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Abstract:  

This study presents a numerical technique to analyze the MHD effect on the 

motion of 3D NFs via shrinking or SS under convective BCs. The investigation 

incorporates convective and VSC. The gov. eqs. are transformed into a set of 

coupled NLODEs using appropriate ST. These transformed nonlinear equations 

are calculated using R-K-F method combined with the shooting technique. The 

influence of various physical parameters on  ,   and  distributions is illustrated 

graphically.  Other that, the study evaluates SF coefficient and HTR for different 

NFs parameters.  
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Introduction: 

The study of Casson NFs is a type of NNF that combines the viscoplastic properties of a CF with the 

enhanced thermal and physical characteristics of NFs, which are fluids containing suspended NPs. The 

Casson model describes the yield stress behavior, where the fluid begins to motion only after a certain 

threshold shear stress is exceeded, while the inclusion of NPs improves heat transfer, viscosity, and 

thermal conductivity. CNFs are widely studied for applications in biomedical engineering, such as 

blood flow modeling, as well as in HT systems like cooling technologies, microfluidics, and energy-

efficient industrial processes. Their unique combination of properties makes them suitable for 

optimizing thermal performance and understanding complex flow behaviors under various conditions. 

Yousuf Ali et al. [1] examined the CNFs MHD unstable BL characteristics in the simultaneous 

transmission of thermoelectric and radiation on a SS. Suresh Kumar et al. [2] finding the motion 

velocity is a diminishing function of the TR parameter has observed in Hall parameter. Khan et al. [3] 

examines the MHD on CNFs in a porous medium .Shek Akbar et al. [4] consider the 2D Casson HNFs 

motion inside the channel. Rehman et al. [5] reported that, the MHD CSC motion of a HNFs, 

considering the impact of VD via SS is presented. 
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The MHD is behavior of ECF, such as plasmas, liquid metals, in the presence of MF and EF. Governed 

by modified Navier-Stokes and Maxwell’s equations, MHD has wide-ranging applications, including 

the study of astrophysical phenomena (e.g., solar flares and planetary magnetospheres), fusion energy 

research, liquid metal cooling in reactors, MHD generators, and flow control in aerospace. It is crucial 

for understanding and engineering systems involving high-temperature plasmas or conductive fluids. 

Alamirew and Awgichew [6] examines the motion of MHD Casson NFs via vertically SS with effect 

of VD, MC in a spongy medium. Ismail et al. [7] developed the thermal instability of Tri-hybrid Casson 

NFs with TR PM. Khan et al. [8] present the constitution of MHD steady 3D CNFs motion containing 

gyrotactic microorganism via SS. Recently, some of authors developed numerical techniques applied 

in 3D NFs motion via SS was developed [9-11]. 

Mathematical Analysis: 

Here, we consider the 3D CNFs motion with MHD effect via SS. the physical model of the problem 

as predicted in Fig. 1. It is considered that liquid motion taken by 1 1x y −  surface with VS. The 1z

direction has taken by negligible. Under these basic gov. eq’s are shown below: 
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Corresponding B.Cs are 
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The following dimensionless functions and the similarity variables are: 
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Utilizing the above dimensions, Eq. (1) is identically satisfied and translate Eqs. (2)-(5) 
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Results and Discussion 

The physical effect of M  (“Magnetic Parameter”) on fluid motion component ' ( )g   for the case 

( )0   and ( )0   as predicts on Fig. 2. It is clear that the nanofluid flow velocity is slowly down 

along y -direction when the sheet is stretching ( )0  . Physically, a drag force like resistive type 

force is create disturbance by the fluid particles of the vertical MF to the electrically conducting liquid. 

This force has to reduce the motion of the fluid over a stretching surface. 

Fig. 3 presented the S on liquid motion ( ), ( )    for the cases of ( )0  , ( )0  . It is clear the 

liquid ( )  is slow reduction via SS with various enlarge values of S .  Physically, the larger values of 

mass flux effect in fluid particles and the liquid resistance slow down then its liquid motion BL 

thickness is reducing. 

The impact of  on velocity component ' ( )g   along 
*y - direction is explored through in Fig. 4 for 

the cases of ( )0S   and ( )0S  . It is clear the liquid motion is monotonically enhances via SS with 

various enlarge values of . Because, the liquid motion convergent to surface area very fast then the 

surface is injection case. 

Fig. 5 depicts the physical parameter bN  on ( ), ( )    . It is noticed that ( )   of the NF enhances via 

surface while opposite motion of fluid ( )  with higher values of bN .  
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Conclusions: The main out comes of the present study are mentioned below: 

• The temperature of Brownian motion parameter is declined while opposite trend follows 

concentration with higher statistical values of bN . 
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Fig. 1 Physical model of the problem 

 
Fig. 2 Influence of M  on ' ( )g                        Fig. 3 Influence of S  on ( ), ( )     

    

Fig. 4 Influence of   on ' ( )g                      Fig. 5 Influence of bN  on ( ), ( )     

Table. 1 Evaluation of Skin friction coefficient ''(0)f−  for 0dA B Bi R= = = =  

M  Present 

study 

Sarah et al. 

[12] 

Nadeem et al. 

[13] 

Gupta and Sharma 

[14] 

Ahmad and Nazar 

[15] 

0.0 1.000000 1.00000 1.0004 1.0003181 1.0042 

      

10 3.316624 3.31662 3.3165 3.3165824 3.3165 

      

100 10.04987 10.04987 10.049 10.049864 10.049 
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Nomenclature 
* *( , )x y   Cartesian coordinate’s *T    Temperature of the fluid 

1 1 1, ,u v w velocity components along * * *, , zx y -

axis 

*T    fluid temperature far away from the surface 

A     Velocity slip along x-axes 0 1a N  
*

wT    Constant fluid Temperature of the wall 

B     Velocity slip along y-axes 0 2a N  wU        Stretching velocity 

*C   Concentration   U        Free stream velocity         

*

fC   Skin friction coefficient       

*

pc    Specific heat Greek symbols 

*C   Uniform ambient concentration             Density 

BD    Brownian diffusion           Dimensionless concentration 

TD    Thermophoresis diffusion  1        Boltzmann constant 

f       Dimensionless stream function   Constant stretching/shrinking parameter 1

1

b
a

 

'f      Dimensionless velocity  
  Ratio of the nanoparticle to the fluid  
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f       Fluid density 

rq     Radiative heat flux Subscripts 

Rex   Reynolds number           condition at free stream       

dR     Radiation parameter
* *3

* *

16

3 m

T

kk




=     

 


