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1. Introduction

The i1dea of Cartan space is due to E. Cartan [2]. Cartan was a French mathematician and geometer.
Cartan space is the dual of a Finsler space [2]. This dual is defined using the functional "Legendre
transformation". The relation between Cartan space and Finsler space has been studied by F. Brickell
[1], H. Rund [12] and others. R. Miron ( [6], [7]) introduced the theory of Hamiltonian space, He
proved that Cartan space is a particular case of Hamilton space. The notion of (a, f)-metric in Cartan
space was introduced by T. Igrashi ( [3], [4]. He obtained the metric tensors and some invariants which
characterize the special class of Cartan spaces with (a, )-metric. H.G. Nagaraja [8], G. Shanker [13],
M. Rafee ([9],[10],[11]) and Tripathi [15] have also made significant development in the theory of
Cartan spaces with (a, f)-metric. The paper is organized as follows:

In Section 2, we give basic definitions and results required for subsequent sections. In Section 3, we
Bn+l(x’w)
a(x,w)
h-metrical d-connection. In Section 4, we study the conformal change of Cartan space and find some

important results.

deal with Cartan space with an (a, f)-metric, K(x,w) = a(x, ) + , under the condition of

2. Preliminaries

Consider an n-dimensional differentiable manifold M. For each point p € M, we define the cotangent
space at p, denoted by T,;M, to be dual space to the tangent space T,M, i.e., T,M = (TI,M)*. The
elements of T,,M are called tangent vectors located at p and the elements of T;M are called tangent
covectors or simply covectors located at p. Moreover, the tangent vectors are denoted by v and the
tangent covectors are denoted by w. The cotangent bundle of the manifold M is denoted by T*M and
defined as the set of all tangent covectors at all points of M. That is,

T"M = Upey Ty M
= disjoint union of all cotangent spaces T;M on M.

Usually, in physical applications, a mechanical system with finite configuration space is
mathematically studied using a differential manifold M of finite dimension n (that is, a mechanical
system with a finite number of degrees of freedom with constraints or with holonomic constraints).
According to the Newton’s laws, the configuration of a system at some instant is not enough to
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determine its configuration at some other instant; however, the evolution of the system is fixed by the
configuration and the momentum of the system at some instant. The momentum of the system
corresponds to a tangent covector wy, at the point p of the M that represents the configuration of the

system at that instant; therefore at each point of cotangent bundle T*M determines a state of the
system. When M is a configuration space, T"M 1s called phase space. If w, € Ty M represents the

state of the system, there exist a unique curve in "M passing through w,, describing the evolution
of the state of the system.

Definition 2.1 (S/it Cotangent Bundle)

Let T*M = Uyey Ty M be a cotangent bundle of the manifold M, where T, M is a cotangent space at
a point x € M. If we remove the zero section (i.e., zero cotangent vectors w = 0 of each cotangent
spaces Ty M) from the cotangent bundle T*M, we get the cotangent bundle without zero cotangent
vectors. This resultant cotangent bundle is called the slit cotangent bundle and it is denoted by T*M°.

Using set-builder method, it can be written as T*M° = {(x, w)|x € M,w € Ty M, w # 0}.
Let us first recall the definition of Cartan space:

Definition 2.2 (Cartan space)

A Cartan space is a pair C = (M, K(x,w)) such that the following conditions are satisfied:

Let M be a smooth manifold and T*M be its cotangent bundle. A function K: T*M — R 1is called
Finsler metric or Finsler fundamental function on the cotangent bundle T*M if it satisfies the
following properties:

1. Smoothness of K:

F is C* away from zero cotangent vectors of the cotangent spaces T, M.

That is, F is smooth on slit cotangent bundle TM°.
OR
Smoothness of K:

F is smooth on the slit cotangent bundle T*M°. That is, K is smooth on the cotangent bundle T*M
without the null section {(x,0)} € T*M, and K € C° on the null section {(x,0)} c T*M. K € C°
means K is just continuos at every point (x,0) € TM of the null section {(x,0)} € T*M. The
regularity condition here only is desired so that we can incorporate the tools of differential calculus on
the Finsler metric or Finsler fundamental function K.

