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Abstract

This paper presents a new method that generates complex tangent trigonometric (y, 7)-rung fuzzy sets. This
article will deal with averaging, geometric, generalized weighted averaging, generalized weighted geometric
using complex tangent trigonometric (v, 7)-rung fuzzy set. We used an aggregating model to get the weighted
average and geometric. Several sets with significant characteristics will be further studied using the algebraic
approaches.
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1 Introduction

Numerous ideas have been put out to explain uncertainty, including fuzzy sets (FS),! which have membership
grades (MG) ranging from zero to one. Atanassov.? For @, x € [0, 1] created an intuitionistic FS (IFS) in
which each element has two MGs: positive t and negative x, and 0 < w + x < 1. The Pythagorean FSs (PFS)
idea was developed by Yager? and is distinguished by its MG and non-MG (NMG) with @ + & > 1 tow?+ k>
< 1. The three main concepts of the picture FS are positive MG (w), neutral MG (), and negative MG (k), as
stated by Cuong et al.*It also provides more advantages than PFS and IFS with 0 < ww+v+x < 1 sincew, 7, k
€ [0, 1]. Expert comments such as ’yes,” abstain,” “no,” and “refusal” will be sent, in accordance with the
image FS description. Shahzaib et al.d used MADM to define the SFS for certain AOs. Instead of 0 < @ + 7 +
k < 1, SFS demands that 0 < w? + 42 + k2 < 1. The idea of an intelligent decision support system for SFS
was initially put out by Hussain et al.8 Both the MG and the NMG have power ¢ in the g-rung orthogonal pair
FS (¢-ROFS), but their sum can never be more than one. Xu et al. developed geometric operators, including
weighted, ordered weighted, and hybrid operators, that were derived from IFSs.” Generalized, ordered
weighted averaging operators (GOWSs) were suggested by Li et al.® in 2002. Al-husband et al.”-'4 and?%-3¢
discussed the concept of various FS and its extension. Zeng et al.!3 explained how to compute ordered
weighted distances using AOs and distance measurements. Based on the features of AOs, Peng et al.
investigated a simple PFS.!% Various algebraic structures and aggregation techniques with applications were
studied by Palanikumar et al.”7="% For the rest of my work, T will keep to the format provided here. In Section 2
deals that PFS and NS were discussed. Section @ describes numerous methods on (v, 7)-rung FNs. In Section
@ the AOs based on CT (, 7)-rung FN are discussed.
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2 Background

Many important definitions that we should review for future learning are included in this section.
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Definition 2 .1. Let <7 be a universal. The PFS © = {5, (M), M (5))|6 € @7}, M7 ;o — (0,1) and
M of — (0,1) called the MG and NMG of § € 7 to ©, respectively and 0 < (AT (5))2+(.#3(5))? < 1.
For © = (.7, #?) is called a Pythagorean fuzzy number (PFN).

Definition 2.2. The NS © = {5, (M), M), 43(5))5 € g{}, where AT, .M ,.4° : o — (0,1)
is denote the MG, IMG and NMG of § € o7, respectively and 0 < (.#Z7(8)) + (#=(8)) + (#7(5)) < 2.
For M = </// MM -"> is called a neutrosophic number (-rung FN).

Definition 2.3. The Pythagorean NS © = {67 (AT (5), M3(5), M7 (5))|6 € ,;zf}, where AT, H=, M7

@ — (0,1) is called the MG, IMG and NMG of § € 7, respectively and 0 < (.Z7(5))? + (#=(5))? +
(M3(5))? < 2.For M = (.M7,.47,.4*) is called a Pythagorean neutrosophic number (Py-rung FN).

Definition 2.4. Let ©; = (a1,b1) € Nand ©2 = (az2,b2) € N. Then the distance between ©; and O is
defined as D(04,05) = \/(al —ag)? + %(bl — by)?, where N is a natural number.

3 Operations for CT (v, 7)-rung FN

We introduce the notion of a complex tangent trigonometric, the (-, 7)-rung FN. Consequently, tan 7/2 = O
and the CT (v, 7)-rung FN and its operations were established.

Definition 3.1. The (v,7) NS © = {5,<((a BT (6) - @O (D . %) (5) - )>‘5 = ,Qf}
where (O - Z7),(© - #?) : & — (0,1) denote the MG and NMG of § € &/ to O, respectively and 0 <
((0-27)(@) + (- #%)(6))" < 1and0 < (0 £T)(9)7 + (2 #)(9)” < 1. For, © = (((2-#7)-
eI (- %) - e(a‘]j))> is represent a CT (v, 7)-rung FN.

