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Abstract: 

In recent years, deep learning has become a cornerstone of advancements in medical imaging, 

facili- tating significant improvements in early disease detection. This study presents a phased 

approach to optimizing gastrointestinal (GI) disease diagnostics by implementing a structured 

data augmentation and preprocessing phase. Leveraging an expanded dataset with novel 

clinically rele- vant classes, this phase seeks to increase model robustness and classification 

accuracy. Our methodology employs targeted data augmentation techniques coupled with Ef- 

ficientNetV2 for detailed feature extraction in endoscopic imagery. Initial results underscore 

the potential for sub- stantial improvements in diagnostic precision, particularly in identifying 

nuanced GI conditions. By focusing on this foundational phase, this work establishes a 

framework for developing advanced AI-driven diagnostic tools tailored for GI disease 

detection. 

Keywords: Gastrointestinal Disease Detection, Deep Learning, Data Augmentation, 
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I. INTRODUCTION

The integration of artificial intelligence (AI) into med- ical diagnostics has ushered in unprecedented 

advances, especially in image-intensive fields like gastrointestinal (GI) endoscopy. In 2022 alone, GI 

conditions accounted for nearly 10% of all global healthcare costs, primarily due to the rising 

prevalence of diseases such as col- orectal cancer, Crohn’s disease, and gastroesophageal reflux 

disease (GERD) [1], [2]. Accurate detection of GI conditions is crucial, not only for early intervention 

but also to reduce the burden on healthcare systems worldwide. 

Recent studies underscore the potential of AI-driven diagnostics in reducing false positives and 

improving diagnostic accuracy. For instance, advanced deep learn- ing models have demonstrated the 

capability to identify complex pathological features in endoscopic images with over 90% accuracy, 

often surpassing traditional diag- nostic techniques in speed and reliability [3]. However, variability in 

GI images—caused by different lighting conditions, camera angles, and individual anatomical 

differences—continues to pose significant challenges. Without targeted data preprocessing, AI models 

may underperform in real-world clinical environments, where such variations are inevitable. 

While prior research has explored the potential of deep learning models like EfficientNet and Vision 

Transform- ers in various medical imaging applications, few have systematically examined the impact 

of comprehensive data augmentation tailored specifically for GI disease de- tection [4], [5]. Data 

augmentation, which involves artifi- cially increasing the diversity of the training dataset, has been 

shown to enhance model robustness by simulating real-world variability in images. In GI diagnostics, 
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this is particularly useful as it enables models to recognize both common and rare disease presentations 

across a broader range of imaging conditions [6]. 

The focus of this paper is on the initial, yet critical, phase of GI disease detection—data preprocessing 

and augmentation. This approach seeks to enhance model performance by refining the dataset itself 

before ap- plying complex ensemble techniques. Building on the GastroVision dataset, we introduce 

three new categories: Inflammatory Conditions, Neoplastic Growths, and Inter- ventional Findings, 

each of which represents clinically significant conditions relevant to gastroenterology. Our approach 

is inspired by the success of recent studies that emphasize the value of tailored preprocessing in 

achieving higher diagnostic accuracy [7], [8]. 

EfficientNetV2, a state-of-the-art convolutional neural network, is employed for feature extraction due 

to its efficient scaling properties and proven performance in medical imaging tasks [9]. Unlike other 

architectures, EfficientNetV2 optimally balances model depth, width, and resolution, making it 

particularly suited for high- dimensional GI images. Additionally, EfficientNetV2’s use of compound 

scaling enhances its ability to capture fine-grained details without an excessive computational burden 

[10]. 

The goal of this work is to lay a solid foundation for subsequent phases in the AI diagnostic pipeline 

by enhancing data quality and variability. By focusing on robust preprocessing, we aim to address 

common issues of model overfitting and underperformance when exposed to clinical GI data. The 

insights gained from this phase will inform the development of more sophisticated AI -driven 

diagnostic tools, designed to assist clinicians in real-time GI disease detection with improved accuracy 

and reliability. 

II. RELATED WORK 

Recent advances in AI for medical imaging under- score the critical role of transfer learning models, 

such as EfficientNet and Vision Transformers, in enhancing diagnostic accuracy. Studies have shown 

that transfer learning models, when combined with targeted data aug- mentation strategies, yield 

considerable improvements in disease detection rates, especially within challenging and highly 

variable domains such as gastrointestinal (GI) diagnostics [12]. This section provides an overview of 

foundational research in transfer learning, data augmen- tation, and disease-specific applications, 

highlighting key approaches and existing gaps that motivate a structured, phased methodology for 

developing AI models in GI disease detection. 

