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Abstract

A new technique to establish tangent trigonometric p-rung interval-valued sets is presented in this study. Tan-
gent trigonometric g-rung interval-valued weighted averaging, geometric, and generalized concepts will all
be covered in this article. To obtain the weighted average and geometric, we utilized an aggregating model.
Using algebraic approaches, a number of sets with significant properties will be further examined.
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1 Introduction

To explain uncertainty, a number of theories have been put forth, including fuzzy sets (FS),! which have
membership grades (MG) that range from 0. Atanassov? constructed an intuitionistic FS (IFS) for ¢, 7 € [0, 1]
using two MGs: 0 < ¢ + 7 < 1 and positive ¢ and negative 1. Yager® developed the Pythagorean FSs (PFS)
idea, which is distinguished by its MG and non-MG (NMG) with ¢ + 7 > 1 to ¢ + n? < 1. Numerous
studies have examined the use of IFSs and PFSs in various fields. T heir ability t o c ommunicate information

is still restricted. Because of this, the experts were still having trouble interpreting the data in these sets and
the associated data. Wang et al.* investigated the concept of complex IFS with DOMBI prioritized AOs and

its application for trustworthy green supplier selection. According to Cuong et al.,'? the three primary ideas

of the picture FS are positive MG (), neutral MG (), and negative MG (7). Additionally, it offers greater
benefits than PFS and IFS. Since¢, 7 € [0, 1],ithasbeen noted that the picture FS is an upgrade of the IFS
that may handle greater inconsistency and 0 < ¢ + 1 < 1. According on the picture FS description, expert
comments like ”yes,” "abstain,” ”no,” and refusal” will be supplied.

Shahzaib et al.’* defined the SFS for certain AOs using M ADM. SFS requires that0 < ¢2 + 5?2 < 1 rather
than 0 < ¢ 4+ n < 1. Hussain et al.!% first proposed the concept of an intelligent decision support s ystem for
SFS. SFSs and their applications in DM were initially presented by Rafiq et al.!> For instance, ¢ 2 + 1?2 > 1 is

a DM problem with a property. Senapati et al.'¢ invented Fermatean FS (FFS) in 2019 with the condition that

0 < ¢34+ n? < 1. The concept of generalized orthopair FSs was initially proposed by Yager.!” In the p-rung
orthogonal pair FS (p-ROFS), both the MG and the NMG have power g; however, their sum can never be more
than one. Recently many authors discussed the new research and its aggregating operators!?- 28 Palanikumar et
al.?’=! investigated a variety of algebraic structures and aggregation methods with applications. Hatamleh®2-

work will be completed in the manner described below. For an introduction, see section |l | In Section 2| deals
that basic concepts. Section @ describes a number of techniques on p-rung [IVNs. Section E', discusses the AOs
based on IVT p-rung. The conclusion is covered in sectionCE

37 discussed the various real-life applications such as UrIv:son’s operator and linear operrs. The restof this
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2 Background

This section has several crucial definitions that we should examine for future learning.

Definition 2.1. Let A be a universal. The PFS U = {%, (2T (50), ZF (32))| 5 € .A}, ZT : A — (0,1) and

ZF A — (0,1) called the MG and NMG of 3 € A to U, respectively and 0 < (27 (5))? + (ZF(x))? < 1.
For U = (27, 2%} is called a Pythagorean fuzzy number (PFN).

Definition 2.2. Let U; = (a1,b1) € Nand Uy = (a2,b2) € N. Then the distance between Uy and Us is
defined as N(U1,Us) = \/(al —a2)?+ %(bl — b2)?2, where N is a natural number.

3 Operations for IVT p -rung Number

We present the concept of the p IV-rung N, which is a tangent trigonometric. As a consequence, the IVT p
-rung N and its operations were established and tan /2 = o

Definition 3.1. The o -rung O = {%, <([(g ©E)(5), (00 T)(5)],[(0 ® )(5), (0 ® Q)(%)])>’% € A},
where (0 © E),(0 ® ¥) : A — (0,1) denote the MG, IMG and NMG of » € A to U, respectively and
0= ((e®T)(3))” +((e®2)(5))* < 1. For convenience, 1§ = <([(Q®E)7 (e T)][(e®¥),(e® Q)])>
is represent a IVT g -rung N.

