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Abstract:  

    The oscillation of second order difference equations with a nonlinear nonpositive 

neutral component is the subject of this study. We come up with a sufficient condition that 

guarantees that all solutions to the examined equation are either oscillatory or going towards 

zero. Through examples, the improvement of our primary findings is demonstrated. 
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1. Introduction 

        In this article, we study some oscillatory manners of a second order non linear non positive neutral 

delay difference equation of the form 

                     ∆(𝑟(℘)∆(z(℘) − 𝑝(℘)𝑧𝛾1(𝜏1(℘)))) + 𝑞(℘)𝑧𝛾2(𝜎1(℘)),    ℘ ≥ ℘0 > 0.            (1) 

 

subject to the restrictions outlined below : 

(R1) 𝛾2 and 0 < 𝛾1 ≤ 1 are ratio of odd positive integers; 

(R2) {𝑟(℘)}, {𝑞(℘)} and {𝑝(℘)} are positive real sequences such that 0 < 𝑝(℘) ≤ 𝑝 < 1, ∀ ℘ ≥ ℘0  

         and 

(R3) 𝜎1 and 𝜏1 are positive integers with 𝜏1℘) ≤ ℘, Δ𝜏1(℘) > 0,  𝜎1(℘) ≤ ℘, Δ𝜎1(℘) > 0,

lim℘→∞  𝜏1(℘) = lim℘→∞  𝜎1(℘) = ∞. 

       

         A real sequence {z(℘)} is said to be a solution of (1) if it is defined for all ℘ ≥ ℘_0.  A nontrivial 

solution of (1) is called oscillatory if it is neither eventually positive nor eventually negative. 

Otherwise, the solution is said to be non oscillatory. An equation is oscilltory if all its solutions 

oscillate. 

              Since neutral type equations are prevalent in the study of economics, mathematical biology, 

and many other fields of mathematics, determining oscillation conditions for these equations has 

garnered a lot of attention in recent years. (see for example [1] − [9] ) . To the best of our knowledge, 

there are no results in the literature that guarantee that all solutions for the second order difference 

equation are just oscillatory. This conclusion is drawn from a review of the literature. All results ( 

[10] − [14]) established for neutral type difference equations are guaranteed that every solution is 

either oscillatory or tends to zero monotonically. In order to define conditions for the oscillation of all 

solutions under the following condition, the authors considered (1) with 𝑝(℘) < 0,  
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∑  ∞
𝑖=℘0

1

𝑟(𝑖)
= ∞                                                                              (2)                                                                                    

In this article we arrive at some new oscillation results. 

2. Oscillatory Results 

We begin with the following Lemmas, which are critical in establishing our key results. 

We represent 

𝑠(℘) = 𝑧(℘) − 𝑝(℘)𝑧𝛾1(𝜏1(℘)),

𝑌(℘) = ∑  

℘−1

𝑖=℘1

 
1

𝑟(𝑖)
,

 

for every ℘ ≥ ℘1 ≥ ℘0.  

Lemma 2.1. Let   (2) hold and if z is a positive solution of (1), then the corresponding function s meets 

one of the following two requirements : 

(I)  𝑠(℘) > 0, Δ𝑠(℘) > 0 and Δ(𝑟(℘)Δ𝑠(℘)) < 0;   

(II)  𝑠(℘) < 0, Δ𝑠(℘) > 0 and Δ(𝑟(℘)Δ𝑠(℘)) < 0, 

for all ℘ ≥ ℘1, where ℘1 ≥ ℘0 is sufficiently large. 

Proof. It is sufficient to state and prove the results for positive solutions. Because the proof of the other 

case is same. 

Suppose that 𝑧(℘) > 0, 𝑧(𝜏1(℘)) > 0 and 𝑧(𝜎1(℘)) > 0 for every ℘ ≥ ℘1 for some   ℘1 ≥ ℘0. 