Definition 3.2. Let © = (0 - Z7) - @) (D - %)) - @), 01 = (O - Z]) - @71 (D - %) -

@I, Oy = (O - AT) - @ #2) (D - %5) - ¢®*2))) be any three CT (v, 7)-rung FNs, and (y,7) > 0.
Then

3 WJ (@A) +(@-7)

1 ©:10; - (/(((Dai;l));fgg 2:)) N @ (@A) |
(©-27)((® 29%)) (@ (@-75))T
(@ ZD) (- #3)) - el
©-2) + (- 75)"

B A
2.0,00; = \/ (@-20) +(2-%5)) eJ (- 2) - (0 75))
—(O-Z)) - ((0-%5))

3.0-0= [\/1— (1-@©- (%) ) Y 1—(1—(9.(y7)w)‘97]

(© @j) )2 - el@
(CRCANE (27
B [{/1 —(1-@- @)’ e 1(1(9'(-’”*)8]

Definition 3.3. For any two CT (v, 7)-rung FNs ©; = ((((© - #7), (© - #7)))) and ©2 = ((((© - %3), (© -
%#3)))). Then

] 1+ (@-@D)? - (-2 1P [ (@- A7) |
D (01, 02) = \/ 2 { [— (1+(®-23)>— (- %5))%] - [— ((CREZAN(CE ﬂf))?ﬂ ]
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where D (01, ©5) is called the ED between ©4 and ©.

Dy (©1,02) = 5

where Dy (©1, ©2) is called the HD between ©4 and ©.

4 AOs based on CT (v, 7)-rung FN

1“ 1+ (©@-27))° - (- %))
—(1+(©-25)) - (0 %3))*)

+

(=@ o))

((©-#M)* = (0 47)
2= (@ 4))

N ~—

|

We use CT (v, 7)-rung FNWA, CT (y, 7)-rung FNWG, GCT (v, 7)-rung FNWA, and GCT (~, 7)-rung FNWG

to describe the AOs.

41 CT(y,7)NWA

Definition 4.1. Let ©;, = ((((© - Z7) - @) © - %) - ¢®#7)))) be the CT (

(wi,wa, ..., wy) be the weight of O, w; > 0and @'_, w; = 1. Then CT (v, 7)-rung FNWA (61, O, ...

4
®i:1 w; 0.

Theorem 4.2. Let ©; =
(fYﬂ T)NWA(@lv @23 ey @Z)

— | {1 - (1 (-2
R (- %) >

=

—®, (1-(e ﬂ*))v)wi

)

e® (-

Proof. If £ = 2, then CT (v, 7)-rung FNWA (1, O3) = w101 P w204, where

101 = \/ 1—(1-(@-#Dy)" e %—(1-«;.@)7)“7

((@-20)m)

= | 1= (1- @

S T

()T

b

(0 5))7) - el @7

Now, w101 P w204
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(1-(1=@-my) ")+
(- (- 0-07))
(1= (-@-rnr)").
(1-(-@-2)"),

(@ FPNT=1-(((2-75) )2

,@é)

v, 7)-rung FNs, W =

<(((E) AT - eI (D %) - e(a‘]ij)))> be the CT (v, T)-rung FNs. Then CT
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w2

{1-(-© @) (1- @ @)
Ww_ (1 @) " (1-(@- 7).
(@ #) - (©

(@ IPNT-(((2-757) )2

e

Hence, CT (v, 7)NWA(©1,03)

_ - (1= @ any)” e ® (1‘“”””)%7

R (@ %)T)* - B (@7

It valid for £ > 3,
Thus, CT (v, ) NW A(O1, 0, ...,0y)

@, (1-(@sm)
(1-® (1- (-2 \/ )
®i- (@ -%f))f)% - e®im (@)

)

If¢ =¢+1,thenCT (7,7-)—rung FNWA (@1, Os,...,0y, ®e+1)

B (i (- ()" + (- (- canar) ™)
~Q(-(1-@-@n)")- (- (- @)
D (1-(t=@- o))+ (- (1-m)™)

~@ (- (- @-)7) - (- (- em) ).

; T\w ¢ I “i “et+1
(@', (D B))T)* - ()T )=+ - B (@I (A )

er1 o,
1 Q- @y
i dl%(lua-@»”)w”el 2 ),

RN &) )= - e®LI(E-F) )
O

Theorem 4.3. Let O; = <(((D AT eI (D %) - e(a'fzj)))> be the CT (v, T)-rung FNs. Then CT
(v,7)-rung FNWA (01, 04, ...,0;) = O (idempotency property).
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Proof. Since (- ZT) = (0-Z7),(© - %) =© - %) and(D-FT) = (0-.27), O 77 = (D77
and @'_, w; = 1. Now, CT (v, 7)NWA(,, Oy, ..., Oy)

