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Abstract:  

Mobile Ad Hoc Networks (MANETs) face challenges such as dynamic topologies, high node 

mobility, and increased vulnerability to attacks like black hole and DDoS. This study 

develops a non-linear reinforcement learning-based algorithm (DRL-MANET) to address 

real-time network configuration and threat prediction. The model aims to ensure efficient 

performance and secure operation under unpredictable conditions. The approach uses deep 

reinforcement learning (DRL) to optimize network decisions based on real-time feedback. 

An LSTM-based anomaly detection system identifies and mitigates threats by integrating 

detection outputs into the decision-making process. Federated learning allows decentralized 

model training, preserving privacy through differential privacy and blockchain mechanisms. 

Hierarchical clustering and adaptive updates minimize computational overhead and support 

scalability. Simulation results show a packet delivery rate of 97.2%, a threat detection 

accuracy of 96.8%, and a 7% reduction in throughput when scaling to 150 nodes. Compared 

to MA3DQN and EDRL, DRL-MANET demonstrates lower latency, faster recovery from 

node failures, and improved resource management. These findings illustrate how the model 

handles high traffic, variable mobility, and evolving attack scenarios. The proposed algorithm 

supports secure, scalable, and adaptable solutions for MANETs. The methods and results 

offer a practical framework for managing dynamic network environments while addressing 

privacy and resource constraints. 

Keywords: MANET, Deep Reinforcement Learning, Threat Prediction, Federated Learning, 

Anomaly Detection, Decentralized Networks, Scalability, Network Security. 

 

Introduction 

Mobile Ad-hoc Networks (MANETs) operate without fixed infrastructure, relying on direct 

communication or multi-hop routes between nodes. These networks often face challenges in 

maintaining connectivity and security due to their decentralized and dynamic nature. The mobility of 

nodes and the absence of a central control system make them vulnerable to attacks and inefficient 

routing under changing conditions [1]. Addressing these challenges requires models that can adapt to 

the unpredictable environment while ensuring security and performance. Reinforcement learning (RL), 

particularly deep reinforcement learning (DRL), has shown promise in creating adaptive solutions for 

MANETs. These algorithms enable dynamic adjustments in routing to accommodate changing 

network topologies, improving resource utilization and balancing traffic loads [1], [2]. Beyond routing, 

RL-based security approaches have been developed to detect and mitigate attacks such as blackhole, 

wormhole, and grayhole, effectively isolating compromised nodes from the network [3]. 
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Machine learning and deep learning techniques enhance network security by identifying and 

classifying cyber threats, including distributed denial-of-service (DDoS) attacks and malware 

intrusions [4]. Deep learning models, such as deep autoencoders, improve the precision of threat 

detection and network security evaluation, offering an alternative to traditional methods [5]. Non-linear 

models based on DRL support real-time adaptation by addressing the complexity of dynamic network 

conditions and meeting quality-of-service (QoS) requirements [2]. Hybrid optimization methods, 

including algorithms like Radial ResNet, have been explored to improve classification accuracy and 

computational efficiency in MANETs [6]. These techniques reduce resource demands while 

maintaining performance. However, existing solutions often face limitations in handling the 

computational overhead required for large-scale applications and in adapting to the decentralized 

nature of MANETs [2], [7]. 

Several gaps remain in current research. While RL and deep learning methods have improved network 

configuration and security, their application in real-time MANET adaptation is limited. High 

computational demands and the need for extensive training data restrict their deployment in dynamic 

environments [1], [2]. Threat detection methods are constrained in identifying sophisticated attacks, 

especially under high mobility and variable traffic loads [3], [7]. Additionally, the integration of non-

linear models for real-time configuration and secure network operation remains underexplored. This 

research aims to address these challenges by developing a non-linear DRL-based algorithm tailored to 

real-time configuration and threat prediction in MANETs. The algorithm incorporates deep learning 

for anomaly detection and integrates hybrid optimization techniques to adapt to dynamic conditions. 

By addressing existing gaps, this study contributes to the broader understanding of adaptive models 

for decentralized networks. The proposed framework enhances routing by dynamically adjusting to 

network changes, optimizing resource usage, and detecting threats proactively. It uses machine 

learning to improve network security, ensuring reliable operations under varying conditions. The 

findings are expected to support scalable and secure MANET applications, providing insights for 

researchers and practitioners in this domain [1], [2], [7]. 

The structure of the paper is organized as follows. The related work section provides an overview of 

existing methods in RL, machine learning, and optimization for MANETs. The methodology section 

describes the design and implementation of the proposed algorithm, followed by the experimental 

setup outlining simulation tools and parameters. Results and discussion examine the performance 

metrics, threat detection capabilities, and scalability. The conclusion summarizes key findings and 

proposes directions for future research. 