2. Positivity of K: K(x, ) 1s positive for all w € T, M.

3. Positive Homogeneity of K: K(x,w) 1s +ve 1-homogeneous with respect to w the cotangent
bundle T"M, ie., K(x,Aw) = AK(x,w), V A >0;forany x € M, w € Ty M.

4. Strict Convexity of K: The hessian matrix defined by g¥(x,w) = %ﬁ

definite for all (x,w) € T*M°.

Definition 2.3 (Cartan Space)

(x,w) 1s positive

A differentiable manifold M equipped with a Finsler metric K(x, w) defined on the cotangent bundle
T*M 1s called a Cartan space..
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Cartan space 1s denoted by C = (M, K(x, w)), where K(x,w) represents norm of the differential one

form w € Ty M based at any point x € M. The function K(x, w) i1s called the fundamental function
s gif(x, w) - 1 92K2

20widw;j
Cartan space the metric K:T*"M — [0,0) 1s defined from cotangent bundle T*M to non-negative real
numbers, so at a point x € M, K(x,—) eats one-form w € T;M and spits non-negative reals,
amounts to saying that Cartan space is constructed on the cotangent bundle T*M in the same way a

Finsler space (M, K(x,y)), where K:TM — [0, ), is constructed on the tangent bundle TM.

(x, w) 1s called the fundamental metric tensor of the Cartan space C. In

Next we define the norm of a differential one form w € T;M in local coordinates or in terms of
fundamental metric tensor g¥ of the corresponding Cartan space (M, K(x, w)).

Definition 2.4 (Norm of a Differential one Form)

Consider (M, K(x,w)) be a Cartan space, where K(x, w) 1s a Finsler metric on the cotangent bundle
T"M. Then the norm of a differential one form w € T;M at any fixed point x € M is denoted by
K,(w) and defined by

1 9’k?

2 =
Kx ((JJ) 2 dwidwj

(x,a))a;icuj

= Qij(x: W) W;wj,
where g¥(x,w) = 1 g
! 2 dwidwj

cotangent bundle T*M.

Proposition 2.5 (1) Let C = (M,K(x, w)) be a Cartan space. Then the space H = (M, K?(x, ))
determined by the Cartan space C = (M,K(x, w)) is a Hamilton space.

(x, w) 1s the fundamental metric tensor of the Finsler metric K(x, w) of

Proposition 2.6 Ler C = (M, K(x, w)) be a Cartan space. Then the following properties hold:

4 2
1. @@ = %% is 1-homogeneous d-vector field on the dual tangent bundle T*M°.
L
ii dw! 1 92K? .
ij — - = _ Z
2. gY(x,w) = 2w, — 2 9nda; (x, w) 1s 0-homogeneous d-tensor field.
1 *k*(x,w)

3. Gk = 1s -1-homogeneous symmetric d-tensor field.

4dwdwjdwy
Proposition 2.7 Let C = (M,K(x, w)) be a Cartan space. Then the following properties hold:

1. o= gifwj and w; = gija)f.

2. K?=gYww; = ww.

3. Ckw, =0, C*w, =0, Ckiw, =0.

Proposition 2.8 4 Cartan space C = (M,K (x, )) is a Riemannian space if and only if d-tensor field

cik = 1__ K
- 4dwidwjiwy

Definition 2.9 If the fundamental function K(x,w) of a Cartan space C = (M, K(x, w)) is afunction

of variables B(x, w) = w;b*(x), where a¥(x) is a Riemannian metric and b'(x) is a vector field
depending only on x, then C is called Cartan space with (a, )-metric. Here it is to be remarked that

vanishes.
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K(x, w) must satisfy all the conditions imposed on the fundamental function of a Cartan space.
Definition 2.10 (Minkowski space)

Let V be a vector space of dimension n. A C* function F:V\{0} = {y|y € V,y # 0} - R issaid to
be Minkowski norm if F satisfies the following properties:

1. Positivity: F(y) =0 forall y e V.
2. Positive Homogeneity: F is +ve 1-homogeneous with respect to y, i.e.,
F(Ay) = AF(y), ¥V A > 0; for any y € V\{0}.