A. Transfer Learning in Medical Imaging 

Transfer learning has become instrumental in apply- ing pre-trained models to medical imaging tasks 

where acquiring large, annotated datasets is challenging. Tan and Le’s work on EfficientNet 

demonstrated that scaling network architectures using a compound  scaling method can lead to 

significant improvements in both accuracy and efficiency [1]. Zou et al. explored the role of Effi- 

cientNet for GI image classification, reporting increased accuracy and robustness to variations in 

imaging condi- tions [5]. Vision Transformers (ViT), initially designed for natural language 

processing, were adapted for image- based tasks by Dosovitskiy et al., who showed that ViTs could 

efficiently capture global context in image patches, achieving state-of-the-art results on benchmark 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 8s (2025) 

 

539 https://internationalpubls.com 

datasets [3]. Subsequent work by Wang et al. focused on applying ViTs to GI disease detection, where 

the model’s attention mechanisms were critical in identifying intricate patterns within endoscopic 

images [12]. 

Swin Transformers, introduced by Liu et al., offered further enhancements by incorporating shifted 

windows to model both local and global interactions, an advance- ment that has proven beneficial in 

capturing complex GI structures [4]. The architecture has shown promise in medical imaging tasks due 

to its ability to reduce com- putational requirements while maintaining performance [6]. Recent 

comparative studies underscore the potential of these transfer learning models, yet emphasize the 

necessity of tuning and augmentation when deploying such architectures in specialized domains [2]. 

B.  Data Augmentation Techniques for Medical Imaging 

Data augmentation has emerged as a crucial technique for improving model generalizability in medical 

image analysis, particularly for domains like GI endoscopy, where image variation is high [7]. Various 

augmenta- tion techniques, including rotation, scaling, brightness 

adjustment, and contrast enhancement, have been imple- mented to diversify training data and reduce 

overfitting [8]. Alam et al. investigated the effect of augmentation on GI endoscopy images and found 

that systematic augmentation led to a marked increase in diagnostic performance, particularly when 

combined with transfer learning models [6]. 

Advanced techniques, such as elastic transformations and randomized cropping, have further 

strengthened data augmentation practices. For instance, Takahashi et al. demonstrated that elastic 

transformations improved the recognition of subtle GI lesions in endoscopic imagery [7]. These 

augmentation strategies are instrumental in developing robust models capable of generalizing across 

diverse GI pathologies, underscoring the need for dataset enhancement in transfer learning 

applications. 

C. Deep Learning for GI Disease Detection 

Deep learning models for GI disease detection have demonstrated a considerable improvement in 

diagnosis accuracy across various GI conditions, including polyps, esophagitis, and gastric cancer [2], 

[9]. The GastroVision dataset, used extensively in GI diagnostics, has been augmented with new 

classes such as neoplastic growths, enhancing its diagnostic applicability and enabling better model 

generalization [2]. Chen et al. applied Efficient- Net and Vision Transformers on this dataset, achieving 

notable improvements in classification accuracy through a combination of transfer learning and 

specialized aug- mentation [10]. This enhanced dataset allowed models to distinguish complex GI 

conditions with higher sensitivity and specificity, addressing a key challenge in automated diagnostics. 

A summary of recent approaches to GI disease de- tection, including transfer learning models and aug- 

mentation strategies, is provided in Table I. This table highlights the performance metrics across 

different stud- ies, underscoring the importance of combining advanced model architectures with 

structured data augmentation. 

Despite these advancements, limitations remain in current approaches. Most studies have primarily 

focused on individual models without leveraging the benefits of ensemble learning, which has been 

shown to fur- ther enhance performance in other domains. Addition- ally, many existing models lack 
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adequate evaluation on augmented datasets that comprehensively represent real-world clinical 

diversity. This study addresses these limitations by proposing a phased approach to GI disease 

detection, integrating ensemble methods with optimized transfer learning models, and applying a broad 

range of augmentation techniques tailored to the GastroVision dataset. 

TABLE I Summary of Related Work in GI Disease Detection 

Reference Model Dataset Augmentation Key Metrics 

Tan and Le [1] EfficientNet ImageNet Scaling, Brightness Accuracy: 85.4% 

Zou et al. [5] EfficientNet GI Dataset Cropping, Rotation Accuracy: 88.1% 

Dosovitskiy et al. 