1 Related Work 

Mobile Ad Hoc Networks (MANETs) operate without fixed infrastructure, relying on dynamic, node-

to-node communication to function. These networks frequently encounter challenges such as 

unpredictable topology changes, high mobility, and various types of security threats, including black 

hole and distributed denial-of-service attacks. To address these issues, this review examines 

reinforcement learning-based methods, federated learning, and anomaly detection techniques. By 

analyzing their performance under diverse network conditions, the review identifies strengths and 

limitations, offering insights into improving adaptability, security, and resource efficiency in 

MANETs. 
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Marinescu et al. [8] and Birabwa et al. [9] apply multi-agent reinforcement learning to manage dynamic 

environments. Marinescu et al. [8] combine predictions of future states with agent learning to address 

non-stationary environments. Their approach reduces conflicts among agents and improves decision-

making by achieving a 92% Pareto-efficient solution. Birabwa et al. [9] focus on resource allocation 

and user association in networks by coordinating multiple agents centrally. While improving data rates 

and reducing interference, the centralized structure creates challenges in scaling for larger networks or 

time-sensitive operations. Peng et al. [10] implement decentralized policy networks with a two-stage 

training process. This design aligns local policies with global objectives and shortens convergence 

time by 15%. Delays during centralized alignment in fast-changing scenarios are identified as a 

drawback. Zhang et al. [11] integrate multi-armed bandits into reinforcement learning for resource 

scheduling and allocation in MANETs. The hybrid approach enhances latency reduction but increases 

computational complexity during iteration. 

dos Santos et al. [12], Kim et al. [13], Simpson, Kyle A et al., [14] and Yang et al. [15] explore 

reinforcement learning and deep learning methods for identifying threats in networks. dos Santos et al. 

[12] propose a hierarchical reinforcement learning method for intrusion detection, which maintains 

accuracy while lowering computational costs by 20%. Challenges arise when addressing rapidly 

evolving attack patterns. Kim et al. [13] combine anomaly detection with policy adjustments to 

mitigate misbehavior in dynamic networks. Their method improves system reliability but relies heavily 

on accurate anomaly identification. Yang et al. [15] apply a conditional deep belief network (CDBN) 

for real-time intrusion detection. By addressing imbalanced datasets using the "SamSelect" algorithm, 

detection accuracy exceeds 98%. High dependency on labeled training data is a noted limitation. 

Balamurugan et al. [16], Xiuli Du [17], Owezarski, Philippe [18] and Shao et al. [19] introduce 

predictive models for network optimization. Balamurugan et al. [16] integrate convolutional neural 

networks with deep reinforcement learning to predict traffic patterns. Achieving 97.2% prediction 

accuracy, the method reduces energy consumption by 12%. Its effectiveness declines with noisy or 

incomplete input data. Xiuli Du [17] employs optimized Clockwork RNNs to predict security trends 

using segmented time-series data. This framework enhances computational efficiency but depends on 

precise input segmentation. Shao et al. [19] apply spatio-temporal feature extraction to predict 

MANET link stability. The model delivers fast and accurate predictions but struggles in environments 

with missing or low-quality data. 

Ryu et al. [20], Lee et al. [21], Song, Yuda et al., [22] and Murti et al. [23] focus on dynamic routing 

and resource optimization. Ryu et al. [20] propose a reputation-based opportunistic routing protocol 

(RORQ) to combat malicious nodes in MANETs. The system adapts routing decisions based on 

reputation scores, though its dependence on accurate evaluations limits reliability in subtle threat 

scenarios. Lee et al. [21] optimize UAV communication paths for energy efficiency and coverage. 

Resource-intensive real-time adaptations present scalability challenges. Murti et al. [23] adapt 

virtualized radio access networks (vRANs) for ultra-reliable low-latency communication (URLLC) by 

dynamically reallocating resources. Computational intensity is a concern in real-time operations for 

large-scale deployments. Gaon et al. [24], Salh et al. [25], Gallego, Victor et al., [26] and Chandak et 

al. [27] address complex reinforcement learning scenarios through hybrid methods. Gaon et al. [24] 

develop algorithms to handle non-Markovian rewards, focusing on long-term planning in dynamic 
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environments. Enhanced adaptability is achieved but at the cost of scalability in large systems. Salh et 

al. [25] incorporate GANs into actor-critic reinforcement learning for URLLC systems, achieving 

exceptional reliability but introducing significant computational overhead. Chandak et al. [27] 

optimize reinforcement learning in non-stationary MDPs using future state predictions. While 

improving policy stability, the approach increases computational demands, making it less feasible in 

fast-changing scenarios. 

