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Abstract:  

This research develops a diagonal optimal technique for solving the Type 2 Trapezoidal 

Intuitionistic Fuzzy Fractional Transportation Problem (T2TIFFTP), aiming to 

minimize transportation costs within an optimal solution framework. By incorporating 

the intuitionistic fuzzy fractional approach, the method effectively addresses the 

uncertainty and imprecision commonly encountered in real-world transportation 

scenarios. Numerical results demonstrate the technique’s efficiency and effectiveness. 

This highlighting its potential to significantly enhance the accuracy and quality of 

solutions in complex transportation situations. The diagonal optimal technique 

provides a robust framework for tackling fuzzy transportation problems, paving the 

way for more reliable and cost-efficient decision-making in uncertain environments. 

Keywords: Fuzzy fractional transportation problem, trapezoidal intuitionistic fuzzy 

number, diagonal approach, optimal solution. 

1. Introduction 

The field of operations research (OR) uses advanced analytical methods to improve efficiency 

in decision-making. It utilizes tools from computer science, statistics, and mathematics to 

resolve complicated problems across a range of sectors, including manufacturing, banking, 

logistics, and healthcare. Determining the most economical way to get goods from a group of 

suppliers to a group of customers is the aim of the transportation problem, a type of 

optimization problem in OR. The goal is to meet supply and demand constraints while 

minimizing the overall cost of transportation. A generalization of classical fuzzy sets, 

intuitionistic fuzzy sets (IFS) are designed to address scenarios in which there is a great deal 

of uncertainty and hesitation about establishing membership and non-membership degrees. An 

expansion of the basic transportation problem, the trapezoidal intuitionistic fuzzy fractional 

transportation problem (TIFFTP) involves representing the parameters (supply and demand) as 

trapezoidal intuitionistic fuzzy numbers (TIFNs). By addressing ambiguity and uncertainty 

more skillfully, this method offers a more adaptable and accurate model for transportation-

related problems. By adding Type 2 intuitionistic fuzzy sets and fractional programming to the 

classical transportation problem, an advanced mathematical model known as the Type 2 

intuitionistic fuzzy fractional transportation problem (T2IFFTP) is created. When there is a lot 

of ambiguity and uncertainty in the decision-making process, this approach is especially 

efficient. The structure of this paper is as follows: Section 2 addresses the literature review of 

the presented problem. The paper’s preliminary context is provided in Section 3. The problem 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 9s (2025) 

 

299 https://internationalpubls.com 

with formulation and the several stages used in the proposed approach are explained in Section 

4. The optimal solution for the T2TIFFTP can be obtained by solving the illustrative example 

in Section 5. Results are presented in Section 6, and Section 7 concludes.  

2. Literature review 

A survey of the literature on intuitionistic fuzzy sets, fractional programming, transportation 

problems, and the interactions of these topics is necessary to understand the T2IFFTP. The 

following is a formal framework for this kind of literature review. Hitchcock [8] was the one 

who initially came up with the fundamental transportation problem. Zadeh [19] introduced the 

fuzzy set, which has been described by membership degree. Atanassov [3] introduced the IFS 

theory in 1986 to help with uncertainty and hesitation. [13] formulated a transportation problem 

where the real, fuzzy, and intuitionistic fuzzy numbers represent the costs, supply, and 

demands, respectively. In 2012, Kumar and Hussain [9] introduced a method for resolving the 

intuitionistic fuzzy transportation problem (IFTP). The triangular intuitionistic fuzzy numbers 

have been ordered using a suggested accuracy function by Singh and Yadav [17], and this work 

has been extended to an IFTP of type 2. Researchers Shukla [16], Taghikhani [18], and Fu [6] 

have all examined various decision-making problems in the wider picture of T2IFS. The idea 

of the TIFFTP was introduced by SK Bharati [4], along with an approach for solving it that 

utilizes the expectation of trapezoidal intuitionistic fuzzy numbers. Gupta (Aggarwal and 

Gupta [1]; Anupum and Gupta [7]) demonstrated how to solve the intuitionistic fuzzy solid 

transportation problem using a novel ranking technique based on signed distance, as well as an 

effective way for addressing the intuitionistic fuzzy transportation problem of type 2. The 

diagonal optimum technique was established by Khalid [12] for the assignment problem (AP). 