3. Strong Convexity: The hessian matrix defined by g;;(y) =
y € V\{0}.

The vector space V quipped with Minkowski norm F is called Minkowski space and it is denoted by
(V,F).

Definition 2.11 (Conformally flat space)
Let us consider a Cartan space C = (M K(x,w)) with an (a,f)-metric, K(x,w) = a(x,w) +

n+1
ﬁan(ixc;) where @ = (au(x, a;)wle)z and B = wlbl(x).

. ayl ay i (y) 1s positive definite for all

The fundamental tensor g”(x,w) and its reciprocal tensor gij(x,w) of the Cartan space C =
(M,K(a,p)) are given by [4]
g7 = pa + pob'b/ + p_i(b'w; + bl w;) + p_rw;w), (1)
where p, po, p_; and p_, are invariants which are defined and calculated as follows:

1
p_

— 1 n(ﬁ)nﬂ

Po = EKBB

_ nm+1)p"!
- 2am

1
p-1 =5 Kap

n(n+1)g"
- = 2an+2

P2 = ﬁ (Kaa - éKa)

_L[M_i]

~ 2a2 an+2 a
and
gij = 0a;j — 0ob;b; + 0_(b;w; + bjw;) + 0_,w;wj, )

where

o~
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2a

—1 . ( E)m 1

a

Po
oy = =
0=
T=0+ 0B+ p_,B
pT
P2
pt’

g_, =
where B? = bib}- and B represents the norm of the differential form B(x, w) = w;b*(x) € T; M.
The Cartan torsion tensor CY¥ [6] is given by
Gk = —%[r_lbibfbk + {p_1aYb* + p_,a¥ w* + r_,b'b) 0¥ +
rsblwl w® +i|j|k} + r_s0'wl w¥], (3)

where its coefficients r_;, r_,, r_3 and r_, are defined and calculated as follows:

1
r-1 =3 Kgpp
_ nm-1)(n+1)p"?
- 2am
3 S5 Rapp
_ _ni(n+np™!
- 2am
1 1
oy (Kaaﬁ = ;Ka,e)
_ n(ni)(n+2)p"
- 2an+4

1 3 3
= E(Kaaa - EKaa £3 EKCE)

_ 1 [ n(n?+6n+2)p™t! 3
AL e Tl

T4

==
Let °’|” denote the covariant differentiation with respect to Christoffel symbols yjik constructed from
a;j . Whenever we talk about Christoffel symbols yjik constructed from a;;j, we mean y}-ik =
1 (2 | aY _ 2d)
2(_1_ (axf axk_ axt - _ i
alli =0 o b bfk = 0, then gllk = 0. Also; et T}k(p) = Eg”’(ajgrk + 0xgjr — 0rgjk) be the
Christoffel symbols constructed from fundamental metric tensor g;j(x, ) of the Cartan space

(M,K(x,w)). Now, for the Cartan space (M, K(x,w)), we state canonical d-connection is a triplet
given by

). Since w;, = 0 and from Ricci’s theorem of tensor calculus [15] we have

DT = (N, Hi, €I,
where

1 : .
Ni; =Ty — Erfrwkwrahgij (4)
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ka = Eglr(ajgrk i akgjr - argjk) (5)
i 1 dglik(x, : i
¢, w) = =3 gir (. ) 25 = g, (3, 0) CV¥ (x, ) (©)

are respectively called canonical N-connection, Christoffel symbols and d-tensor field of type (2,1).

Let us use the D-connection to find the A-covariant derivative DI'. We use the symbol '|;- to indicate
h-covariant with respect to D-connection DI'. Let us define the meaning of A-metrical d-connection
in the Cartan space.