- J é( (@-27) )7.611@(1((9,%”)7) |

i=1

i R (D &7))7)* - e®ima (N7

Y VY i
- (/1_(1_( .((@T)v)eaf1““'.6J1_<1_(D.(j)) :

i (@-(2*)")® imiwi L (@(FH)T)Bi= i

i {/1_(1_(9.(%”)7).e</1—<1—(9.(JT)w)7

© - (%) - eI

= 0.
O
Theorem 4.4. Let ©; = <(((E) AT - eI (D %) - e(a‘]ij)))> be the CT (v, T)-rung FNs. Then CT
— e
(v, 7)-rung FNWA(O1, O3, ..., 0Oy), where B - RT) = min(D - Z), (© - A7) = max(D - Z}), (0 - %) =
— ' . —
min(0- %), (E)/%\j) = max(0-Z%;;) and (O - IT) = min(D- ), (- FT) = max(0-.£]), (D .£7)
min( - .73), 0 - F7) = maX(D J3) and where 1 <i <n, j =1,2,...,i;. Then,
<(D RT) @I (D %j) ©- fﬂ)>

IN

OT (7, 7)NWA(O1,Os, ..., O;)
< <(a R - e25T) (a.%j).e@-t”j))

(Boundedness property).

Proof. Since, (- #7) = min(D - AT, (O A7) = max(D - &) and b am) < - AT) < (O A7) and
(0 /) =min(® - #]), (@ F7) =max(® - ] and (D~ #T) < (0. F]) < (@ 7).

Now (D - Z7) I

= 71—é( — (o a7 \/ e (ED"—WW)I
< 7 1é>( —(®- &) \/ -8t (1-@ )
< Y1- é( — (- Z7)) \/ —®L - jT))w) l
= O %)
— — —
Since, (9 - (%£7)7) = min((0 - %Z;))", (2 (#£7)7) = max((0 - #;;))" and (9 - (£7)7) < (0 - %)) <

©-(@%)7) and (2 (#9)7) = min((© - #3))". @ (#7)7) = max((2 - £))" and (2 (#)7) < (@

I < @ (F)).
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We have,
Vi -
By = @b @ @b
< é(((a.%%))T)wi.e® L(@FZ5)7)
i=1
< ®(D/(:%\j)) e®:1( (F97)
i=1
= O (%)) (@(#4)7)
Therefore,
- ; 2 T
1 {@1—@(1—@9-%))7) ) +1- (@ (- #7)) )2]
§>< 2214 2
+[(d1_®(1—<éa-ﬂ>w) ) (@ fﬁ))f)%)]
i=1
[ L . ’ ]
[ J1-@ (-0 ap)) ) 1= (@@ %3))7)%)]
< %x i 2
L
+[ wJug{)(l((a ©-75)") ) (®i@- 7)) )]
- - \ 2 . i
K 17®(17((D‘%T))7) ) +1—(® ((0-29)7) )2]
< %x = 2
£ 2
+[(WJ1—®(1—«D-/T>>’Y) ) ~(®u@- ) )]

Hence, <(a-9zn)-e<9-ﬁ ©- %) - s > < OT(y, 7 )NWA(O1, 0, ..., 0y)

<{©©-Z7)- T) @) (DR - eI, O

Theorem 4.5. Let ©; = (((O - %T )@ 0.3 ) LT

and W; = {((© %g”) @) NN PR e(a"ﬂ’li'/.?)))7 be the CT (v, T)-rung FNWAs. For any i, if there
is (O %57)2 <(©- %Z”) and (O - %j7) > (© %ﬁ“)z and (O - JtT])2 <(©®- JhTij)Q and (O - ftj7)2 >
© - J}ij)%r 0; < W,. Prove that CT (v, T)NWA(©1,02,...,0,) < CT(v,T)NWAWy, Wa, ..., W),
where (i =1,2,...,0); (j = 1,2, ...,4;) (monotonicity property).

Proof. Forany i, (92} )* < (9%, )*.
Therefore, 1 — (9 - #7))> > 1 — ((©- %2»2

Hence, ®"_, (1 —(©- %;))z)w > ®iy (1 - (@ %Z))z)w

and {1 - @, (1- (@-2))")" < {1-®, (1— (- #L)")"
Similarly, (0 - #,7)* < (© - j’;l;j)z.
Therefore, 1 — ((D TN =1—((0- 7))

Hence, ®"_, (1 —(©- fT))z = ®iy (1 s(CE J};))z)wi
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and {/1-®, (1 (@-#D)))" < Y1-QL, (1—(@-#7)")"

For any 4, ((a : %g_j))Q > ((a .%,jw))Z and ((a ﬂg_j))T > ((a .%,jij))T.
Therefore, 1 — (®f=1(9 %fj”))T <1- (®f=1(9 %’ﬁj))T
Similarly, for any ¢,

(@-22)) = (@ #)) ma(0-92) = (0-5)) "
Therefore, — (®f:1(a : ftj;))T <- <®f=1(3 . fhj”_))T