Fuzzy AP was resolved by Dhanasekar [5] through the diagonal optimum algorithm and 

Vogel’s approximation technique (VAM). It is suggested to use the diagonal optimum 

approach in [[14], [15]] to tackle fully fuzzy transportation problems. [10] created and 

presented a type 2 fuzzy set extension known as the generalized symmetric type 2 intuitionistic 

fuzzy set. This study provides a practical method for handling the T2IFFTP, which may be 

compared to the work of [2]. Thus, an algorithm known as the diagonal optimal method is 

investigated in this work while keeping in mind everything that was previously described and 

motivated by [11]. 

3. Preliminary 

This section provides essential background and definitions pertaining to fuzzy set theory. 

Definition 3.1 Consider T to be a nonempty set. An IFS 𝛩̂ in T is defined as an object of the 

form 𝛩̂ = {(t,  µ𝛩̂(t), 𝜈𝛩̂(t)) | t ∈ T}, where the functions,  µ𝛩̂(t) : T → [0,1] and 𝜈𝛩̂(t) : T → 

[0,1] define the degree of membership and non-membership of the element t ∈ T respectively, 

and 0 ≤ µ𝛩̂(t), 𝜈𝛩̂(𝑡) ≤ 1 for every t ∈ T. 

Definition 3.2 If a subset of the real line 𝛩̂ = {(t, µ𝛩̂(t), 𝜈𝛩̂(t)) | t ∈ T} is held to be an 

intuitionistic fuzzy number, then it is referred to as an intuitionistic fuzzy number that satisfies 

the criteria listed below. 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 9s (2025) 

 

300 https://internationalpubls.com 

i) There exist r1 ∈ R, µ𝛩̂(r1) = 1 and 𝜈𝛩̂(r1) = 0. 

ii) Assuming that µ𝛩̂(t) : R → [0,1] is continuous, for every t ∈ R, 0 ≤ µ𝛩̂(t), 𝜈𝛩̂(t) ≤ 1 holds. 

The membership and non-membership functions of 𝛩̂ are as follows: 

 

                                      µ𝛩̂(t) = {

𝑘1(𝑡); 𝑡 ∈ [𝑟1 − 𝜏1, 𝑟1]
1;             𝑡 = 𝑟1

𝑙1(𝑡); 𝑡 ∈ (𝑟1,  𝑟1 + 𝜎1]

0;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

                                      𝜈𝛩̂(t) = {

1;          𝑡 ∈  (−∞, 𝑟1  −  𝜏2) 
𝑘2(𝑡);          𝑡 ∈  [𝑟1  −  𝜏2, 𝑟1]
0;  𝑡 = 𝑟1, 𝑡  ∈  [𝑟1 + 𝜎2, ∞)  
𝑙2(𝑡);  𝑡 ∈  (𝑟1, 𝑟1  + 𝜎2]

  

  where ki(t) and li(t) (for i = 1, 2) are strictly increasing and decreasing functions in [r1 − τi, r1) 

and (r1, r1 + σi], respectively. The left and right spreads of µ𝛩̂(t) and 𝜈𝛩̂(t). 

Definition 3.3 Let 𝐶̂ = ((𝑚1, 𝑚2, 𝑚3, 𝑚4), (𝑚1 ̍, 𝑚2 ̍, 𝑚3 ̍, 𝑚4 ̍)) represents a trapezoidal 

intuitionistic fuzzy number, where (𝑚1 ̍ ≤ 𝑚1  ≤  𝑚2  ≤  𝑚3  ≤  𝑚4  ≤  𝑚4 ̍) has membership 

and non-membership functions described as follows: 

 

                                                    µ𝐶̂(t) = 

{
 
 

 
 

𝑡 − 𝑚1

𝑚2 − 𝑚1
;  𝑚1  ≤  𝑡 ≤  𝑚2  

    1;        𝑚2 ≤  𝑡 ≤  𝑚3
𝑚4 −𝑡

𝑚4 −𝑚3
;  𝑚3  ≤ 𝑡 ≤  𝑚4

0;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

            

and 

 

                                                   𝜈𝐶̂(t) = 

{
 
 

 
 
 𝑚2 − 𝑡

𝑚2 − 𝑚1 ̍
;  𝑚1 ̍ ≤   𝑡 ≤ 𝑚2  

    0;       𝑚2 ≤  𝑡 ≤  𝑚3
𝑡 − 𝑚3

𝑚4 ̍ −𝑚3
;  𝑚3  ≤ 𝑡 ≤  𝑚4 ̍

1;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Definition 3.4 Let the two generalized trapezoidal intuitionistic fuzzy numbers be and                          