  By the representation of 𝑠(℘) and (1), we get 

Δ(𝑟(℘)Δ𝑠(℘)) = −𝑞(℘)𝑧𝛾2(𝜎1(℘)) < 0.                                          (3)                                     

Hence 𝑟(℘)(Δ𝑠(℘)) is decreasing and of one sign for large ℘, that means, ∃ ℘2 ≥ ℘1 and Δ𝑠(℘) >

0  

  (or) Δ𝑠(℘) < 0 for all ℘ ≥ ℘2. 

  If Δ𝑠(℘) < 0 for ℘ ≥ ℘2, then 𝑟(℘)(Δ𝑠(℘) ≤ −𝑑1 for ℘ ≥ ℘2 where  𝑑1 = −𝑟(℘2)Δ𝑠(℘2) > 0.  

Then, we obtain 

𝑠(℘) ≤ 𝑠(℘2) − 𝑑1 ∑  

℘−1

𝑖=℘2

1

𝑟(𝑖)
. 

By the condition (2), the above inequality implies lim℘→∞  𝑠(℘) = −∞. We will now examine each 

of the next two situations separately. 

Case (I): If z is unbounded, then ∃ a  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {℘𝑛} such that  lim𝑛→∞  ℘𝑛 = ∞ and 

lim𝑛→∞  𝑧(℘𝑛) = ∞,  where 𝑧(℘𝑛) =  max{𝑧(𝑖), ℘0 ≤ 𝑖 ≤ ℘𝑛}. 

      Since lim℘→∞  𝜏1(℘) = ∞, 𝜏1(℘𝑛) > ℘0 for large ℘ and 𝜏1(℘) ≤ ℘, then we obtain 
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𝑧(𝜏1(℘𝑛))  = max{𝑧(𝑖): ℘0 ≤ 𝑖 ≤ 𝜏1(℘𝑛)}

 ≤ max{𝑧(𝑖): ℘0 ≤ 𝑖 ≤ ℘𝑛} = 𝑧(℘𝑛).
 

That is, 𝑧(𝜏1(℘𝑛)) ≤ 𝑧(℘𝑛). 

Consequently, 

𝑠(℘𝑛)  = 𝑧(℘𝑛) − 𝑝(℘𝑛)𝑧𝛾1(𝜏1(℘𝑛))

 ≥ 𝑧(℘𝑛)[1 − 𝑝(℘𝑛)𝑧𝛾1−1(℘𝑛)] → ∞
 

as 𝑛 → ∞, since 𝛾1 ∈ (0,1] and 𝑝(℘) is bounded, which contradicts lim℘→∞  𝑠(℘) = −∞.  

Case (II): If z is bounded, then s is also bounded, because 𝑝(℘) is bounded, which contradicts 

                 that lim℘→∞  𝑠(℘) = −∞. So 𝑠(℘) fulfills one of the cases (I) and (II). 

Lemma 2.2. Let the condition (2) be true. Assume 𝑧 be a positive solution of (1) there exists case (I) 

of                       

Lemma 2.1. Then 

𝑧(℘) > 𝑠(℘) > 𝑌(℘)𝑟(℘)Δ𝑠(℘)                                                                                    (4) 

for ℘ ≥ ℘1 and 𝑠(℘)/𝑌(℘) is eventually decreasing. 

Proof. By the representation of 𝑠(℘) and above (𝑅2), we can write 𝑧(℘) > 𝑠(℘) for ℘ ≥ ℘1 ≥ ℘0. 

From the case (I), we get 

𝑠(℘) = 𝑠(℘1) + ∑  ℘−1
𝑖=℘1

 
𝑟(𝑖)Δ𝑠(𝑖)

𝑟(𝑖)
,

                 > 𝑌(℘)𝑟(℘)Δ𝑠(℘),  ℘ ≥ ℘1.
                                                                                     (5) 

Also,  

Δ (
𝑠(℘)

𝑌(℘)
)  =

𝑌(℘)𝑟(℘)Δ𝑠(℘) − 𝑠(℘)

𝑟(℘)𝑌(℘)𝑌(𝑙 + 1)

 < 0,  ℘ ≥ ℘1.

