHFPIS and DHFNIS
Q1 Q2 Q3 Q4
S* ({4, .5 54{1 2 .2} |{2 4, 5}{1 2, 2})|{3, 4, 5}{1 2 2} ({3, 4 5}{1, .2,.2})
S ({1, .3, .33.{3, 4,5 {1, .2,.31{3, .3,.3DI{1,.2,.31,{3, 4 4} {1, .2,.3}{3, 4, 4}
Table 8: Objective weights
Q1 Q2 Q3 Q4
Ny 2517 2887 .3266 2582
W; 2237 2566 .2903 2294

Table 9: Positive (U*) and negative (U™) accuracy measure and distance measure (a = 2,8 =

1)
Iace Dq
Ut u- (Ut U~
Ay .3693 1720 |.1200 1347
A, .3489 1532 |.1148 .1490
Az .2906 2213 |.1493 1155
Ay 3487 2022 |.1191 .1300

Table 10: Positive (U*) and negative (U™) accuracy measure and distance measure (a =

https://internationalpubls.com

1.5, =1.5)
Igec D,
U+ u- (Ut U-
A, 3141 1626 |.1229 1503
A, 2888 1384 |.1432 1613
As 2512 1885 |.1587 1404
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A, |.2991

1800 |.1216

1419 |

Table 11: Closeness coefficient using positive and negative measures (¢ =2, = 1)

Ci(1%.0) Rank Ci(D,) Rank
Ay 3178 3 5289 4
A, 3051 4 4128 1
As 4323 1 4362 2
Ay 3670 2 5219 3
45 a
4
35 3
3
g 25 2
5 2
1.5 1
1
0.5
o, | -
Al A2 A3 A_4

Alternatives
a=2, f=1

EUM BUA mCC

Rank

Figure 2: U* and U~, Closeness coefficients and Rank of proposed accuracy measure

4

Figure 3: U* and U™, Closeness coefficients and Rank of distance measure

Alternatives
a=2, f=1

UM
UA_
CC_
Rank

Table 12: Closeness coefficient using positive and negative measures (¢ = 1.5, = 1.5)

Ci(Igec Rank Ci(Dy) Rank
Ay .3410 3 .5501 4
A, .3240 4 5297 2
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As 4287 1 4694 1
A, 3757 2 5385 3

45 a
35 3

2.5 2

Values
;%]

1.5 1

05
o | - - |

A1 A2 A3 A 4
Alternatives
a=1.5, f=1.5
- UN - CC_i Rank

Figure 4: U* and U~, Closeness coefficients and Rank of proposed accuracy measure

45 4
4
35 3
3
wu
225 2
g 2
1.5 1
1
0.5
O | | | |
Al A2 A3 A4
Alternatives
a=1.5,=15

BUM Un- CCi Rank

Figure 5: U* and U™, Closeness coefficients and Rank of distance measure

Table 13: Ranking of alternatives

v (a=28=1) Ay > A, > A > A,
1Y (a =158 =15) Ay > A, > A > A,
D,(a=2[=1) Ay > A, > As > A,
D,(a = 1.5, = 1.5) Ay > A, > Ay > As

The algorithm is implemented step-by-step as follows:

Stepl: Build the DHF decision matrix D = [a;;]sx4 With the decision-maker’s ratings in it. In Table

5, the fuzzy decision matrix is displayed.
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Step2: Apply the optimistic principle to ensure that every DHFE has the same length by repeating the
maximum value in each DHFE. The outcomes are displayed in Table 6.

Step3: Since every attribute belongs to the benefit type, Table 6’s normalised decision matrix
corresponds to it.

Step4: Using Egs.(8) and (9) determine the DHFPIS and DHFNIS; the findings are displayed in Table
7.

Step5: Using Eqg. (7) and the DHF knowledge measure Eq.(5), determine the attribute weights. The
findings are displayed in Table 8.

Step6: Utilizing equations (8) and (9) compute DHFPIS and DHFNIS; the results are displayed in
Tables 9 and 10. We conducted a comparison between the outcomes produced with our proposed DHF
accuracy measure and the results produced by the currently used DHF distance measurement. We use
the following comparison measure as a point of reference.