𝐶̂ = {(𝑚1 ̍, 𝑚2 ̍, 𝑚3 ̍, 𝑚4 ̍, ), (𝑛1 ̍, 𝑛2 ̍, 𝑛3 ̍, 𝑛4 ̍);  𝜉𝐴, 𝜓𝐴 } and 𝐷̂ = 

{(𝑝1 ̍, 𝑝2 ̍, 𝑝3 ̍, 𝑝4 ̍), (𝑞1 ̍, 𝑞2 ̍, 𝑞3 ̍, 𝑞4 ̍);  𝜉𝐵, 𝜓𝐵}. 
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The following arithmetic operations appear: 

 

i) Addition: 𝐶̂ + 𝐷̂ = {(𝑚1 ̍ + 𝑝1 ̍, 𝑚2 ̍ +  𝑝2 ̍, 𝑚3 ̍ +  𝑝3 ̍, 𝑚4 ̍ +  𝑝4 ̍) (𝑛1 ̍ +  𝑞1 ̍, 𝑛2 ̍ +  𝑞2 ̍, 𝑛3 ̍ +

 𝑞3 ̍, 𝑛4 ̍ +  𝑞4 ̍); ξ, ψ} where ξ = min (𝜉𝐴, 𝜉𝐵) and 𝜓 = max (𝜓𝐴, 𝜓𝐵). 

 

ii) Subtraction: 𝐶̂ - 𝐷̂ = {(𝑚1 ̍ −  𝑝4 ̍, 𝑚2 ̍ −  𝑝3 ̍, 𝑚3 ̍ −  𝑝2 ̍, 𝑚4 ̍ −  𝑝1)̍ (𝑛1 ̍ −  𝑞4 ̍, 𝑛2 ̍ −

 𝑞3 ̍, 𝑛3 ̍ −  𝑞2 ̍, 𝑛4 ̍ −  𝑞1 ̍); ξ, ψ} where ξ = min (𝜉𝐴, 𝜉𝐵) and 𝜓 = max (𝜓𝐴, 𝜓𝐵). 

 

iii) Multiplication: 𝐶̂ ∗ 𝐷̂ = {(𝑚1 ̍ ∗  𝑝1 ̍, 𝑚2 ̍ ∗  𝑝2 ̍, 𝑚3 ̍ ∗ 𝑝3 ̍, 𝑚4 ̍ ∗  𝑝4 ̍) (𝑛1 ̍ ∗ 𝑞1 ̍, 𝑛2 ̍ ∗  𝑞2 ̍, 𝑛3 ̍ ∗

𝑞3 ̍, 𝑛4 ̍ ∗  𝑞4 ̍); ξ, ψ} where ξ = min (𝜉𝐴, 𝜉𝐵) and 𝜓 = max (𝜓𝐴, 𝜓𝐵). 

 

iv) Scalar Multiplication: π𝐶̂ = {(𝜋𝑚1 ̍, 𝜋𝑚2 ̍, 𝜋𝑚3 ̍, 𝜋𝑚4 ̍, ), (𝜋𝑛1 ̍, 𝜋𝑛2 ̍, 𝜋𝑛3 ̍, 𝜋𝑛4 ̍);  𝜉𝐴, 𝜓𝐴 }           

if π ˃ 0= {(𝜋𝑚4 ̍, 𝜋𝑚3 ̍, 𝜋𝑚2 ̍, 𝜋𝑚1 ̍, ), (𝜋𝑛4 ̍, 𝜋𝑛3 ̍, 𝜋𝑛2 ̍, 𝜋𝑛1 ̍);  𝜉𝐴, 𝜓𝐴 } if π ˂ 0. 

 

v) Division: 𝐶̂ ÷ 𝐷̂ = {(𝑚1 ̍ ÷  𝑝4 ̍, 𝑚2 ̍ ÷  𝑝3 ̍, 𝑚3 ̍ ÷  𝑝2 ̍, 𝑚4 ̍ ÷  𝑝1)̍ (𝑛1 ̍ ÷  𝑞4 ̍, 𝑛2 ̍ ÷  𝑞3 ̍, 𝑛3 ̍ ÷

 𝑞2 ̍, 𝑛4 ̍ ÷  𝑞1 ̍); ξ, ψ} where ξ = min (𝜉𝐴, 𝜉𝐵) and 𝜓 = max (𝜓𝐴, 𝜓𝐵). 