[3] 

Vision 

Transformer 

ImageNet N/A Top-1 Accuracy: 

88.6% 

Wang et al. [12] Vision 

Transformer 

GI Dataset Rotation, Contrast Accuracy: 89.2% 

Liu et al. [4] Swin 

Transformer 

Medical 

Imagery 

Shifted Window AUROC: 0.91 

Takahashi et al. 

[7] 

EfficientNet GI Endoscopy Elastic 

Transformations 

Sensitivity: 92.5% 

Alam et al. [6] Swin 

Transformer 

GastroVision Cropping, Flip Precision: 93.8% 

Chen et al. [10] EfficientNet + 

ViT 

GastroVision Rotation, Noise F1 Score: 0.85 

 

III. METHODOLOGY 

This work focuses on the first phase of a multi- step approach to enhancing GI disease detection. Phase 

I emphasizes data preprocessing and augmentation to improve model robustness. Key steps include 

data aug- mentation, EfficientNetV2-based feature extraction, and a detailed description of the 

expanded GastroVision dataset. 

 

Fig. 1. Workflow for GI Disease Detection using EfficientNetV2-based Feature Extraction and Data 

Augmentation Techniques. 
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Algorithm 1 GI Disease Detection Using Transfer Learning and Stacking Ensemble 

1: Input: Augmented GastroVision dataset with GI image classes 

2: Output: Classified GI disease labels with optimal accuracy 

3: Step 1: Load and Preprocess Data 

4: Load dataset images and respective class labels. 

5: Resize images to 224x224 pixels to match input requirements. 

6: Normalize pixel values to the range [0,1] for unifor- mity. 

7: Step 2: Data Augmentation 

8: Apply augmentation techniques (rotation, scaling, brightness adjustment, cropping) to increase 

dataset diversity. 

9: Step 3: Feature Extraction with EfficientNetV2 

10: Initialize EfficientNetV2 with pre-trained weights. 

11: Feed augmented images into EfficientNetV2 model to extract high-level features. 

12: Step 4: Model Training for Each Base Model 

13: Train EfficientNetV2, Vision Transformer (ViT), and Swin Transformer individually on extracted 

features. 

14: Step 5: Ensemble Classification 

15: Combine outputs of EfficientNetV2, ViT, and Swin Transformer in a stacking ensemble setup. 

16: Use a meta-classifier (e.g., logistic regression) to predict final GI disease classes. 

17: Step 6: Evaluation 

18: Evaluate model using accuracy, precision, recall, and F1-score metrics. 

19: Return optimal predictions and performance metrics. 

The proposed algorithm for gastrointestinal (GI) dis- ease detection involves a systematic sequence of 

steps, beginning with the loading of the augmented Gastro- Vision dataset, followed by applying data 

preprocess- ing techniques and feature extraction through Efficient- NetV2. The extracted features are 

then fed into a transfer learning-based model which learns optimized feature representations. The 

process concludes by using these features in a stacking ensemble classifier to improve accuracy, which 

combines the predictive strengths of EfficientNetV2, Vision Transformers, and Swin Trans- formers. 

This algorithm leverages a systematic approach to enhance GI disease detection accuracy through data 

preprocessing, feature extraction, and ensemble learning. Starting with an augmented dataset, the 

algorithm applies augmentation to tackle image variability. EfficientNetV2 serves as a robust feature 

extractor due to its scalabil- ity and balanced architecture. Three transfer learning models—

EfficientNetV2, Vision Transformers, and Swin Transformers—are individually trained on the 

extracted features. Their outputs are then combined in a stacking ensemble framework, where a meta-
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classifier consoli dates predictions to achieve higher accuracy. The final model performance is 

validated across multiple metrics, ensuring a robust and clinically useful detection system for 

gastrointestinal diseases. 

A. Data Augmentation Techniques 

We implemented a diverse set of data augmentation techniques to address challenges posed by lighting, 

po- sitional variability, and other imaging inconsistencies commonly found in GI endoscopy. 

Techniques such as rotation, scaling, brightness adjustment, and random cropping were applied to 

increase data diversity and reduce overfitting. 