Definition 2.12 (10) 4n h-metrical d-connection on a Cartan space C = (M, K (a(x, w), f(w)) with
(a, B)-metric is a d-connection, DI' on C, satisfving the following properties:

s =0

2. ml=i

3. h-deflection tensor D;;(= w;jj) = 0.

n+1 %
3. Minkowski nature of Cartan spaces with (a, f)-metric K(x, w) = a(x, ) + %
Bn+l(x,w)
a(x,w)
h-covariant derivative of the (a,f)-metric as follows and then we impose the /-metrical d -
connection DI" on the Cartan space with the given (a, f)-metric:

. First we calculate the

Consider the Cartan space with (a, f)-metric K(x, w) = a(x,w) +

B?Hl (x’w)
a(x,w)

K(x,w) = a(x, ) +

(n+1)a"Bp—npHa ay,
o2n ‘

ij U
g (w;wjj, + wjw;),) + W;w;g);, = ap +

As we have considered that the d-connection D1 of the Cartan space 1s A-metrical, so by definition
2.12 of h-metrical d-connection DI, we get

wjip = 0,0, =0,q), = O,QH = 0.
Using these values in above expression, we get
Br=0 (~a=*0,p+0) (7)
(@D =0 (+B(x,0) = ab'(x)
wibi(x)w + bi(x)cu”h =0.

As we have stipulated the d-connection DI" of the Cartan space is s-metrical, therefore by definition
2.12, we have

w;, = 0.
Using these values in above expression, we get
a)i,bi(x)”1 +bi(x) x0=0
wibi(x)w =0
bi(x)|h = (8)
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Now, we find /-covariant derivatives of the coefficients of metric tensor g/ and then use conditions
of h-metrical d-connection DI" of Cartan space as follows, we get

s [ n(g)n—i-l

_ n(n+)pn!
- 2am
* pojp = 0. (10)
.. _ _nm+npn"
Y P11 = 2gn+2
s p-p = 0. (11)

. _ 1 [a@+pp™! 1
P25 [ a+? ]

P = 0. (12)

The h-covariant differentiation of the equation (1) gives

(24

g] = paj] +apy, + po(bb));, + b1bI po + p_y (bl + b)), +
(b'w’ + b w)p_yj; + pr (@ 0 + 0w/ py,
g1} = pa] + aVpy, + po(bb], + bIbly) + bbI pyy + p_i (D], + wibf, + b i + w'b])
p_1|h(biwf + bfa;i) + p_2|h(wiw|’; + wfa;fh) + a)ia;fp_m.
Using the conditions of A-metrical d-connection DI" of Cartan space and equations (8), (9), (10),
(11) and (12), above equation reduces to gllj‘: =0.

Thus, allowing d connection DI" of the Cartan space to be /-metrical, it gives two important
quantities namely a| » = 0 (by definition of h-metrical d-connection) and gll ;: = 0, 1.e., h-covariant
derivatives of fundamental metric tensors of associated Riemannian space and Cartan space vanishes.
Now, since al ; = 0 and gl 5 = 0, therefore there corresponding Chritoffel symbols will also be same,

ie., H: i = y}k and its equivalent condition is given by
bl w = 0. (13)

Now, since H i = y}, . therefore the curvature tensor D} jx of DI" coincides with the curvature tensor
Rk}k of Riemannian connection RI"' = (ij:]/;k}’p 0); i,

i .t
Dyjx = Rjj-
If the Riemannian curvature tensor vanishes, 1.e., R}; ik =0, the curvature tensor of d-connection also
vanishes, i.e., D} jx = 0. This discussion can be summarized as follows:
_(
a™(x,
a h-metrical d-connection is locally flat if and only if the associated Riemannian space is focm’ Iy flat.

Proposition 3.1 4 Cartan space C with the (a, f)-metric K(x,w) = a(x, w) + admitting
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Now, we find h-covariant derivatives of the coefficients of Cartan torsion tensor CU¥ and then use
conditions of /#-metrical d-connection DI' of Cartan space and equation (7) as follows:

n(n-1)(n+1)p"2

= 2am

ST =0 (14)
me o M(REDRT!