L. ; ;
=35 k5D — kP19 a > 0 Suetal. [7]

21y, Si=

1 Ly; i ;
Do (A, B) = (Xj21 w5~ X2 AR ALt
Step7: Using Equation (10), get the closeness coefficient. The findings are displayed in Tables 11 and
12.

Step8: Table 13 and Fig. 2, 3, 4 and 5 presents the ranking of all the alternatives based on the closeness
coefficient in descending order. Table 13 and Fig.2, 4 shows that, with our proposed DHF weighted
accuracy measure, the optimum alternative stays the same for a range of a and 8 values; the parameter
changes, though. However, even when the value of parameter a and S are changed, the overall ranking
of the alternatives change for the current distance measure as shown in Fig.3 and 5.

6 Detecting patterns using the suggested DHF accuracy measure

Next, the accuracy measure is applied to address the pattern detection problem with DHF-set.
Problem: Examining n patterns, which are represented by a DHF-set

R; = {(ui,hgfﬂ(ui),kgi(”(ui);ui €U, (i=12,...,n) defined on non empty set U=

{U1, Uy, ..., u,}. Consider any unknown pattern T = {(u;, k%% (u;), k29 (wy): w; € U)}. The objective
is to assign pattern T to one of the identified patterns R; the following methods to solve the above
mentioned issue.

Similarity/ accuracy measure based detection: If S(R;, T) be the T’s similarity/ accuracy pattern
from R;., at that point T is identified as pattern R;+, where

S(T,Ry+) = maxi=12, n{S(T,R)}.

Dissimilarity measure based detection: If D(R;, T) represents distance of pattern T from R;. Then T
IS recognized as pattern R;+,

.....
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We identify the pattern with our proposed DHF accuracy measure in the empirical investigations that
follow, and we compare the recognition outcomes with well-known DHF distance and similarity
measures.The distance measures D; (4, B) (i = 1,2) and similarity measures S;(4, B) (i = 1,2) thatare
currently in use are first listed as follows:

_ 1 1 gy 6)) 6)) 1 ™M 00) ) :
Dy(A,B) = . Xy G220 g = Rl =2 e = e 1) Singh[31]
1,1 @l i i 1 «Mx; i i 1
Do(A4,B) = Ty G- 2%, 1hgP = hg 1 + =% 71 1k — kg V1), Wang et
al.[29]
Ly . . Mo . .
3 1 minhGP RGP R+ [minflkg D kg .
S,(A,B) = —yn 2= 4 T8 T o= a8 Singh
2n =1 a(j) , o(j) mx o(j) ,00)
n 2,0 max{ing” hg P +E  imax(lieg Y g 1]
[31]
n_ 0D poWy s (00 o) _
S,(A,B) = — "15({; BU()-;Z]'l(AU(-)B )U(-) : Singh
2nmax(Th_, (hy )2+ (hg N2 (k)2 +(kg )2}
[31]

Example 5 Let R, = {({.2,.3,.3},{.3,.5,.5}),({.6,.7,.8},{.5,.5,.5})},
R, ={({.1,.3,.3},{.9,.9,.9}),({.7,.9,.9},{.7,.7,.7}},
R; = {({.5,.5,.5},{3,.4,.5}),({.3,.7,.7}, {4, .5,.5})} be three known patterns.

Let T = {({4,.6,.6},{.7,.8,.8}),({.3,.3,.3},{.7,.7,.7})} be unknown pattern. We use a dissimilarity
technique to classify T to R;.

Table 14: Pattern detection using I,.. and D4

(R, T) (R, T) (R3,T)
Ipec(a = 1.5, = 1) 1832 2666 5674
D,(a =158 =1) 2417 :3000 2417

Table 14 shows, I,.. = (R3, T) is maximum. Therefore T is classified to R;. But dissimilarity measure
D; is unable to classify T to R; because D;(R;,T) and D, (R3, T) have same values.

Example 6 Let Ry = {({.3,.4,4},{1,.2,.3}),({3,4,.4},{1,.2, 3)},R, =
{({4,.5,.5},{2,.3,.5}),({.7,.8,.9},{.2,.5,.6})}, R; = {{{.5,.6,.6},{.3,.3,.3}),({.35, .4, .4}, {5, .6,.8})}
be three known patterns.