B. EfficientNetV2 for Feature Extraction 

EfficientNetV2 was selected for feature extraction due to its ability to balance model depth, width, and 

reso- lution. The compound scaling approach, represented by the following equation, allows 

EfficientNetV2 to adapt to different image resolutions while capturing fine details: 

EfficientNet Scaling = αϕ · d, βϕ · w, γϕ · r 

where d, w, and r represent depth, width, and reso- lution, and α, β, and γ are constants optimized 

through grid search. 

IV. DATASET AND AUGMENTATION PROCESS 

The GastroVision dataset [11], with the addition of three new categories, forms the basis of this study. 

Each category—Inflammatory Conditions, Neoplastic Growths, and Interventional Findings—

addresses clini- cally significant variations in GI conditions, enhancing the model’s diagnostic 

capabilities. This section details the dataset composition and augmentation process. 

TABLE II Class Distribution and Augmentation Techniques 

Class Images Augmentation Techniques 

Normal Tissue 3000 Rotation, Scaling 

Inflammatory Conditions 1200 Brightness Adjustment, Contrast 

Neoplastic Growths 1000 Horizontal Flip, Cropping 

Interventional Findings 800 Noise Addition, Rotation 

The table titled Class Distribution and Augmentation Techniques provides an overview of the dataset 

used in this study, highlighting the number of images and augmentation methods applied to each class. 

The dataset comprises four primary classes: Normal Tissue, Inflam- matory Conditions, Neoplastic 

Growths, and Interven- tional Findings, with a total of 6,000 images. Normal Tissue has the largest 

representation with 3,000 images, where rotation and scaling techniques are used to sim- ulate 

variations in endoscopic views and ensure model robustness. Inflammatory Conditions includes 1,200 

im- ages and applies brightness adjustment and contrast 

techniques to account for lighting inconsistencies of- ten observed in medical imaging. Neoplastic 

Growths, comprising 1,000 images, utilizes horizontal flips and cropping to ensure the model can 

detect tumors or polyps from different perspectives. Finally, Interventional Find- ings, with 800 

images, incorporates noise addition and rotation to simulate post-procedural scenarios, making the 

model adaptable to varying clinical environments. This diverse augmentation strategy enhances the 
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model’s generalization ability, preparing it to handle real-world medical image variability. 

The image in Figure 2 represents the gastroesophageal junction with a normal Z-line, a critical 

anatomical landmark in endoscopic procedures. The Z-line, where the esophagus meets the stomach, 

is typically identified by a sharp transition between the pinkish color of the esophageal squamous 

epithelium and the redder gastric columnar epithelium. This junction is an important area to assess 

during upper endoscopy to ensure that no abnormalities are present. 

 

Fig. 2. Gastroesophageal Junction: Normal Z-Line [11]. The Z-line marks the transition between the 

esophageal and gastric mucosa. 

In the context of our work, recognizing this normal anatomical structure plays a pivotal role in training 

AI models, as any deviation from the expected appear- ance of the Z-line can indicate pathological 

conditions. Specifically, abnormalities in the gastroesophageal junc- tion can lead to conditions such 

as Barrett’s esoph- agus, where the Z-line becomes irregular, indicating metaplasia—a risk factor for 

esophageal cancer. Our dataset includes normal findings such as this, alongside pathological cases, to 

train deep learning models to differentiate between healthy and abnormal GI structures effectively. By 

correctly identifying and classifying the normal Z-line, the proposed ensemble of EfficientNetV2 and 

Vision Transformers can be more accurate in de- tecting early signs of gastrointestinal disorders, aiding 

clinicians in providing timely diagnosis and intervention. Additionally, the inclusion of this type of 

normal image in our augmented dataset helps in enhancing 

  

the model’s generalization capabilities. By exposing the model to both normal and abnormal cases, it 

is better equipped to handle the variability in patient cases and can reduce false-positive rates in clinical 

diagnostics. Thus, a clear understanding and detection of the Z-line not only serves as a baseline but 

is also crucial for flagging anomalies during screening. 

V. RESULTS AND ANALYSIS 

Initial results from the augmented dataset show marked improvements in model training and validation 

performance. EfficientNetV2 achieved high consistency in feature extraction, particularly within the 

newly intro- duced GI categories. These findings support the efficacy of the Phase I methodology in 

preparing the dataset for subsequent diagnostic phases. 

The proposed model’s effectiveness was assessed us- ing accuracy, precision, recall, and F1-score. 

Table III displays the performance metrics of the proposed and baseline models, while Figures 3 and 
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5 illustrate the model’s accuracy trends and Receiver Operating Char- acteristic (ROC) curve, 

respectively. 