Definition 3.2. Let & = (([(e ® Z), (0© 1)} [(0 ® ¥), (00 )]} ), 81 = ([0 © Z1), (0© Y1), [0 ©

1), (e®)))),
Uo={(([(e®E2), (0@ YT2)],[(0® ¥s3), (0 ® N2)])) be any three IVT p -rung Ns, and p > 0. Then

(/«9@51)) + (00 E2))® K/((g@vrn)m<<g<mr2>>@
LO1AG = |\ ~((0021)° (00 E2))" | ~(e0 1)) (e® T2))*’| »
(0® 1)?((0® ¥2))*, (0 © ))®((0® 22))*

(
(0©E1)?((0®E2))?, ((0® Y1) ((0® T2))*,
2. 0, &0, = V((g@w +((0® Uy ((0® D)7 + ((0® D))®

)¢ )
~((e©¥1))” ((e®P2)" || =((e®M))” " ((2© 2))®

3 x U= Wul(g@@w)x, ST (1 (0o (1)),
((e® ()?)X, ((e® (2)¥)X

We present ED and HD measures for IVT p -rung Ns and investigate their mathematical characteristics.

Definition 3.3. For any two IVT p -rung Ns U1 = (([(e ©® Z1), (0 © T1)],[(0 © ¥1), (0 ® 21)])), B2 =
([(©E2),(0© T2)], [(0® ¥3), (0 ® Q2)])). Then

U 14 ((e0E))? — ((e@ ) 17 [ ((e0T))? —((e0)? *
"o (U1,02) \/2H—( ((g@E))?—((g@%))z)] +{—(((wn))z—((@@ﬂz))z)}]

where Rg (U1, Us) is called the ED between U7 and Us.

1“ 1+ ((0©E1))% = (0 ¥y))?
2= (14 ((0®E2)* = ((0® ¥2))?)

where R (Uy, Uy) is called the HD between Uy and Us.

(e T1))* = ((e® 2))?

Ry (U1, 02) = (—((e© T2))* — (e ®))?)

+
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4 Aggregating operators

We use IVT p-rung WA, IVT p-rung WG, GIVT p-rung WA, and GIVT p-rung WG to describe the AOs.

41 IVT p—rungNWA

Definition4 .1.LetU ;= ((([(0 @ &), (g@ T)), [(e© W), (6©Q;)])) bethe IVT p -rung Ns, W =
(61,02, ...,6;) be the weight of U;, ; > 0 and Al_,§; = 1. Then IVT p-rung WA (U4, 0, ...,U;) =
AL 8,06

Theorem 4.2. Let U; = ((([(0 © Z:), (0 © 1i)], [(0 © ¥;), (0 ©®§Y)]))) be the IVT o -rung Ns. Then IVT
p — rungNW A(Uq, U, ..., U))

61' 6'i
_ [ 1=V (1= (e@E)p) (1= v (1= (eo T))») ] .
Vi (e © ) T (0 © 9:)%)°

Proof. If I = 2, then IVT p-rung WA(U1, U2) = 6:01 A 5304, where

o= Y= (- oz (- eomn)”)

«@ 1)@ (@ Q)9)™

5202[%—( (0o=:9)" /1= (1= (0ot )]

(e ©¥2)))%, (¢ © 22))*)

NOW, 5161 A 5262

(1-(1- ((9@51))@)61)+ (1- (1= (o™ ))9)51)+
| (- (-teezr)?) | (- (- e ))
T 0 (o)) (- (1o )"

(1f<1f«@®3g%0®) (17( ((0®T2)) 2%)

| ((e® 1)), (((e © ¥2))9)*2, (e © 1)), (0 © Q2))

i/l - <1 ~(eo El))p)él (1 —((e® 52))p>627

(1= (eoT?)" (1= (eo 1)),
5

((e®T1))?)’" - (((0® W2))*)%,
(e 21))) - (((e ® 22))*)*

Hence, IVT p — rungNW A(Uq, Us)

i { (- (eoZ)) T/l—V?_l(l—«Q@n))p) .
V(0@ ¥))®)% w2, (((0 ® 2))#)%
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It valid for [ > 3. Thus, IVT p — rungNW A(Uq, Ua, ..., U))