Let T = {({.5,.6,.7},{.8,.8,.8}),({4,.5,.6},{.2,.3,.4})} be unknown pattern. We use a dissimilarity
technique to classify T to R;.

Table 15: Pattern detection using I,.. and D,

(R, T) (R, T) (R3,T)
Iee(a = 1.5, = 1) 1288 3918 2882
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D,(a =15, =1) |.4492 |.4678 4492

Table 15 shows, I,.. = (R3, T) is maximum. Therefore T is classified to R;. But dissimilarity measure
D, is unable to classify T to R; because D,(R,,T) and D,(R5,T) have same values.

Example 7 Let R, = {{{.7,.8,.9},{.1,.2,.3}),({.3, 4, .4}, {.1,.2,.3})},
R, = {({.4,.5,.5},{2,.3,.5}),({.7,.8,.9},{.2,.5,.5})},
Ry = {{{.1,.2,.2},{4,.5,.6}),({.4,.5,.5}, {.5,.6,.8})} be three known patterns.

Let T = {({.2,.6,.7},{.6,.7,.8}),({.2,.5,.5},{.1,.2,.3})} be unknown pattern. We use a similarity
technique to classify T to R;.

Table 16: Pattern detection using I .. and S

(Rl' T) (RZ' T) (R3, T)
Iee(a = 1.5,8 = 1) |.3354 3257 2997
S,(a=15p8=1) |.1885 1573 1885

Table 16 shows, I,.. = (R, T) is maximum. Therefore T is classified to R,. But dissimilarity measure
S; isunable to classify T to R; because S;(R,,T) and S; (R3, T) have same values.

Example 8 Let R, = {({.6,.7,.8},{.1,.2,.2}),({.4,.5,.5},{.2,.2,.2})},
R, = {({.3,.4,.5},{5,.6,.7}),({.6,.7,.8},{.2,.2,.2})},
R; = {({.5,.6,.7},{.3,.5,.7}),({.5,.5,.5}, {4, .6,.7})} be three known patterns.

Let T = {({.2,.5,.6},{.6,.8,.8}),({.6,.6,.6},{.2,.3,.4})} be unknown pattern. We use a similarity
technique to classify T to R;.

Table 17: Pattern detection using I ... and S,

(le T) (RZI T) (R3, T)
Ic(a=15pF=1) 1877 3911 5275
S,(a =15,8=1) 2245 1514 2245

Table 17 shows, I,.. = (R3,T) is maximum. Therefore T is classified to R;. But dissimilarity
measure S, is unable to classify T to R; because S, (R, T) and S,(R3, T) have same values.

Comparative examinations of similarity and dissimilarity metrics show that no measure is appropriate
for every pattern identification task in examples 4- 7. Consequently, an alternate approach is needed
for problems involving pattern identification. The suggested accuracy measure might be more effective
than the current similarity and dissimilarity measures in particular pattern recognition scenarios. Here,
we offer a measure to clearly classify a pattern T into one of the existing patterns. Therefore, for this
pattern detection problem, the suggested accuracy measure technique performs effectively.
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7 Conclusion

The membership and non-membership degrees of the DHFS are represented by two sets of possible
values. The DHFS is a comprehensive set that encompasses various existing sets. It appears to be a
more versatile strategy and has its own set of desirable qualities and advantages. It is found that in the
objective weight computation tasks, the DHF knowledge measure suggested in this research
outperforms the traditional DHF entropy measures. The current study provides four instances to
evaluate the efficacy of the proposed DHF - Knowledge measure. While dealing with MADM
situations where the attribute weights are unknown, the suggested knowledge measure for DHFSs is
more appropriate and very useful in a variety of scenarios. We also use the proposed DHF accuracy
metric in pattern detection and compare its performance with that of many other measures. Compared
to the traditional dual-hesitant measures of comparison, the suggested DHF accuracy measure is more
effective in identifying the unknown pattern. Numerous fields, such as speech recognition, picture
thresholding, and feature recognition, can get benefit from the application of the recommended
knowledge and accuracy metrics.
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