 

Thus  {
𝑠(℘)

𝑌(℘)
} is strictly  decreasing for all ℘ ≥ ℘1. 

Theorem 2.3. Let 𝛾2 < 𝛾1, 𝜎1(℘) < 𝜏1(℘) and condition (2) hold. If 

∑  ∞
℘1 𝑞(℘)𝑌𝛾2(𝜎1(℘)) = ∞                                                                                                                           

(6) 

 and 

lim
℘→∞

 sup ∑  
℘−1

𝑗=𝜏1
−1(𝜎1(℘))

1

𝑟(𝑗)
∑  

𝑗−1
𝑢=𝑗3

𝑞(𝑢)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑢)))

> 0  ,                                        (7) 

then every solution of equation (1) is oscillatory. 

Proof. Let z be a non oscillatory solution of (1). Then 𝑧(℘) > 0, 𝑧(𝜎1(℘)) > 0, 𝑧(𝜏1(℘)) > 0, ℘ ≥

℘1 ≥ ℘0. By Lemma 2.1, the corresponding function 𝑠(℘) fullfills either case (I) or case (II). 
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First, we assume that 𝑠(℘) satisfie s case (I). From the representation of 𝑠(℘), we get 

𝑧(℘)  ≥ 𝑠(℘),

𝑧𝛾2(𝜎𝑙(℘))  ≥ 𝑠𝛾2(𝜎𝑙(℘)).
 

Applying above inequality in (1), we get 

  Δ(𝑟(℘)Δ𝑠(℘)) + 𝑞(℘)𝑠𝛾2(𝜎1(℘)) ≤ 0.                                                                         (8)                                                                                           

Substituting (4) in (8) and taking 𝑦(℘) = 𝑟(℘)Δ𝑠(℘), we clear that 𝑦(℘) is a positive solution of the 

inequality 

Δ𝑦(℘) + 𝑞(℘)𝑌𝛾2(𝜎1(℘))(𝑟(℘)Δ𝑠(℘))𝛾2 ≤ 0,
  

                                  Δ𝑦(℘) + 𝑞(℘)𝑌𝛾2(𝜎1(℘))𝑦𝛾2(𝜎1(℘)) ≤ 0,  ℘ ≥ ℘1                                                        

(9) 

On the other hand, from [6], we can see that condition (6) assures  that (9) has no eventually positive 

solution, which is contradiction . 

Next , assume that  𝑠(℘) satisfies case (II) of Lemma 2.1. 

Then, by the representation of 𝑠(℘), we get  

𝑧(𝜏1(℘)) > (
−𝑠(℘)

𝑝(℘)
)

1

𝛾1    .                                                                                                    (10) 

Applying (10) in (1), we get 

Δ(𝑟(℘)Δ𝑠(℘)) −
1

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(℘)))

𝑞(℘)𝑠
𝛾2
𝛾1(𝜏1

−1(𝜎1(℘))) ≤ 0.                                        (11) 

 

Since 𝑠(℘) is negative and increasing, we obtain lim℘→∞  𝑠(℘) = 𝑐1 ≤ 0. We prove that 𝑐1 = 0. If 

not, then 𝑐1 < 0 and 𝑠(℘) ≤ 𝑐1 and 𝑠(𝜏1
−1(𝜎1(℘))) ≤ 𝑐1 for large ℘. Therefore, 

𝑠
𝛾2
𝛾1(𝜏1

−1(𝜎1(℘))) ≤ 𝑐1

𝛾2
𝛾1                                                                                            (12) 

Summing (11) from ℘ to ∞ and using (12), we get 

𝑟(℘)Δ𝑠(℘) − 𝑟(℘1)Δ𝑠(℘1) ≤ ∑  

∞

𝑖=𝑙

 
𝑞(𝑖)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑖)))

𝑠
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑖))),

−𝑟(℘)Δ𝑠(℘) ≤ 𝑐1

𝛾2
𝛾1 ∑  

∞

𝑖=𝑙

 
𝑞(𝑖)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑖)))

.