_ [ -y (1= (o)) i1 - v (1 (oo Ta)) "
Vi (0 W) i (((0 0 2))°)"

If I =1+ 1, then IVT p-rung WA (U4, Ua, ..., G;, Ui41)

(1= (1= o 20) )+ (1 (1= 00) ")

oL (1= (- eo=)") (- - =) ™)

©

~vl (1 (1= oo ) ) (1= (1= (i) ™),
V(0 ® W), (T2)), 4

[Y/I - (1= (e0z0)" 1= v (1= (oo o)
V(e © W), Vi (0 © 2))9)*
O]

Theorem 4.3. Let U; = ((([(0 © Ei), (0 © T3)], [(0 © ¥3), (0 © )]))) be the IVT o -rung Ns. Then IVT
p-rung WA (U1, Oa, ..., U;) = U (idempotency property).

Proof. Since (0©Z;) = (00 Z2), (00 ¥;)=(ee¥)and (0O T;) = (O T),(6® Q) = (0®N) and
Aézléi = 1. Now, IVT p — rungNW A(U4, U,, ..., U;)

_ v (- teozae) " 1—vi—1(l—<<@®m”>&’]
Vi=1(((e© ¥:))9)%, 7121 (0 © 2))®)°
1

i (@ (T)9)2=1% (0 ® (Q)9)2=1%

O
Theorem 4.4. Let U; = (([(0 © E4), (0 @ 1)), [(0 @ ¥;), (0 ® ;)]))) be the IVT @ -rung Ns. Then IVT p-

rung WA(Uy, Uz, ..., Uy), where (0 © E) = min(0©E;;), (0 ® E) = max(0©E;;), (¢ © ¥) = min(o® ¥;;),

(0O V) =max(pO¥;;)and (0 ©T) =min(e®Y;;), (0 ©T) = max(0® T4;), (0 © ) = min(p® ),

(0® Q) =max(p® Q;;) and where 1 < i <1, j=1,2,...,1;. Then,
(0,071,000, 00Q) < IVTp—rungNWA®DL, s, .... 01)

< (009,01, (09) (209)).
(Boundedness property).
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Proof. Since, (0 © E) = min(p © E;5), (¢ © Z) = max(0 ©® E;j) and (0O E) < (0 @ E;5) < (0 ® E) and

(0OT)=min(e® Ty;), (e®T) =max(e® Yi;)and (O T) < (0O Yy5) < (0O Y).

Now (0 ®E), (00 T)

I
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\
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\
—
~—
S
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We have
(20 (¥)° = vil(e@(W))", Vi (e® (@)’
< V(0@ )™, visi((e© 24))°)
< VLo @), vialeo @)
S EIORACEION
Therefore,
2 2
L (1-v(1-(eozp)") +1- (via@ow))*) ]
2 . 2 2
H({1- v (- teomr)”) +1- (va@om) ]
1 ((/1 — Vi (1 —((0©(0® Eij)))p)6i>2 +1— (Vi (((e® \I/ij))@)éi)2‘|
< §X 2
* (ﬁ/l—vizl(l—((Q@(@@sz)))“) ) +1—(vé_l(((gcafzu))p)‘;i)ﬂ
2
L (f1-via(1-@emr)") A (vil«g@m)@)ézf[
+ (i/l—vé_l(l—<<g®n>@)&> +1- (Vi (e Q))%) ]

Hence, <(g ©E),(0607), 0o V), (00 Q)> < IVTp—rungNW AUy, Bs, ..., 0)) < (0@ E), (0 ® 1),
(00 V), (00 Q). O