The articles reviewed reveal several challenges in managing dynamic and decentralized networks, 

highlighting the need for continued exploration and refinement. Multi-agent reinforcement learning 

models like those discussed in [8] and [9] improve decision-making and resource allocation but face 

scalability limitations and depend heavily on precise state predictions, which can falter in unpredictable 

scenarios. Security-focused studies, including [12], [13], and [15], address intrusion detection and 

anomaly mitigation but are often constrained by the need for high-quality labeled data and predefined 

patterns, which restrict adaptability to evolving threats. Predictive approaches explored in [16], [17], 

and [19] demonstrate accuracy and efficiency in modeling network behavior but exhibit reduced 

applicability in environments with noisy or incomplete data inputs. Resource optimization and 

adaptive routing techniques in [20], [21], and [23] enhance performance under varying conditions but 

encounter difficulties in scaling to dense networks or handling real-time computational demands. 

Hybrid methods and advanced reinforcement learning techniques in [24], [25], and [27] balance long-

term planning and reliability but add significant computational overhead, limiting scalability. These 

challenges underline the necessity for lightweight, scalable, and adaptable frameworks that can operate 

effectively under resource constraints, manage imperfect data, and respond to rapidly changing 

conditions without compromising usability. Future work must prioritize simplified architectures and 

efficient algorithms to address these gaps while ensuring practical applicability in complex network 

environments. 

2 Methods and Materials 

 The framework is designed to address the dynamic and decentralized nature of Mobile Ad-Hoc 

Networks (MANETs). It employs a non-linear reinforcement learning algorithm to optimize network 

configurations in real-time. The framework integrates anomaly detection for identifying unusual 

behaviors and mitigating threats, such as black hole or DDoS attacks. Federated learning is 

incorporated to enable decentralized model training while preserving data privacy. These components 

work together to manage network conditions, adapt to changing topologies, and ensure efficient use of 

resources under varying traffic loads and security challenges. 

 
Figure 1: Conceptual Framework for Adaptive Configuration and Threat Prediction in MANETs 
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The conceptual diagram shown in figure 1 illustrates an adaptive framework for addressing dynamic 

configuration, threat detection, and privacy in Mobile Ad Hoc Networks (MANETs). It integrates three 

components: deep reinforcement learning (DRL), LSTM-based anomaly detection, and federated 

learning. DRL dynamically adjusts network configurations, optimizing routing, power management, 

and protocol updates based on real-time feedback to balance throughput, latency, and resource 

efficiency. Anomaly detection uses LSTMs to process sequential data and identify threats like black 

hole and DDoS attacks, integrating detection outputs into DRL's reward mechanism for real-time 

mitigation. Federated learning ensures decentralized, privacy-preserving model training, employing 

differential privacy and blockchain to secure updates and maintain trust. By incorporating hierarchical 

clustering and adaptive updates, the framework minimizes computational load and scales effectively 

in resource-constrained environments. This structure enables the system to adapt to dynamic 

topologies, predict and counter threats, and protect sensitive data while maintaining consistent network 

performance. 

2.1 Reinforcement Learning Framework 

The reinforcement learning framework is constructed to manage dynamic adjustments in MANETs by 

defining the network’s conditions, available actions, and the evaluation criteria for each action. 

State Space: The state space, denoted as 𝑆𝑡, encapsulates the current status of the network. It is 

modeled as:  

 𝑆𝑡 = {𝐵, Φ, 𝒯}, 

where 𝐵 represents node behaviors, Φ captures ongoing traffic patterns, and 𝒯 describes the topology. 

Node behaviors 𝐵𝑖(𝑡) include activities such as routing and energy levels. Traffic Φ𝑖𝑗(𝑡) reflects data 

flow between nodes 𝑖 and 𝑗. The topology 𝒯 accounts for link stability and node connectivity, offering 

a clear snapshot of the network’s structure. 

Action Space: The action space, labeled as 𝐴𝑡, includes possible network reconfigurations to address 

performance or security needs:  

 𝐴𝑡 = {𝑅, 𝑃, 𝑆}, 

where 𝑅 represents routing adjustments, 𝑃 refers to transmission power modifications, and 𝑆 signifies 

updates to security protocols. Each action is designed to address specific challenges, such as rerouting 

around failing nodes or increasing power for better signal strength during high traffic. 

Reward Function: The reward function evaluates the outcome of an action by balancing performance, 

cost, and security. For a given action 𝐴𝑡 in state 𝑆𝑡, the reward 𝑅𝑡 is expressed as:  

 𝑅𝑡 = 𝛼𝑃 − 𝛽𝐶 + 𝛾𝑆. 

Here, 𝑃 indicates performance metrics like throughput (𝑇) and latency (𝐷):  

 𝑇 =
∑ Φ𝑖𝑗

𝑡total
,    𝐷 =

∑ 𝑑𝑝

𝑁𝑝
. 