TABLE III Performance Metrics Comparison 

Model Accuracy Precision Recall F1-Score 

Baseline CNN 83.2% 81.4% 79.9% 80.6% 

ResNet50 85.5% 84.1% 82.7% 83.4% 

InceptionV3 88.3% 86.9% 85.5% 86.2% 

Proposed Model 93.6% 92.3% 91.8% 92.0% 

The proposed model achieves notable improvements in all metrics, with an accuracy increase of over 

5% compared to InceptionV3, supporting the robustness of the data augmentation and EfficientNetV2-

based feature extraction. 

Accuracy Over Training Epochs 

 

Fig. 3. Accuracy Over Epochs for Proposed Model vs. ResNet50 

Precision plays a vital role in ensuring accurate GI diagnostics, minimizing the risk of false positives. 

Fig- ure 4 demonstrates that the proposed model achieves the highest precision, reflecting enhanced 

reliability. 

 

Fig. 4. Precision Comparison of Proposed Model vs. Other Models 

The ROC curve in Figure 5 shows the proposed model’s excellent AUC of 0.95, indicating strong per- 

formance in distinguishing between positive and negative cases. 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 8s (2025) 

 

545 https://internationalpubls.com 

 

Fig. 5. ROC Curve for the Proposed Model with AUC of 0.95 

The comprehensive performance metrics and visual- izations presented here validate the proposed 

model’s enhanced capabilities in GI disease detection, supporting its practical application in real-world 

diagnostic settings. 

VI. DISCUSSION 

The findings from this study demonstrate the impact of integrating advanced data augmentation 

techniques and the EfficientNetV2 model for feature extraction in gastrointestinal (GI) disease 

detection. By focusing on robust augmentation and an adaptable feature extraction approach, this 

methodology addresses the variability and complexity present in GI endoscopic images. Notably, this 

approach attempts to counter issues such as lighting inconsistency, varying angles, and imaging noise, 

which frequently challenge models trained on medical datasets. Our choice of EfficientNetV2 is 

validated through its ability to balance depth, width, and resolution effectively, showcasing strong 

feature extraction capabilities in han- dling diverse GI conditions. 

The augmented dataset, particularly with the added classes, provides an enriched platform that is closer 

to real-world scenarios. This inclusion broadens the model’s diagnostic utility, allowing it to better 

distin- guish between normal and abnormal GI features, as well as between different pathologies. The 

improved accuracy observed in the results is indicative of the benefits that data diversity and careful 

class representation can bring to the training process. Moreover, the stacking ensemble methods, which 

will be part of future phases, aim to complement this initial setup by leveraging the strengths of other 

models in combination with EfficientNetV2 to further improve detection rates. 

While promising, the current setup is not without limitations. Training deep learning models with ex- 

tensive augmentation can be computationally intensive, potentially limiting the model’s deployment 

in resource- constrained settings. Future work will aim to optimize computational efficiency, perhaps 

by investigating model compression techniques or adaptive scaling methods. Additionally, as we 

prepare for real-world clinical appli- cations, interpretability remains a key focus. Transparent  

diagnostic outputs that clinicians can rely on will be essential to the successful integration of this 

system into healthcare workflows. 

VII. CONCLUSION 

This initial phase of the proposed multi-step approach offers a compelling foundation for enhancing 

GI disease detection. Through the strategic use of data augmentation and EfficientNetV2-based feature 
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extraction, the model addresses core challenges in medical imaging, partic- ularly in the context of GI 

diagnostics. The inclusion of new, clinically relevant classes in the GastroVision dataset not only 

improves model accuracy but also aligns the model’s outputs more closely with clinical needs. This 

study underscores the importance of combining data diversity with model flexibility, creating a robust 

system capable of adapting to the intricacies of GI endoscopy images. 

Looking ahead, future work will expand upon this foundation by incorporating ensemble methods to 

syn- thesize outputs from multiple model architectures, ulti- mately aiming for even higher precision 

and recall in detecting a wide range of GI conditions. The goal is to build a comprehensive, reliable 

diagnostic tool that can offer substantial support to clinicians, enhancing diagnostic accuracy and 

contributing to improved patient outcomes. With further refinement, this approach holds promise for 

creating a scalable, AI-driven diagnostic framework that could be instrumental in the early de- tection 

and management of GI diseases. 
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