Let 𝐶̂ = {(𝑚1 ̍, 𝑚2 ̍, 𝑚3 ̍, 𝑚4 ̍, ), (𝑛1 ̍, 𝑛2 ̍, 𝑛3 ̍, 𝑛4 ̍);  𝜉𝐴, 𝜓𝐴 }. In such C = (𝑚2 ̍ = 𝑚3 ̍ = 𝑛2 ̍ = 𝑛3 ̍): 

At this point, the membership function is described as follows: 

 

                                F(𝜒𝐶) =  𝑥0̂, 𝑦0̂  =  (
2𝑚1′ + 7𝑚2′ + 7𝑚3′ + 2𝑚4′

18
) ∗ (

7𝜉𝐴

18
). 

 

Likewise, the non-membership function is described as follows: 

 

                                F(𝜑𝐶) =   𝑥0̂, 𝑦0̂ = (
2𝑛1′ + 7𝑛2′ + 7𝑛3′ + 2𝑛4′

18
) ∗ (

11 + 7𝜓𝐴

18
). 

 

 Then, utilizing them, we define the rank as follows: 

 

                                ℛ(C) = 
𝜉𝐴𝐹(𝜒𝐶) + 𝜓𝐴𝐹(𝜑𝐶)

𝜉𝐴 +  𝜓𝐴
. 

 

For the purpose of comparing two ranking generalized intuitionistic trapezoidal fuzzy numbers, 

𝐶̂  and 𝐷̂ in the ranking method. 
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i) 𝐶̂ > 𝐷̂ if ℛ (𝐶̂) > ℛ (𝐷̂).  

ii) 𝐶̂ ≤ 𝐷̂ if ℛ (𝐶̂) ≤ ℛ (𝐷̂).  

iii) 𝐶̂ = 𝐷̂ if ℛ (𝐶̂) = ℛ (𝐷̂). 

 

4. Problem-making 

a) Fractional Transportation Problem (FTP) 

 

            The FTP involves minimizing interval-valued objective functions with interval costs. 

Here, the objective function coefficients 
𝐸𝑖𝑗
𝑣

𝐹𝑖𝑗
𝑣 , represent source parameters Ci and destination 

parameters Dj, while Ev is the conveyance parameter. These coefficients are in interval form, 

where Ci = [𝑔𝐿𝑖′, 𝑔𝑅𝑖′] for (i = 1, 2, ,.., p) and Dj = [ℎ𝐿𝑗′, ℎ𝑅𝑗′], for (j = 1, 2, ,.., q). The formulation 

is as follows: 

                       Min 𝑍𝑣(𝑡𝑖𝑗
∗ ) = 

∑ ∑ [𝐸𝐿𝑖𝑗̍
𝑣 , 𝐸𝑅𝑖𝑗̍

𝑣𝑞
𝑗=1 ]𝑡𝑖𝑗

∗  + 𝛿
𝑝
𝑖=1

∑ ∑ [𝐹𝐿𝑖𝑗̍
𝑣 , 𝐹𝑅𝑖𝑗̍

𝑣𝑞
𝑗=1

]𝑡𝑖𝑗
∗  + 𝜖

𝑝
𝑖=1

, 𝑣 = 1, 2, , . . , 𝑉 

subject to the constraints 

∑𝑡𝑖𝑗
∗

𝑞

𝑗=1

= 𝐶𝑖 = [𝑔𝐿𝑖′, 𝑔𝑅𝑖′], (𝑖 = 1,2, , . . , 𝑝) 

∑𝑡𝑖𝑗
∗

𝑝

𝑖=1

= 𝐷𝑗 = [ℎ𝐿𝑗′,ℎ𝑅𝑗′] , (𝑗 = 1,2, , . . , 𝑞) 

                                                                                              𝑡𝑖𝑗 ≥ 0, ∀ i, j. 

A necessary and sufficient condition for the existence of a feasible solution is the balanced 

criterion. 