The cost 𝐶 considers energy usage or reconfiguration overhead, while 𝑆 evaluates the anomaly 

detection rate (𝒜𝑑):  
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 𝒜𝑑 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. 

Weights 𝛼, 𝛽, 𝛾 are used to prioritize these aspects based on network goals. The agent seeks to 

maximize the cumulative reward over time:  

 𝐺𝑡 = ∑∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘. 

This approach encourages actions that enhance performance and security while keeping resource use 

minimal. 

The framework operates continuously, learning from the network’s feedback. This structure allows 

dynamic and data-driven decisions to maintain stability and functionality in a fluctuating environment.    

2.2 Threat Detection 

Threat detection in MANETs identifies unusual behavior by analyzing patterns in the network’s 

operation. Using recurrent neural networks (RNNs) and long short-term memory (LSTM) models, it 

processes time-sequenced data to detect deviations from normal activity. This mechanism aligns with 

reinforcement learning (RL) by modifying the reward system based on identified anomalies. 

          Anomaly Detection Using LSTM: The anomaly detection process relies on sequences of 

network observations over time. At each step 𝑡, the network state is represented as 𝑋𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑡}, 

where 𝑥𝑖 contains features like traffic flow Φ𝑖𝑗, node behavior 𝑆𝑖, and routing data 𝑅. 

The LSTM predicts the next state 𝑋̂𝑡+1 by maintaining two internal states: the hidden state ℎ𝑡 and the 

cell state 𝑐𝑡. These evolve as:  

 ℎ𝑡, 𝑐𝑡 = LSTM(𝑋𝑡, ℎ𝑡−1, 𝑐𝑡−1), 

where ℎ𝑡−1 and 𝑐𝑡−1 are prior states. The output 𝑋̂𝑡+1 is computed as:  

 𝑋̂𝑡+1 = 𝑊𝑜ℎ𝑡 + 𝑏𝑜 , 

with 𝑊𝑜 and 𝑏𝑜 being the model’s weight and bias terms. 

An anomaly score 𝐴𝑠 measures the deviation between predicted and actual states:  

 𝐴𝑠 =∥ 𝑋𝑡+1 − 𝑋̂𝑡+1 ∥2. 

If 𝐴𝑠 surpasses a threshold 𝜏, the observation is flagged as anomalous:  

 𝐴𝑠 > 𝜏AnomalyDetected. 

This score identifies suspicious activities like unusual traffic bursts or altered routing behaviors, 

signaling potential threats such as DDoS attacks or misconfigured nodes. 

        Integration with RL Reward System: Once an anomaly is detected, its severity directly 

influences the RL framework by adjusting the reward function. The reward 𝑅𝑡 includes a penalty term 

based on the anomaly score:  

 𝑅𝑡 = 𝛼𝑃 − 𝛽𝐶 + 𝛾𝑆 − 𝛿𝐴𝑠, 
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where 𝑃 reflects performance, 𝐶 accounts for costs, 𝑆 measures security, and 𝛿 weights the anomaly’s 

impact. Larger 𝐴𝑠 values increase the penalty, encouraging the RL agent to prioritize mitigating threats. 

For example, detecting malicious traffic may prompt routing changes to bypass compromised nodes. 

Similarly, anomalies linked to energy depletion might trigger power redistribution actions. By 

continuously adapting, the RL agent aligns network adjustments with both performance and security 

needs. 

This combination of LSTM-based detection and RL-guided response ensures the framework 

dynamically addresses threats while maintaining stable operations. The approach uses observed 

patterns and immediate feedback to respond effectively to changing network conditions. 

2.3 Federated Learning Integration 

Federated learning enables distributed training of models across MANET nodes without requiring 

direct data sharing. This approach preserves privacy by keeping raw data local. To ensure secure 

aggregation and prevent data breaches, differential privacy and blockchain are employed. 

Distributed Model Training: Each node trains its model locally using its private dataset. Let 𝑤𝑖
𝑡 

represent the model parameters for node 𝑖 at training step 𝑡. The local model minimizes a loss function:  

 𝐿𝑖(𝑤) =
1

|𝐷𝑖|
∑𝑥∈𝐷𝑖

ℓ(𝑤; 𝑥), 

where 𝐷𝑖 is the dataset for node 𝑖, and ℓ(𝑤; 𝑥) is the loss calculated for data sample 𝑥. 

After completing local training, nodes send the updated parameters to a central aggregator. The global 

model is computed using a weighted average:  

 𝑤𝑡 =
∑𝑁

𝑖=1 |𝐷𝑖|𝑤𝑖
𝑡

∑𝑁
𝑖=1 |𝐷𝑖|

, 

where 𝑁 is the total number of nodes. Larger datasets contribute more significantly to the aggregated 

model. 