 

Again summing from ℘1 to ∞, we have 

                                                        𝑠(℘1) ≤ 𝑐1

𝛾2
𝛾1 ∑  ∞

𝑗=℘1

1

𝑟(𝑗)
∑  ∞

𝑚=𝑗1

𝑞(𝑚)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑚)))
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 which is contradiction with (7) and from (7), we claim 

lim
℘→∞

 sup ∑  

∞

𝑗=℘1

1

𝑟(𝑗)
∑  

∞

𝑚=𝑗1

𝑞(𝑚)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑚)))

= ∞. 

Thus, lim℘→∞  𝑠(℘) = 0 and s(℘) is negative and increasing. 

Summing (11) from ℘2 to ℘ − 1 for ℘ > 𝑖, we get 

−𝑟(℘2)(Δ𝑠(℘2)) ≤ ∑  

℘−1

𝑠=℘2

 
𝑞(𝑖)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑖)))

𝑠
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑖))) 

Again summing from 𝜏1
−1(𝜎1(℘)) to ℘ − 1 and using 𝑠(℘) is increasing and we have 

𝑠(𝜏1
−1(𝜎1(℘))) − 𝑠(℘) ≤ 𝑠

𝛾2
𝛾1(𝜏1

−1(𝜎1(℘))) ∑  

℘−1

𝑗=𝜏1
−1(𝜎1(℘))

1

𝑟(𝑗)
∑  

𝑗−1

𝑚=𝑗3

𝑞(𝑚)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑚)))

 

or 

𝑠(𝜏1
−1(𝜎1(℘)))

𝑠
𝛾2
𝛾1(𝜏1

−1(𝜎1(℘)))

≥ ∑  
℘−1

𝑗=𝜏1
−1(𝜎1(℘))

1

𝑟(𝑗)
∑  

𝑗−1
𝑚=𝑗3

𝑞(𝑚)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑚)))

.                                      (13) 

Since 

𝑠(𝜏1
−1(𝜎1(℘)))

𝑠
𝛾2
𝛾1(𝜏1

−1(𝜎1(℘)))

= |𝑠(𝜏1
−1(𝜎1(℘)))|

1−
𝛾2
𝛾1 

and 1 −
𝛾2

𝛾1
> 0, we get 

lim
℘→∞

 sup ∑  

℘−1

𝑗=𝜏1
−1(𝜎1(℘))

1

𝑟(𝑗)
∑  

𝑗−1

𝑚=𝑗3

𝑞(𝑚)

𝑝
𝛾2
𝛾1(𝜏1

−1(𝜎1(𝑚)))

≤ 0 

which contradicts (7). 

Theorem 2.4. Assume 𝛾2 = 1 and condition (2) holds. If 

lim
𝑡→∞

 inf ∑  
℘−1
𝜎1(℘) 𝑞(𝑠)𝑌(𝜎1(𝑠)) >

1

𝑒
  ,                                                                    (14) 

then every solution of (1) is either oscillatory or tends to zero as ℘ → ∞. 

Proof.  We assume that a non-oscillatory solution z of (1), 𝑧(℘) > 0, 𝑧 (𝜎1(℘)) > 0, 𝑧(𝜏1(℘)) >

0,  ℘ ≥ ℘1 ≥ ℘0 and that for s one of the case (I) and case (II) holds.  

Assume that 𝑠(℘) meets case (I) of Lemma 2.1 and from the proof of case (I) of theorem 2.1, 

we have for 𝛾2 = 1 that 𝑦(℘) = 𝑟(℘)Δ𝑠(℘) is a positive solution of the inequality 

Δ𝑦(℘) + 𝑞(℘)𝑌(𝜎1(℘))𝑦(𝜎1(℘)) ≤ 0.                                                               (15) 
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On the other hand, from [6], we can notice that equation (14) guarantees that (15) has no positive 

solution, which implies contradiction. 