                                          [𝐸
𝐿𝑖𝑗
′
𝑣 , 𝐸

𝑅𝑖𝑗
′
𝑣 ] [𝐹

𝐿𝑖𝑗
′
𝑣 , 𝐹

𝑅𝑖𝑗
′
𝑣 ], (𝑣 =  1, 2, , . . , 𝑉), 

                                             𝑊𝑖𝑗
𝑣 = [𝑊

𝐿𝑖𝑗
′
𝑣 ,𝑊

𝑅𝑖𝑗
′
𝑣 ] =

𝐸𝑖𝑗
𝑣

𝐹𝑖𝑗
𝑣 = 

[𝐸
𝐿𝑖𝑗
′
𝑣 , 𝐸

𝑅𝑖𝑗
′
𝑣 ]

[𝐹
𝐿𝑖𝑗
′
𝑣 , 𝐹

𝑅𝑖𝑗
′
𝑣 ]

 

represents the uncertain cost interval for the transportation problem. 

b. Type 2 intuitionistic fuzzy fractional transportation problem 

The proposed strategy effectively determines the optimal solution for an intuitionistic fuzzy 

fractional transportation problem with real demand, supply, and transportation costs 
𝑒𝑖𝑗
𝑙

𝑓𝑖𝑗
𝑙  where 

i = 1, 2, ... p and j = 1, 2, ... q from the ith source to the jth destination, as outlined in Table 1. 
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We calculate the optimum solutions for the numerator and denominator separately, then divide 

the results to obtain the optimal solution for the T2IFFTP. 

                                                                                        

5. Algorithm 

This section discusses our proposed algorithm. Influenced by the research of [11]. The 

following is a list of the stages that have to be taken to determine the optimal solution. 

 Step 1: Identify the two cells with the lowest cost and the next lowest cost in each row for the 

T2IFFTP. Calculate their difference (penalty) along the side of the table against the 

corresponding row. Repeat the same process for the columns. 

Step 2: Select the highest penalty from each column and row. In the case of a tie, use the tie-

breaking option. Choose a row or column. Continue this process until each row or column has 

a value assigned to it. 

Step 3: Let 𝐴𝑖𝑗
∗  be the assignment cost for column j. Calculating each cost 𝑐𝑗

∗ in the relevant 

cost matrix column by subtracting 𝐴𝑖𝑗
∗ . 

Step 4: Identify a rectangle for every unassigned cell, with two corners assigned and the other 

two corners unassigned. Calculate the value of 𝑑𝑖𝑗 ̍ by summing the diagonals of the non-

assigned cells. If all 𝑑𝑖𝑗 ̍ are positive, proceed to stage 6. 

Otherwise, move to stage 5. 

Step 5: Select the most negative 𝑑𝑖𝑗  and exchange the assigned cell of the diagonals. 

Repeat the process until all 𝑑𝑖𝑗 ̍ ˃ 0. 

Step 6: Allocate the maximum feasible amount from the given supplies and demands to the 

assigned cells. For non-assigned cells, allocate the remaining supply and demand to the cell 

with the lowest cost. Continue this process until there is no more supply or demand. 

Step 7: Once the problem has (m+n-1) basic variables, the initial basic feasible solution is 

found. 
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Step 8: We determined the optimal value using stage 7, and the optimal value of a fuzzy 

fractional intuitionistic is =  ∑ ∑ (
𝑒𝑖𝑗
𝑙

𝑓𝑖𝑗
𝑙 ) ∗  (𝑡𝑖𝑗

∗𝑞
𝑗=1

𝑝
𝑖=1 ).  

6. Numerical illustration 

According to [2], the T2TIFFTP is applied to confirm the results of the proposed computational 

approach. First, we ascertained the numerator’s values. 

These are the steps that are provided. Determine the penalties for each row and column, then 

apply the corresponding penalty to each row and column as shown in the table. 
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The maximum penalty in this case is seen in the second column. Choose the column to assign 

the smallest intuitionistic fuzzy number (shown in bold) to that column. After assigning, 

eliminate the matching row and column. 

 

The remaining matrix is obtained by eliminating the first row and second column. 

 

 
To obtain Table 4, proceed with steps 1 and 2. Repeat the process until each row or column has 

a value assigned to it. Subtracting the allocated cost from each element in the relevant column. 

 

 
 

For every non-assigned cell, 
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Given that all of the 𝑑𝑖𝑗 ̍ ˃ 0, the assignments are optimal.  

The optimal solution for the numerator is

 
The optimal transportation cost for the numerator is ((4,5,5,7)(2,5,5,9);0.6,0.3) × 2  

+ ((3,4,4,7)(1,4,4,8);0.5,0.1) × 12 + ((4,6,6,10)(2,6,6,12);0.5,0.3) × 15 + ((7,10,10,13) 

(6,10,10,15);0.7,0.2) × 1 + ((7,10,10,14)(6,10,10,15);0.8,0.5) × 12+ ((6,10,10,12) (5,10,10,13); 

0.6,0.1) × 2 + ((8,10,10,12)(7,10,10,14);0.7,0.5) × 8 

      = ((271,378,378,549)(190,378,378,627);0.5,0.5). 