Differential Privacy for Secure Updates: To protect sensitive data, nodes introduce random noise 

into their updates. Each update is perturbed as:  

 𝑤̃𝑖
𝑡 = 𝑤𝑖

𝑡 + 𝒩(0, 𝜎2), 

where 𝒩(0, 𝜎2) is Gaussian noise. This ensures that individual data points cannot be inferred from the 

model parameters. 

The strength of privacy is controlled by the privacy budget 𝜖. A lower 𝜖 offers stronger privacy but 

may affect the model’s accuracy. The choice of 𝜖 depends on the privacy requirements and network 

constraints. 

 Blockchain for Secure Aggregation: Blockchain is used to validate and secure the aggregation 

process. Each model update is recorded in a block with a cryptographic hash:  

 𝐻 = Hash(𝑤̃𝑖
𝑡||metadata), 

where || represents concatenation, and metadata includes information like node IDs and timestamps. 
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Consensus mechanisms, such as Proof of Authority (PoA), ensure that only valid updates are accepted. 

Validators verify the integrity of updates and add them to the blockchain. Smart contracts enforce rules 

for participation and aggregation, ensuring fairness and transparency. 

Workflow of Federated Learning Integration: Nodes independently train local models and perturb 

the updates using differential privacy. Perturbed updates are transmitted to the aggregator, where 

blockchain verifies their integrity. The aggregator combines the updates to form a global model and 

distributes it back to the nodes for the next training iteration. This cycle continues, allowing the system 

to adapt to changes in the network while maintaining privacy. 

This integration allows decentralized learning without exposing sensitive data. By combining 

differential privacy and blockchain, the system ensures secure and private collaboration among 

MANET nodes. The workflow balances the need for privacy, security, and computational efficiency 

in distributed environments. 

2.4 Scalability Mechanisms 

Scalability mechanisms ensure efficient operation in MANETs as network size and complexity grow. 

By organizing nodes into clusters and optimizing communication using compression and adaptive 

updates, resource use is minimized without affecting functionality. 

Hierarchical Clustering: The network is divided into smaller, non-overlapping clusters. Let the 

network 𝐺(𝑉, 𝐸), where 𝑉 represents nodes and 𝐸 represents links, be partitioned into 𝑘 clusters 

𝐶1, 𝐶2, … , 𝐶𝑘. The condition for clustering ensures:  

 𝑉 = ⋃𝑘
𝑖=1 𝐶𝑖,    𝐶𝑖 ∩ 𝐶𝑗 = ∅  for𝑖 ≠ 𝑗. 

Each cluster is assigned a leader, identified using criteria such as node energy levels (𝐸𝑖) or link quality. 

A cluster leader 𝐿(𝐶𝑖) acts as the communication point, managing intra-cluster exchanges and 

forwarding inter-cluster updates. This design reduces redundant communication by limiting direct 

transmissions between distant nodes. 

Model Compression: Model compression minimizes the size of data exchanged during updates. 

Weight matrices 𝑊 are modified to reduce complexity. Sparsification eliminates small values by 

setting elements below a threshold 𝛿 to zero:  

 𝑊𝑖𝑗 = {
𝑊𝑖𝑗 if|𝑊𝑖𝑗| > 𝛿,

0 otherwise.
 

Quantization approximates weights to fewer significant levels. For a quantization step size Δ:  

 𝑊̃𝑖𝑗 = Round(𝑊𝑖𝑗/Δ) ⋅ Δ. 

These techniques lower bandwidth needs and reduce computational demands, which is critical for 

resource-constrained nodes. 

Dynamic Update Frequencies: Update frequencies adapt based on network conditions. Nodes 

experiencing stable states, such as consistent traffic Φ(𝑡) and low anomaly scores 𝐴𝑠, reduce their 

update rates. The frequency 𝑓(𝑡) for updates is defined as:  
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 𝑓(𝑡) = 𝑓max ⋅ 𝑒−𝜂⋅𝐴𝑠 , 

where 𝜂 adjusts sensitivity to anomalies. Cluster leaders adjust their schedules based on intra-cluster 

conditions, further reducing unnecessary data transmissions. 

Nodes under high load or fluctuating conditions transmit updates more frequently, ensuring timely 

adjustments. This approach balances accuracy and resource conservation. 

Clustering organizes the network into simpler structures, model compression decreases data transfer 

requirements, and adaptive update rates align resource use with network behavior. These methods 

work together to maintain functionality while reducing overhead, enabling scalability in dynamic 

MANET environments. 

2.5 Proposed Algorithm 

This section presents the proposed algorithm, which combines deep reinforcement learning (DRL), 

anomaly detection, and federated learning to enable real-time configuration and threat prediction in 

MANETs. The algorithm 1 adapts to the network's dynamic conditions, ensuring secure and efficient 

operations in a decentralized environment. 