"2 = 2am

“Tp =0 (15)
. n(n+1)(n+2)p"

T3 =T e

“T3 =0 (16)
B _ 1 [ n@m*+6n+2)p"! 3

e R R ?]

. T_4|h =0. (17)

Now we calculate the value of A-covariant derivative of d-tensor field Cij K of type (2,1) under the
assumption of s-metrical d-connection as follows:

Cij = iy CTY
k|h = (girC" )|,:,
= Gir X Clh + CTU x 09 kr|n
= gC
= —gm%[r_lb”bibf + 1,b b w! + r3b"w w! + r0"w e + p_jath) +
paaried +rilj]
= —gm%[r_l X (b”bibf)w + b"b'bJ x Or_ypp + 75 X (b”biwf)w + b"hiwl x
O, + 173 X (;E;""cuicof)|,;z + b wlw’ x 073, + 14 X (w’"wiwf)m + 0" wlwl X
07y, + p—1 X (a”ibf)m +a"'bh/ x 0p_yjp + p—2 X (a”iwf)w + a"wl x
0p—zpp + (rlili)al
= —ri%[?"q (b’"bibf)w + r_z(b”biwf)w + 1»‘_3(;E;""cuicof)|,;z + r_4(w”wiwf)|h +
p_1(a" b7 + po (@ W)y + (rlili) sl
= —Okr= [r_l(b"b‘(}bfh b’"bJObw + b‘bJ‘Ob ) + r_z(b”b‘()wlh + b”wf(}b + ble'Ob W) +
r3(b"w ‘0cu|h i b’"wJ'Oa)lh +w a)J'Ob ) + 14 (" w‘0w|h +w wJOwlh +w w10w|h) +
P_1 (a”Obfh + bJ'Oaf}f) + p_z(a’“Owlh + wJOaT}f) + 0(r|ilj)x]
G ,=0; (18)
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One knows that a Cartan space C 1s Berwald space if and only if C ;flr , = 0 [13]. Hence from equation

(18), we have the following proposition:

n+1
Proposition 3.2 4 Cartan space C with the (a, B)-metric K(x,w) = a(x, w) + ini(i':;) admitting

(x
h-metrical d-connection is a Berwald space.

In [13], it 1s deduced that a locally Minkowski space is a Berwald space in which curvature tensor
vanishes. Hence, from the Propositions 3.1 and 3.2, we have following theorem:

n+1
Theorem 3.3 4 Cartan space C with the (a, )-metric K(x,w) = a(x,w) + in—(x'(;) admitting h-

(xw
metrical d-connection is locally Minkowski space if and only if the associated Riemannian space is

locally flat.

ﬂn+1(x’ w)

4. Conformal flatness of Cartan space with (a, f)-metric K(x, ) = a(x,w) +— ow)

In this section our aim is to conformally transform a Cartan space (M, K(x,w)) to another Cartan
space (M,K(x,)) and then to determine the nature of curvature tensor D} jk 1n the conformally
transformed space (M,K(x,w)) under the influence of /-metrical d-connection on the original
Cartan space (M, K(x,w)). That is, we are going to determine the shape of conformally transformed
space (M, K (x, w)) under the stipulation of A-metrical d-connection on (M, K(x, w)).

For that, consider an n-dimensional Cartan space C = (M, K(x, w)) equipped with a real smooth n-
n+1
manifold M and the (a,f)-metric K(x,w) = a(x,w) + B (xw)

a(x,w)

and f = w;b'(x). By a conformal change o:K — K such that K(a,f) = e°K(a, ), we have the
another Cartan space C™* = (M,K(@,f)), where @ = ea and f = e?p.

. 1
, where a = (a” (x, w)w;w;)?

y 1 :
Putting a = (aY(x, w)w;w;)? and B = w;b'(x) in the above relations, we get

a

a=e«a
& 1
a=e?(a’(x, w)w;w;)?
&5 1
a = (e*?a’ (x,w)w;w;)>

a= ((_l_ija’iwj)%

a’ = e*°al(x, )
and

B=e’p

B = e®wb'(x)

B = wie’b'(x)

B = w;b’

b' = e%bi(x).