Let 𝑠(℘) meets case (II) of Lemma 2.1. From this 𝑠(℘) < 0 and Δ𝑠(℘) > 0 and also 

lim℘→∞  𝑠(℘) = 𝑐1 ≤ 0, where 𝑐1 is a constant. i.e. s is bounded and as in the proof of Lemma 2.1, we 

can say that z is also bounded. 

Therefore, lim℘→∞  𝑧(℘) = 𝑚1, 0 ≤ 𝑚1 < ∞. We claim that 𝑚1 = 0. Suppose 𝑚1 > 0, there is a 

sequence   {℘𝑛} such that  lim𝑛→∞  ℘𝑛 = ∞ and lim𝑛→∞  𝑧(℘𝑛) = 𝑚1. 

 Thus 

𝑠(℘𝑛) = 𝑧(℘𝑛) − 𝑝(℘𝑛)𝑧𝛾1(𝜏1(℘𝑛)),

𝑧(𝜏1(℘𝑛)) =
(𝑧(℘𝑛) − 𝑠(℘𝑛))

1
𝛾1

𝑝
1

𝛾1(℘𝑛)

.
 

Taking 𝑛 → ∞, we get 

𝑚1  ≥ lim
𝑛→∞

 𝑧(𝜏1(℘𝑛))

 ≥ (
𝑚1

𝑝
)

1
𝛾1

 

We conclude that 𝑚1 = 0, because of 𝑝 ∈ (0,1), that is lim𝑛→∞  𝑧(℘) = 0. 

3. Examples 

Example 3.1. Examine second order neutral delay difference equation 

Δ (℘Δ (𝑧(℘) − 𝑝𝑧
1

3 (
℘

2
))) + 8℘ (

℘

3
) = 0,    ℘ ≥ 1,                                                      (16) 

where 𝑝 ∈ (0,1) which is a constant. Here 𝑟(℘) = ℘, 𝑝(℘) = 𝑝, 𝑞(℘) = 8℘, 𝜏1(℘) =
℘

2
, 𝜎1(℘) =

℘

3
 

for ℘ ≥ ℘1 = 1, 𝛾1 = 1/3, 𝛾2 = 1/5 and 𝑌(℘) =
1−℘

℘
. Clearly, these calculations shows that above 

conditions (6) and (7) are fullfilled. So that by Theorem 2.3, every solution of (16) is oscillatory.  

Example 3.2. Examine second order neutral delay difference equation 

Δ (
1

℘
Δ (𝑧(℘) − 𝑝𝑧

1

3 (
℘

2
))) + ℘𝑧 (

℘

3
) = 0,    ℘ ≥ 1,                                     (17) 

where 𝑝 ∈ (0,1) which is a constant. Here 𝑟(℘) =
1

℘
, 𝑝(℘) = 𝑝, 𝑞(℘) = ℘, 𝜏1(℘) =

℘

2
, 𝜎1(℘) =

℘

3
 

for ℘ ≥ ℘1 = 1, 𝛾1 = 1/3, 𝛾2 = 1 and 𝑌(℘) = 1 − ℘. Each and every conditons of Theorem 2.4 with 

𝛾2 = 1 are satisfied, so the equation (17) is oscillatory. 
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4. Conclusion 

       The solutions of nonlinear equations behave in peculiar ways and these ways can be developed by 

means of different strategies included in the method. An attempt was made here to establish the 

sufficient conditions with the fact that the solution space of nonlinear non positive neutral term of 

difference equation is reducing to the solution of its limiting equation and we assumed with 𝛾2 = 1.  

By these discussions, (1) is oscillatory or asymptotically zero as ℘ → ∞. 
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