 Algorithm 1: Dynamic Federated Reinforcement Learning Algorithm for MANETs 

1. Initialize: DRL agent parameters 𝑄(𝑆𝑡, 𝐴𝑡), state space 𝑆, action space 𝐴, and reward function 

𝑅𝑡.   

2. Initialize: LSTM-based anomaly detection model.   

3. Initialize: Federated learning system with differential privacy and blockchain. 

4. While true do 

5.          State Monitoring:   

6.          Observe network state 𝑆𝑡 = {𝐵𝑖, Φ𝑖𝑗, 𝒯}.   

7.          Compute anomaly score 𝐴𝑠 using LSTM:  

𝐴𝑠 =∥ 𝑋𝑡+1 − 𝑋̂𝑡+1 ∥2, 

8.          If 𝐴𝑠 > 𝜏, prioritize threat mitigation. 

9.          Action Selection:   

10.          Choose action 𝐴𝑡 ∈ {𝑅, 𝑃, 𝑆} using policy 𝜋 to maximize reward:  

𝑄(𝑆𝑡, 𝐴𝑡) = 𝑅𝑡 + 𝛾max
𝐴𝑡+1

𝑄(𝑆𝑡+1, 𝐴𝑡+1). 

11.           Execute Action:   

12.           Apply 𝐴𝑡, transition to new state 𝑆𝑡+1, and compute reward 𝑅𝑡:  

𝑅𝑡 = 𝛼𝑃 − 𝛽𝐶 + 𝛾𝑆 − 𝛿𝐴𝑠, 

              where 𝑃 =
∑ Φ𝑖𝑗

𝑡total
, 𝐶 = ∑ 𝐸𝑖(𝑡), and 𝑆 represents security. 

13.          Update DRL Agent:   

14.          Store experience {𝑆𝑡, 𝐴𝑡, 𝑅𝑡 , 𝑆𝑡+1} in replay buffer.  

15.          If training condition is met  then 

16.          Train local model by minimizing loss:  

𝐿𝑖(𝑤) =
1

|𝐷𝑖|
∑

𝑥∈𝐷𝑖

ℓ(𝑤; 𝑥). 
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17.           Aggregate model updates using federated learning:  

𝑤𝑡 =
∑𝑁

𝑖=1 |𝐷𝑖|𝑤𝑖
𝑡

∑𝑁
𝑖=1 |𝐷𝑖|

 

18.       end if 

19. end while 

 

Explanation 

1. Initialization: The algorithm begins by initializing the DRL agent, LSTM anomaly detection, 

and federated learning system. The state space tS , action space tA , and reward function RtR_tRt are 

defined based on network metrics. 

2. State Monitoring: The network continuously collects data, including traffic patterns, node 

behaviors, and topology updates. These inputs form the state vector tS . 

3. Anomaly Detection: The LSTM analyzes sequences of state data to predict future states. 

Deviations between predicted and observed states are quantified as anomaly scores tA . High scores 

indicate potential threats. 

4. Action Selection: The DRL agent evaluates the current state tS  and selects an action tA  to 

optimize the reward. Actions include reconfigurations that address anomalies or enhance performance. 

5. Feedback and Update: After executing tA , the network transitions to a new state 1tS + , and the 

reward RtR_tRt is computed. This experience is used to update the DRL agent’s policy. 

6. Federated Learning: Nodes periodically train local models using their data. These updates 

are aggregated securely using differential privacy and blockchain to create a global model. The global 

model is redistributed to nodes for further training. 

The algorithm operates iteratively, adapting to changing network conditions while preserving privacy 

and security. Its modular structure allows scalability and efficient performance in dynamic MANET 

environments. 

3 Experimental Setup 

Simulation Environment: The MANET environment is modeled using NS3 to simulate dynamic 

network behaviors. MATLAB processes data for anomaly detection and evaluates results. A Python-

based simulator is developed for implementing federated learning and reinforcement learning 

components. Nodes operate without fixed infrastructure, with their movement patterns defined by the 

Random Waypoint Mobility Model to emulate real-world scenarios. 

        Simulation Parameters: The network consists of 25 to 100 nodes, allowing the evaluation of 

small and medium-scale setups. Data traffic ranges from 10 to 100 packets per second, simulating 

varying network loads. Mobility speeds range from 1 to 20 m/s with pauses between 0 and 5 seconds 

to reflect both low and high mobility conditions. Attack scenarios include black hole attacks, where 

malicious nodes drop packets, DDoS attacks with transmission rates exceeding 200 packets per second, 

and routing attacks with injected false routing information. 
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       Three configurations are used for comparison. Static routing protocols provide a non-adaptive 

baseline. A simple reinforcement learning model without anomaly detection or federated learning is 

included to isolate the effects of these additions. A standalone LSTM-based anomaly detection model 

evaluates the impact of integrating proactive threat detection with decision-making. Metrics such as 

throughput, latency, energy consumption, and anomaly detection accuracy are recorded to assess the 

algorithm’s performance across varying network conditions. 