Now we calculate the Christoffel symbols 7}, in conformally transformed space (M, K (x,w)) as
follows:

https://internationalpubls.com 322



Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 32 No. 5s (2025)

We know from Riemannian geometry Christoffel symbols of second kind yfk from fundamental
metric tensor a??(x, w) can be defined as

1 da dald  3qik
ypk s Looip ( KLy _ )
q 2 axa axk axlt

Similarly, we can also define the Christoffel symbols ffk in conformally transformed space
(M,K (x, w)) as

_p _1 —Ip (aakl aalq aﬁqk)
=-a
qu 2 dx4q + dxk ax!

_1 2 1p de2%ay(x,w) aezaa;q(x,w) 8emaqk(x,w)
=3¢7a (x, w) ax4q o dxk axl

_1 26 w|(, 20 aakz ae? 20 991 e 20 9%q det?
=seTa @ +klaq+e_k+a’-qak e al+qkax5

_1 25 Ip [( 20 9ak1 20 ) ( 20 aalq 20 6_0')
=pe=d e aq+2€ aklaq + 2e Qg 5 %

dag do
20 2o
(9 = e £+ 2e Agk 51 )]
_1 45 lp[ dag; , dajg aaqk) ( dc a_c)]
=z€°a x4 + axk  oax! 2a kl ax4a o+ 219 5% axk — 2aq axl

= oo [l a'? (aakl dayg  dagk
- 2 axq = axk xl

) + (a®ayo0, + a® a0 — alpachrl)]
= e[yl + (6504 + 6,01 — agra?)].

Hence, the components of Christoffel symbols ]7; . constructed from aP?, in conformally transformed
space are given by

Efk = qu + ng' (19)
where ng = 0x8¢ + 040f, — agaoP, oP = g,aPl.

The covariant derivative of b? with respect to ffk, yields

B, = e?(bf, +20b? + b' 0,6} — 0, b ary ). (20)

Transvecting the equation (20) by b*, and putting
— k1, P rb? .
= 4 522, e

we have o? = MP — MP, from which we get g, = MP? — M,,. Substituting the values of o, and o?
in equation (19) and using qu = yfq + 5{,?MQ + 5{,?MQ + 63;Mh — MPay,, we find
AP _ P :
Dy = Dy (22)
Here qu 1s a symmetric and conformally invariant linear connection on M.
The whole discussion can be summarized in the following proposition.

Proposition 4.1 Ler C = (M,K(x,w)) be a Cartan space the (a,)-metric K(x,w) = a(x, w) +
Bn+}(x’w)

TR Then, there exists a conformally invariant symmetric linear connection D(I;k on M.
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Next, if we denote the curvature tensor of Df;k by quk, then from the equation (22), we get
Dj.ic = Dy (23)
Since bﬁc = 0, from equation (21), we get M’ = 0. Hence, we deduce that Df;k = y;k and quk =
p
quk.

Thus we have the following proposition:

n+l
Proposition 4.2 Let C = (M, K) be a Cartan space the (a, f)-metric K(x,w) = a(x,w) + %
admitting h-metrical d-connection. Then, there exists a conformally invariant symmetric linear

: P P _ D L3 P _ pp
connection D, such that Dy = Vax and it’s curvature tensor Dy i = Rygie

Next, if the associated Riemannian space (M,a) i1s locally flat, that is, quk =0, then from
Proposition 4.2 and equation (23), we deduce that Equ = 0, that 1s, the space C 1s conformally flat.
Thus we have the following theorem:

n+l
Theorem 4.3 Let C = (M,K) be a Cartan space the (a,p)-metric K(x,w) = a(x,w) + %
admitting h-metrical d-connection. Then the space C is conformally flat if and only if the associated

Riemannian space is locally flat.
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