Theorem 4.5. Let U; = <([(Q © E‘tu)’ (Q © Ttij )]’ [(Q © \I/tij)’ (Q © Qtu)D>

and W; = (([(e© En;;), (0 © Th,,))] (0O Wh,,), (0 © Quy;)])), be the IVT p-rung WAs. For any i, if there is
(QQEt”‘)Q < (QQth‘,j)Q and (QQ\I/tij)z > (QG\Phi_y‘)2 and (QQTL’,J‘)Q < (QQT}MJ‘)Q and (QQQM])2 > (QQ
thj)%rUi < W;. Prove that IVT p—rungNW A(U1, Ua, ..., U;) < IVTo—rungNW AWy, Wa, ..., W)),
where (i = 1,2,...,1); (j = 1,2, ...,4;) (monotonicity property).
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Proof. Forany i, (0 ®Z,,)?* < (0 ® By, )*.
Therefore, 1 — ((0 ©Z4,))? > 1— ((0 ® Ep,))?.

Hence, v/\_, (1 —((e® Eti))Z)&i > Vi1 (1 — ((e©® E}”))Q)éi

and {/1-v1_, (1- (20 Z,))™ < {1- Vi, (1 - (e0 =)™
Similarly, (¢ ® AI"ti].)2 < (g@ Th,, )
(

Therefore, 1 — ((0® T¢,))> > 1— ((0® Th,))>
&; d;
Hence, v/!_, (1 —((e®7Ty,)) ) > Vi ( —((e® Thi))2>
and {/1- 1, (1~ (0 X)) < {1- 9L, (1- ((e@ 1w )™

Forany i, ((0© ¥1,,))" > ((0© ¥,,))" and ((0® 4,,))” > ((0© Wn,,))".
Therefore, 1 — (V§:1(Q ® \Iltij))p <1- (vézl(g ® \Ilhij))p.

Similarly, for any ¢,

(e02,))" = (e©,))" and ((¢© 21,))" > ((2© )"
Therefore? - (V?L:l(g © Qti]‘))p < - (Vi:l(@ © Qhu))p’

Hence,
L <§/1—v1 1 1—((g@ati>)@)5i) +1—(vé_1((g®@ti))9)ﬂ
2 3; 2 2
+[ 1_V1 1 1_((Q®Tm’))p> ) +1_(V§:1((Q®Qti))p) ]
< 1 ((/1—% 1 1—((Q®Ehi))p)6i) +1_(V§_1((Q®‘I’m))g’)2]
- 2 -\ 2
H (- (- ceoma)”) +1- (véﬂ((g@am)m?l
Hence, IVT p — rungNW A (01, U, ..., U;) < IVTp — rungNW A (W1, Wa, ..., W). O

4.2 1IVT p-rung WG
Definition 4.6. Let U; = ((([(00F:), (0 1)), [(0©W,), (0 ® 2:)]))) be the IVT  -rung Ns. Then pNWG
(01,0,,...,0)) = vile;Z

Corollary 4.7. Let U; = ((([(0 © Z5), (0 © 1y)], [(0 © ¥;), (0 ©® )]))) be the IVT o -rung Ns. Then IVT
p-rung WG (U1, U2, ..., U))

Vi (00 Z))9)%, Ty (0 © 1))
(1= (1= (eow)?) ", {1- v (1- (eoa)»)

Corollary 4.8. (i) Let U; = ((([(e© i), (0 © T3)], [(e @ ¥;), (0 @ ,)]))) be the IVT © -rung Ns and all are
equal. Then pNWG(U1, U, ..., U;) = U.
(ii) It has other properties, including boundedness and monotonicity, as well as having pNWG.
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4.3 Generalized IVT p-rung WA (GIVTpNWA)

Definition 4.9. Let Ui = ((([(0 © Z,), (0 © 1)), [(0© ¥,), (0. 2,)]))) be the IVT g -rung N. Then GIVT

1
o-rung WA (U1, Us, ..., Uy) = (A§:1 5,;15}) .