 

Subsequently, we ascertained the denominator’s value. These are the tables that are provided. 

For the denominator, the following steps are listed: 
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Determine the penalties for each row and column, then apply the corresponding penalty to each 

row and column as shown in the table. 

 

The maximum penalty in this case is seen in the fourth row. Choose the row to assign the 

smallest intuitionistic fuzzy number (shown in bold) to that row. After assigning, eliminate the 

matching row and column. 
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The remaining matrix is obtained by eliminating the fourth row and first column.

To obtain Table 9, proceed with steps 1 and 2. Repeat the process until each row or column has 

a value assigned to it. Subtracting the allocated cost from each element in the relevant column.

For every non assigned cell, 
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Given that all of the assignments are optimal. The optimal solution for the denominator is 

 
 

The optimal transportation cost for the denominator is ((5,7,7,10)(4,7,7,12);0.4,0.2) × 12 

+ ((5,6,6,9)(4,6,6,12);0.6,0.3) × 2 + ((2,5,5,6)(1,5,5,8);0.5,0.2) × 11 + ((9,12,12,14) 

(7,12,12,16);0.3,0.1) × 1 + ((7,8,8,10)(5,8,8,11);0.4,0.2) × 4 + ((3,4,4,6)(2,4,4,7); 0.5,0.3) × 7 

+ ((2,4,4,5)(1,4,4,9);0.7,0.5) × 1 

= ((174,271,271,360)(120,271,271,473);0.3,0.5). 

 

After determining the optimal solution for the numerator and denominator, we can divide the 

previously computed numerator and denominator to compute the T2TIFFTP. In other words, 

the optimal solution to the T2IFFTP is represented by the following, based on calculations: 

 

((0.753,1.395,1.395,3.155)(0.402,1.395,1.395,5.255);0.3,0.5). 

 

 

7. Results and Discussion 

 

This investigation draws inspiration from [2] and will play a significant role in tackling 

transportation problems that involve uncertainty. This work does not require identification of 

the first basic viable solution, as the suggested technique immediately yields the optimal 

solution. It reduces computational effort and time. Our suggested method demonstrates an 

effective approach to identifying the best solution for T2IFFTP. To achieve this, we 

independently computed the numerator and denominator to determine the optimal solution. 

The approach employed herein is straightforward and accomplishes its objective swiftly and 

precisely for T2TIFFTP, in contrast to the methodologies documented in the literature. In this 

case, determining the first basic viable solution for the numerator and denominator individually 

is unnecessary, as it directly yields the optimal solution. The diagonal optimum approach 

improves the existing zero-centered value method for addressing the T2IFFTP. The proposed 

approach provides a more cost-effective option. By accounting for the diagonal parts, this 

method gives more accurate results when managing type 2 intuitionistic fuzzy sets, which 

include membership, non-membership, and hesitation degrees. This allows for a more accurate 

calculation of transportation expenses, resulting in a more optimal solution. The proposed 

method enhances the current strategy for tackling the T2TIFFTP. The diagonal optimal method 

offers a more economical alternative. By examining the diagonal components, such as the 

degrees of membership, non-membership, and hesitation, this method provides more precise 

results for managing type 2 intuitionistic fuzzy sets. This allows for a more accurate calculation 
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of transportation costs, resulting in a more optimal solution. The proposed approach regularly 

yields reduced transportation expenses compared to the current strategy. Although the diagonal 

optimum technique produces positive outcomes, its applicability to more intricate 

transportation issues require further investigation in future studies. The figure and table below 

compare the suggested approach with the current method. 

 

       

                                         

 

8. Conclusion 

This study demonstrates a novel method for solving the T2TIFFTP by checking non-assigned 

cells in a planned manner using given diagonals. The approach ensures an optimal solution 

while greatly reducing computing complexity, providing a major advance over existing 

strategies. A significant decrease in transportation costs further supports the approach’s 

practical usefulness, establishing it as a vital tool for resource allocation. The strategy improves 

resource management efficiency and has potential applications in a wide range of industries. 

Future studies should concentrate on improving the model and investigating its applicability to 

a variety of logistical difficulties, ensuring its continuous relevance and influence in 

optimization efforts. 
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