3.1 System Model 

The system model outlines the dynamic and decentralized nature of Mobile Ad Hoc Networks 

(MANETs), focusing on their topology, behavior, traffic, and security challenges. 

Topology and Node Dynamics: MANETs operate without fixed infrastructure, represented as 

𝐺(𝑉, 𝐸), where 𝑉 are nodes and 𝐸 are links. Connectivity changes dynamically at a rate 𝜆(𝑡). Each 

node state 𝑆𝑖(𝑡) comprises location 𝐿𝑖(𝑡), energy 𝐸𝑖(𝑡), and activity 𝐴𝑖(𝑡). 

Traffic Patterns: Data flow Φ𝑖𝑗(𝑡) between nodes is bursty and unpredictable. Traffic reflects both 

regular network usage and anomalies caused by external threats. 

Threat Landscape: Key attacks include black hole (packet drops, 𝑁𝑏), DDoS (excessive traffic, 

Φ(𝑡) > Φmax), and routing disruptions (malicious updates, 𝑅mal). 

Evaluation Metrics: Performance is assessed using:   

• Latency:  𝐷 =
∑ 𝑑𝑝

𝑁𝑝
, 

where 𝑑𝑝 is packet delay, and 𝑁𝑝 is total packets.  

• Throughput:  𝑇 =
∑ Φ𝑖𝑗

𝑡total
, 

summing Φ𝑖𝑗 over all transmissions.  

Security is evaluated by anomaly detection rate:  

 𝒜𝑑 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 

where 𝑇𝑃 and 𝐹𝑁 denote true positives and false negatives. 

This framework captures the volatile nature of MANETs, enabling adaptive solutions that balance 

performance and security.  

3.2 Results and Discussion 

Performance results demonstrate differences in throughput, latency, energy consumption, response 

time, packet delivery, and threat detection accuracy under varying conditions shown in table 1. 

Throughput reached 92.5 Mbps for Deep Reinforcement Learning DRL (DRL-MANET), 91.0 Mbps 

for Multi-Agent Dueling Double Deep Q Network (MA3DQN) [9], and 88.0 Mbps for Enhanced Deep 

Reinforcement Learning (EDRL) [16], showing consistent data transmission capabilities under 

dynamic traffic. Latency was recorded as 35 ms for DRL-MANET, marginally better than 37 ms for 

MA3DQN and 42 ms for EDRL, highlighting adaptability to changing conditions. Energy 
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consumption per node was 22.3 J for DRL-MANET, 22.7 J for MA3DQN, and 23.5 J for EDRL. These 

results reflect the ability to manage power efficiently. Response time, measured as the interval between 

threat detection and action, was 0.85 s for DRL-MANET, compared to 0.90 s for MA3DQN and 1.10 

s for EDRL. Packet delivery rates were highest for DRL-MANET at 97.2%, with MA3DQN at 96.5% 

and EDRL at 93.8%, even under high node mobility and heavy traffic. 

Table 1: Comparative Metrics 

Metric DRL-MANET MA3DQN EDRL 

Throughput (Mbps) 92.5 91.0 88.0 

Latency (ms) 35 37 42 

Energy (J) 22.3 22.7 23.5 

Response Time (s) 0.85 0.90 1.10 

Packet Delivery (%) 97.2 96.5 93.8 

Threat Detection (%) 96.8 94.5 91.2 

 

          Threat Detection and Security: Threat detection accuracy reached 96.8% for DRL-MANET, 

followed by 94.5% for MA3DQN and 91.2% for EDRL. The integration of LSTM-based anomaly 

detection improved recognition of threats like black hole attacks and DDoS, while mitigation times 

averaged 1.3 s for DRL-MANET, compared to 1.5 s for MA3DQN and 1.8 s for EDRL. These findings, 

summarized in Table 2, underline the model’s ability to respond effectively to various threats. 

Table 2: Threat Detection and Mitigation Rates 

Attack Type DRL-MANET Detection (%) MA3DQN  Detection (%) EDRL Detection (%) 

Black Hole 97 94 91 

DDoS 96 92 89 

 

         Scalability Testing: Scalability tests evaluated network sizes from 25 to 150 nodes. Throughput 

for DRL-MANET decreased by 7% as the network scaled to 150 nodes, while MA3DQN and EDRL 

experienced drops of 9% and 15%, respectively. Latency for DRL-MANET increased by 12% with 

scaling, compared to 15% for MA3DQN and 22% for EDRL. Computational overhead remained 

minimal for DRL-MANET due to clustering and efficient updates. These results, displayed in Table 

3, suggest that the proposed model scales better while maintaining performance. 