/x

Theorem 4.10. Let U; = ((([(0 © Ei), (0 © T3)], [(0 © ¥y5), (0 © Q4)]))) be the IVT o -rung Ns. Then GIVT
p-rung WA (U1, 0a, ..., Uy)

(i

Proof. To illustrate this, we may first show that,

AL 508 =

5\ e 5\ 1/
Véﬂ(l(((é’@a’))@)@) ) < 1v§=1<1(((@®m))@)p> ) ,

—~
ﬂ 1— Vi (1 - (((Q@ Ez))p) p) 61, KJ 1—- Vi <1 - (((Q@ Ti))p) p)
5

85 i
v21<§/1 — (1= (e w)p)”) 7 vh(i’/l ~(1- <<g@9i>>@)“>

Putl =2, 6101 A 5204

Hence,
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8; d;
1-vi (1= ((eoz)w)” ,(/1vé_ 1- (((e@1)))"
et (om0 ) st (- o))
vé_1<</1 (1~ <<g@wi>>@)“> 7vé_1<f\’/1 (1 <<g@ﬂi>>w)“>

Ifl =1+1,then Al_,6;05F + 5z+1Ul+1 Aiﬂé Uy
Now,Al_,6,0F + 5l+10l+1 = 510Y A 685 A A ST A 614187,

AL 50F =

<§/1 -t (1- (o)) >p+ (
_<K/1 — Vie1 (1 - (((Q@Ei))p)py )K’ (
i

@

(e eemy))

= o
©

)

- ( \’/1 - Vi1 (1 - (e n))“)“)éi )
Vins ( {1- (1~ (o %))w)“)
Vi <§/1 - (1= ((g@m)@)“)

-

vi*%( (((QQE”)KJ)@)&L?X/ viﬂ( (((9®T1))g))“>5i

AEISTY = 5 5
v < {1- (- (eo %))w)“) it ( {1- (- tee m))w)“)
I 5\ e 5\ 1/¢]
w 1- i (1 (((g@smp)“) ) ( vi*%( (((g@ri»@)”) )
1/x i\ 2\ l/e
(Aﬁi}&l&i‘) ! ﬂ1_ ( (Viﬂ <</1 (00 W, ))p)p>6 > ) ,

A0

5\ 2\ /e
“wenr) )

O

Corollary 4.11. (i) If p = 1, then IVT p-rung WA operator is used instead of the GIVT p-rung WA operator.

(i) If all B; = (([(e © Z4), (0 © T1)], [(0 © ¥3), (0 © )]))) and all are equal.
Then GIVT p-rung WA(U1, U, ...,U;) = U.
(iii) The GIVT p-rung WA operator meets both boundedness and monotonicity constraints.
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4.4 Generalized IVT p-rung NWG ( GIVT p-rung NWG)
Definition 4 .12. Let U ;= ((([(0 © E:), (0 © Ty)], [(e © ¥;), (0 ® Q;)]))) be the IVT p-rung Ns.
Then GIVTp-rung NWG (U4, Us, ..., U;) = i ( Vi, (XUi)él).

Corollary 4.13. Let G; = (([(e ® Z5), (0 © T1)], [(e © ¥;), (0 ® Q4)]))) be the IVT p-rung Ns.
Then GIVTp-rung NWG(U1, Ua, ..., U;)

D

5\ #\ /e
1—(1—(V§—1(i/l—(l—((QQEi»@)p) ) ) ’
5\ e\ /e
- 1—(1_<v21<§/1—(1—(<g@n>>@)p> ) )
] 5\ /e ] 5\ /e
Qe et [ s

Corollary 4.14. (i) When x = 1, the GIVT p-rung WG is converted to the p-rung NWG.
(ii) GIVTp-rung NWG operators satisfy the boundedness and monotonicity characteristics.
(iii) If all B; = {((([(00Z;), (0 @ T1)], [(0©¥,), (0 ® ;)]))) are equal. Then GIVT p-rung NWG(U1, Us, ..., U;) =
0.

)

5 Conclusion:

This work presents novel weighted operators, such as geometric and averaging operators. Boundedness, idem-
potency, commutativity, associativity, and monotonicity are some of the characteristics of these operators. To
describe the weighted vector, we looked at a number of common metrics. Many aggregation operator criteria
have been studied. Some findings have been made after a few aggregating techniques for these IVT p -rung
Ns have been examined.
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