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Abstract:  

Let R be an arbitrary ring and M a left R-module. In this paper we introduce the 

modules M such that every strongly Hopfian module in σ[M] is Noetherian. These 

modules will be called SF-modules. We characterize such modules and study their 

properties. Relationships between SF-modules and other classes of modules are 

given. 
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1. Introduction 

The study of modules by properties of their endomorphisms has long been of interest. 

Throughout in this paper, rings are considered associative, non necessarily commutative with identity 

1 ≠ 0, all modules are unitary left 𝑅-modules and 𝑅-Mod denotes the category of left unitary 𝑅-

modules. We denote by 𝜎[𝑀] the full subcategory of 𝑅-modules whose objects are all 𝑅-Mod 

subgenerated by 𝑀. 

A 𝑅-module 𝑀 is Noetherian (resp. artinian) if any ascending (resp. descending) chain of submodules 

of 𝑀 is stationary. A 𝑅-module 𝑀 is called Hopfian, if any surjective 𝑅-homomorphism 𝑓: 𝑀 → 𝑀 is 

an isomorphism. An object 𝑁 of 𝜎[M] is said to be strongly Hopfian, if for every 𝑅-endomorphism of 

𝑁, the chain 𝐾𝑒𝑟𝑓 ⊆ 𝐾𝑒𝑟𝑓2 ⊆ ⋯ ⊆ 𝐾𝑒𝑟𝑓𝑛 ⊆ ⋯ is stabilizes. A ring 𝑅 is said 𝑆𝐹-ring, if every 

strongly Hopfian 𝑅-module is Noetherian. Let 𝑅 be a commutative ring, a 𝑅-module 𝑀 is said 𝐹𝐺𝑆-

module if every Hopfian object of 𝜎[𝑀] is finitely generated. A 𝑅-module 𝑀 is called endo-noetherian 

if for any family (𝑓𝑖)𝑖≥1 of endomorphisms of 𝑀, the sequence 𝐾𝑒𝑟(𝑓1) ⊆ 𝐾𝑒𝑟(𝑓2) ⊆ ⋯ ⊆ 𝐾𝑒𝑟𝑓𝑛 ⊆

⋯ stabilizes. A 𝑅-module 𝑀 is said 𝐸𝐾𝐹𝑁-module if every endo-noetherian object of 𝜎[𝑀] is 

Noetherian. A ring 𝑅 is said 𝑆-ring, if every Hopfian 𝑅-module is Noetherian and an 𝑅-module 𝑀 is 

said 𝑆-module if every Hopfian object of 𝜎[𝑀] is Noetherian. An module 𝑀 is hollow, if 𝑀 ≠ 0 and 

submodule of 𝑀 is a small submodule of 𝑀 . 

All Noetherian module is strongly Hopfian but converse is not always true. For example, the ℤ-module 

𝑀 = ⨁𝑝∈𝑃ℤ𝑝 is strongly Hopfian but it is not Noetherian, where 𝑃 is the set of all primes. A module 

is named 𝑆𝐹-module if every strongly object of 𝜎[M] is noetherian 

In this paper, first  we present preliminary results and some fundamental properties of 𝑆𝐹-modules. 

Secondly we characterize the class of finitely generated  and hollow 𝑆𝐹-modules. Additionally, we 
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prove that in the setting of finitely generated 𝑆𝐹-modules, noetherian module, artinian module and 

semiartinian module are equivalent. 

2. Some properties of SF-modules 

Lemma 2.1.  For a ring R we have : 

1. Every Noetherian R-module is endo-noetherian. 

2. Every endo-noetherian R-module is strongly Hopfian. 

3. Every strongly Hopfian R-module is Hopfian. 

Proposition 2.2.  If M be a SF-module. Then we have the following properties: 

1. Every submodule of a strongly Hopfian module in σ[M] is strongly Hopfian. 

2. Every quotient of a strongly Hopfian module in σ[M] is strongly Hopfian. 

Proof. 1) Let N be a submodule of strongly Hopfian module K in σ[M]. As M is an SF-module, then 

K is Noetherian. Since submodule of Noetherian module is Noetherian so N is Noetherian. Therefore 

N is strongly Hopfian beacause every Noetherian module is strongly Hopfian. 

2) Result from the fact that any quotient of a Noetherian module is Noetherian. ◻ 

Proposition 2.3.  Let R be a ring. The following assertions are equivalent: 

1. R is SF-ring. 

2. Every R-module is a SF-module. 

Proof. 1) ⟹ 2). Let M a R-module and N a strongly Hopfian objet of σ[M]. Since σ[M] is the full 

subcategory of R-Mod then N is a strongly Hopfian R-module. As R is a SF-ring then N is 

Noetherian. 

2) ⟹ 1) Suppose that every R-module is SF-module. Let K be a strongly Hofian R-module. Since 

K ∈ σ[K] then K is Noetherian. Hence R is a SF-ring. ◻ 

Remark 2.4.  