Table 3: Scalability Performance 

Metric DRL-MANET MA3DQN EDRL 

Throughput Efficiency (%) 92 89 80 

Computational Overhead (%) +15 +18 +25 

 

         Failure Recovery: In scenarios with 10% node failures, DRL-MANET retained 95.1% of its 

throughput, while MA3DQN and EDRL maintained 92.8% and 88.3%, respectively. Controller 

failures in federated learning were resolved within 1.8 s for DRL-MANET, while recovery times were 

2.3 s for MA3DQN and 2.9 s for EDRL contributed to faster recovery, as outlined in Table 4. 
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Table 4: Recovery Performance After Node Failures 

Metric DRL-MANET MA3DQN EDRL 

Failure Recovery (%) 85 80 65 

Packet Delivery (%) 94 91 85 

 

 
Figure 2: Heatmap of Packet Delivery and Threat Detection Rates 

           A heatmap shows packet delivery and threat detection accuracy for varying conditions. Higher 

intensity areas align with DRL-MANET’s stable performance under traffic and mobility challenges. 

Figure 2 presents a heatmap showing packet delivery and threat detection rates for all models.. DRL-

MANET shows consistent results across different network scenarios, while MA3DQN performs 

slightly better than EDRL in challenging conditions. 

 
Figure 3: Streamgraph of Failure Recovery Trends 

        Figure 3 illustrates recovery trends after node failures. DRL-MANET maintains higher packet 

delivery rates and recovers faster from failures compared to MA3DQN and EDRL. The streamgraph 

visualizes recovery performance, with DRL-MANET maintaining smoother recovery trends compared 

to other models. 
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Figure 4: Bar Chart for Scalability Performance 

           Figure 4 represents scalability performance uses a parallel coordinates plot to compare 

throughput and inverse latency among models. DRL-MANET shows smoother transitions and better 

alignment between these metrics. The plot highlights subtle differences, with MA3DQN closely 

following DRL-MANET and EDRL exhibiting larger variations. 

 
Figure 5: Line Plot for Response Time and Energy Consumption 

            Figure 5 shows trends in response time and energy consumption across models. DRL-MANET 

consistently balances low energy usage with quick response times. The line plot reveals incremental 

differences between DRL-MANET and MA3DQN, while EDRL trails noticeably. 

 
Figure 6: Resource Use and Responsiveness Overlap 

            Figure 6 overlays response time and energy consumption in an area plot. DRL-MANET’s 

compact shaded area indicates better resource efficiency and responsiveness. The wider areas for 

MA3DQN and EDRL suggest higher trade-offs between these metrics. 
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The results demonstrate how the framework manages dynamic changes in MANETs. Packet delivery 

and latency remain consistent under varied traffic loads, while the anomaly detection system mitigates 

attacks promptly. Scalability is managed effectively through clustering and adaptive updates, with 

minor performance degradation in larger networks. Recovery from failures shows the system's capacity 

to maintain operational performance. Privacy-preserving mechanisms introduce slight computational 

costs but ensure secure collaboration in federated learning. These trade-offs between privacy and 

resource use highlight the balance achieved by the framework in addressing MANET challenges. 

4 Conclusion 

The study developed a non-linear reinforcement learning-based algorithm for managing real-time 

configurations and predicting threats in MANETs. The algorithm combines deep reinforcement 

learning, anomaly detection using LSTM, and federated learning for decentralized model training. The 

framework demonstrates adaptability to dynamic network conditions, achieving improved metrics 

such as lower latency, reduced energy consumption, and higher packet delivery rates compared to 

MA3DQN and EDRL models. It also detects and mitigates threats like black hole and DDoS attacks 

more effectively, maintaining high accuracy across varying conditions. This research shows how 

combining dynamic decision-making and privacy-preserving learning mechanisms addresses 

challenges in decentralized networks. By maintaining throughput and scalability while mitigating 

security risks, the framework balances network performance with computational efficiency. These 

findings contribute to understanding how adaptive frameworks can improve the management and 

security of MANETs under fluctuating conditions. Some limitations include the additional 

computational cost of privacy-preserving methods and the reliance on consistent anomaly detection 

accuracy. Future studies can focus on optimizing computational overhead, exploring predictive 

analytics for proactive routing, and integrating edge computing for greater scalability. Expanding 

testing scenarios to include large-scale networks and diverse attack patterns can further validate and 

refine the framework. The results confirm the feasibility of dynamic, secure, and decentralized 

management for MANETs. By addressing real-time configuration challenges, this approach offers 

practical solutions for enhancing network stability and security in unpredictable environments. 
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