Hence,
1 ( 1—®(1—<<a'%’;>>7)“") ) (dl—@(l—((awgw)“)
2 =1 ) =1 )
| - (®Li@-2)) - (®i(@- 7))
- - 2 2
o1y (V—é(l—((a-%’;i)w)“") . (dl—é( —<<a-ff;>>7)°”')
- 2 =1 ) =1 )
L - (®Le-2)r) - (®@-#))
Hence, CT (v, 7)NWA(01,0,,...,0,) < CT (v, T)NWA (W1, Ws, ..., Wy). O

42 CT (v, 7)-rung FNWG
Definition 4.6. Let O, = <(((D AT - eI (- %) - e(a'ﬂij)))> be the CT (v, 7)-rung FNs. Then
(7,7)-rung FNWG (1,05, ...,0;) = ®;_, 0.

Corollary 4.7. Let ©; = <<((D R - eI (D %7 - e(a'yij))>> be the CT (v, T)-rung FNs. Then CT
(v,7)-rung FNWG (01,02, ...,0y)

R (D AT))7)=i - e®iza (B-FD))7)
-®L 1 (@77
1-@L (1- (- %) \/ )

Corollary 4.8. (i) Let ©; = <<((D AT eI (O %) - e(a"ﬂij))>> be the CT (v, T)-rung FNs and all

are equal. Then (v, T)-rung FNWG(©1, 03, ...,0,) = 6.
(ii) It has other properties, including boundedness and monotonicity, as well as having (v, 7)-rung FNWG.

4.3 Generalized CT (v, 7)-rung FNWA (GCT(~, 7)-rung FNWA)

Definition 4.9. Let ©; = < (©-2), (- %)) > be the CT (v, 7)-rung FN. Then GCT (v, 7)-rung FNWA

(01,0,,...,0)) = <@f:1wi9?)1/8
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Theorem 4.10. Let ©; = < (@ 2], %)) > be the CT (v, T)-rung FNs. Then GCT (v, T)-rung
FNWA (61,0, ...,0;)

( $ @ (- (@) >/<J =@ (@) )

i=1

1—
/16 = J =@ (1-(@-an)) l

| ey O
<\/ - (i-te-aon) )wi@?‘l (i/l‘(l—((a-fﬁ)f)T)“

Hence,
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4
Do
=1

Wi

€

®L<¢@mw%wf>

£+1
i=1 Wi

If 6 =0+ 1, then P_, w02 + w107, = @ e?.

1= (1 -(© %’;))v)”)w"’ » J -9, (b(((ay;))w)w)wi_
®fl<§/1‘<1—<<a.m)f)T> '

ws

NOW,@le wl@? + wg+1@?+1 = w1®? @c@@? @ @L‘J@G? @we+1@?+1

({0 )) ) (- )))

Tt ey

| _w 1_(§) (1-(@-2nr))” ) <K/1— (1= (z0)) >
é(%—@%@%mﬂ>w<¢—@4%mﬁjw
(- (@) ) (o))

- \/ - Q! (1 - (@ ,%w)”)” e J e (1_(“9"“”)7)W

Puwo; = i

i=1 -\ @i ®f*i<*1(1<<a»f;>>7)7>
_®fii<§/1—(1—<<a~%s>>f)) o |

£+1

@ wl@?

i=1

(@-er)

Corollary 4.11. (i) If (v, 7) = (1, 1), then CT (v, T)-rung FNWA
rung FNWA operator.
(ii) If all ©; = <(((a L RT) @D (D %) - e<a-ff>))>
FNWA(©1,0a,...,0,) = 6.

operator is used instead of the GCT (v, T)-

and all are equal. Then GCT (v, T)-rung

(iii) The GCT (v, 7)-rung FNWA operator meets both boundedness and monotonicity constraints.
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4.4

Generalized CT (v, 7)-rung FNWG ( GCT (v, 7)-rung FNWG)

Definition 4.12. Let ©; = <<((D AT - eI (D %) - e(a']ij)))> be the CT (v, 7)-rung FNs. Then
GCT(y,7)-rung FNWG (8,05, ..., ;) = 3 (®f:1(a@i)wi) .

Corollary 4.13. Let ©; = <(((D AT - eI (D A7) - e(a'ﬂij)))> be the CT (v, T)-rung FNs. Then
GCT(v,T)-rung FNWG(©1, 0, ...,0))

i=1

FEErT N Sx i)

Corollary 4.14. (i) When 0 = 1, the GCT (v, 7)-rung FNWG is converted to the (v, T)-rung FNWG.
(ii) GCT(~y, T)-rung FNWG operators satisfy the boundedness and monotonicity characteristics.

(iii) If all ©; = <<((D AT - eI (D7) - e(a'jij))>> are equal.
Then GCT(~, 7)-rung FNWG(©1,0a,...,0,) = 6.
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