1. Every S-module is SF-module. 

2. Every SF-module is a EKFN-module. 

Proposition 2.5.  Let R be a commutative ring and M a finitely generated R-module. If M is a SF-

module, then every object of σ[M] has a projective cover. 

Proof. If M is SF-module, then by remark 2.4. M is EKFN-module and by Proposition 3.4. of  [5], 

every object of σ[M] has a projective cover. ◻ 

Proposition 2.6.  For a R-module M, the following properties are equivalent: 

1. M is an SF-module. 

2. Every module in σ[M] is an SF-module. 
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Proof. 1)⟹ 2): Let N ∈ σ[M] then σ[N] is the smallest category of σ[M] containing N and it is a full 

subcategory of σ[M]. If K is a strongly Hopfian object of σ[N], then K ∈ σ[M] and since M is an SF 

-module then K is Noetherian. 

2)⟹ 1): it’s obvious because M ∈ σ[M]. ◻ 

Proposition 2.7.  Over R-artinian ring, all R-module is SF-module. 

Proof. Let M be a R-module and let N be a strongly Hopfian module in σ[M]. Since R is artinian ring 

then according to 31.5 of [11],  σ[M] = R/Ann(M)-Mod. Hence every module in σ[M] is an 

R/Ann(M)-module therefore N is a ideal of R/Ann(M). As R is artinian then R/Ann(M) is artinian 

and so N is finitely generated. Since over artinian ring, finitely generated and Noetherian are equivalent 

then N is Noetherian. ◻ 

Proposition 2.8.  Let M be a R-module. If every module in σ[M] is injective, then M is an SF-

module. 

Proof. Suppose that every module in σ[M] is injective. Let K be a strongly hopfian object of σ[M] then 

K is hopfian. Since by hypothesis K is injective then according to Theorem 3.5. of [9] ,  K is Noetherian 

and therefore M is an SF-module. ◻ 

3. Characterization of SF-modules 

Definition 3.1. Let M be an R-module. 

A module N in σ[M] is semiperfect in σ[M] if every factor module of N has a projective cover in 

σ[M].  

Definition 3.2.  N is perfect in σ[M] if, for every index set Λ, the sum N
(Λ)

 is semiperfect in σ[M]. 

Lemma 3.3. (see 43.11 in [11]).  Let R be a commutative ring, M a finitely generated, self-projective 

R-module. Then the following statements are equivalent: 

1. M perfect in σ[M] 

2.  𝑅̅ =  R/An(M) is a perfect ring. 

Theorem 3.4.  Let R be a commutative ring, M a finitely generated, self-projective R-module. Then 

the following statements are equivalent: 

 1. M is a SF-module; 

 2. M perfect in σ[M]; 

 3. All M-generated flat module in σ[M] is projective in σ[M]. 

Proof. According to 43.8 in [11], we have the equivalence of assertions (2) and (3). Now let’s prove 

that 1) is equivalent to 2). 

1)⟹ 2): M finitely generated SF-module implies σ[M] = R/An(M)-Mod and M ≅ R/An(M) is an 

artinian principal ideal ring. Since every artinian ring is perfect ring then M is perfect and so R/An(M) 

is a perfect ring. Referring to 43.11 in [11], M is perfect in σ[M]. 

2)⟹ 1) If M perfect in σ[M] then by 43.11 of [11] , R/An(M) is a perfect ring. Since every perfect 
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ring is semiperfect and every semiperfect ring is semilocal, then R/Ann(M) is a semilocal ring. By 

theorem 3.2 in [4],  we deduce that R/Ann(M) is an SF-ring. As M is finitely generated σ[M] =

R/Ann(M)-Mod and so every module in σ[M] is a R/Ann(M)-module. If N is a strongly Hopfian 

module in σ[M] then N is Noetherian because R/Ann(M) is an SF-ring and N is a module of 

R/Ann(M). Therefore M is an SF-module. ◻ 

NB: We denote by Max(M), the set of maximal submodules of a module M. 

Corollary 3.5.  Let R be a commutative ring and M a self-projective hollow module and Max(M) ≠

∅. If M is a SF-module, then S = EndR(M) satisfies the descending chain conditions for cyclic 

ideals. 

Proof. Assume M a projective hollow module and Max(M) ≠ ∅ then according to Theorem 2.2 of [2], 

M is a finitely generated local module. Then M is finitely generated self-projective. Hence if M is a 

SF-module then by Theorem 3.4. M perfect in σ[M] and referring to 43.4 of [11],  S = EndR(M) 

satisfies the descending chain conditions for cyclic ideals. ◻ 

Definition 3.6.  A module M is called semiartinian if every nonzero homomorphic image of M has 

nonzero socle. 

Definition 3.7. A module M is called Π-semiartinian if the direct product MI is a semiartinian module 

for every non empty set I.  

Definition 3.8. The ring R is called strongly π-regular if for each a ∈ R, there is an integer n ≥ 1 and 

b ∈ R such that an = an+1b. M is called Fitting module if every endomorphism of M satifies Fitting’s 

lemma (i.e., there exists an integer n ≥ 1 such that M = Kerf
n ⊕ Imf

n
). 

Theorem 3.9.  Let R be a ring and M a finitely generated R-module. If M is SF-module then the 

following statements are equivalent: 

1.           M is artinian; 

2.          M is semiartinian module; 

3. Every module in σ[M] is semiartinian ; 

4. M is Π-semiartinian module; 

5. M is Noetherian. 

Proof. 1)⟹ 2): It’s obvious. 

2)⇔ 3): If M is semiartinian module, then by Corollary 2.13. in [8],  R/An(M) is a semiartinian ring. 

Let N an object of σ[M] then since M is finitely generated σ[M] = R/Ann(M)-Mod and therefore N 

is a module R/Ann(M)-module. It is well know a ring R is semiartinian if and only if every R-module 

is semiartinian . Since R/Ann(M) is a semiartinian ring then every R/Ann(M)-module is semiartinian 

and hence N is semiartinian. The converse is trivial. 

2)⇔ 4) Result from Corollary 3.3. of [8] 
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2)⟹ 5) If M is semiartinian then according to Corollary 2.13. in [8],  EndR(M) is a strongly π-regular 

ring. Therefore by proposition 2.7 of [6], M is Fitting module and so an strongly Hopfian module. 

Since by hypothesis M is a SF-module so M is Noetherian. 

5)⟹ 1) M finitely generated and SF-module implies M ≅ R/An(M) is artinian principal ideal and 

over artinian principal ideal ring Noetherian module and artinian module coincide. ◻ 

Lemma 3.10. (see proposition 14 of hollow and semihollow modules).  Let N be a proper submodule 

of a module M. If M is a hollow module and M/N is finitely generated, then M is finitely generated. 

Theorem 3.11.  Let R be a commutative ring and M a hollow module. We suppose that for every 

proper submodule N of M, M/N is finitely generated. Then the following conditions are equivalent: 

1.  M is a SF-module; 

2.  M is a locally Noetherian module; 

3.  M is Noetherian module; 

Proof. 1)⟹ 2): Let M be a SF-module then by remark 2.4. M is a EKFN-module. By hypothesis, it results from 

lemma 3.10. that M is finitely generated. Hence by Theorem 3. of [5], M is a locally Noetherian module. 

2) ⇔ 3) Result from Corollary 2.3. in [7] 

Now we prove that 2) ⟹ 1): Let N ∈ σ[M] a strongly Hopfian module. Since M is locally Noetherian then 

according to Corollary 2.3. in [7], R/Ann(M) is a Noetherian ring. Since M is finitely generated σ[M] =
R/Ann(M)-Mod and M ≅ R/Ann(M) is finitely generated and Noetherian. So N ∈ σ[M] implies that N is an 

ideal of R/Ann(M) and therefore a submodule of M. It’s well know over Noetherian ring, every submodule of 

finitely generated module is finitely generated. Hence N is Noetherian because over Noetherian ring, finitely 

generated and Noetherian module coincide. ◻ 

Corollary 3.12.  Let R be a commutative ring and M a hollow module. We suppose that for every 

proper submodule N of M, M/N is finitely generated. Then the following conditions are equivalent: 

1.          M is a SF-module, 

2. Every finitely generated module in σ[M] is Noetherian. 

 

3. Every finitely generated module is finitely presented in σ[M].  

 

4. Every direct sum of M-injective module in σ[M] is M-injective. 

Proof. By hypothesis, it results from Lemma 3.10. that, M is finitely generated and according to the 

theorem 3.11. M is a SF-module if and only if, M is a locally Noetherian module; and referring to 27.3 

of [11],  we have the result. ◻ 

Theorem 4.  Let M be a local R-module, then the following are equivalent: 

1.  M is a S-module; 

2.  M is a SF-module; 

3.  M is of finite length and every submodule of M is cyclic; 

4.  M is of finite representation type; 
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5.  M is FGS-module; 

Proof. 1) ⟹ 2). Result from remark 2.4. 

2) ⇔ 3) ⇔ 4) Since M is local SF-module then M is a finite generated SF-module. By Lemma 2.1. 

and Lemma 3.3. M is isomorphic to R/Ann(M) who is a principal ideal ring. This double 

equivalence result from Theorem 9 in [10]. 

4) ⟹ 5) Result from Theorem 1 in [3]. 

5) ⟹ 1) Let N be a Hopfian module in σ[M]. Since M is a FGS-module then N is finite generated. 

From Proposition 3 in [3] N is Noetherian. Therefore M is a S-module. ◻ 
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