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Abstract:  

Due to their inherent qualities of being secretive, vivid, and unpredictable, 

electroencephalogram (EEG) signals are considered a valuable tool for security-related 

identification. However, research on using EEG signals for person identification is still in 

its early stages. The challenges lie in decoding these signals accurately and implementing 

effective EEG-based identification methods. In recent years, EEG has been at the forefront 

of scientific research on User Authentication (UA), leading to innovative experiments that 

aim to identify individuals based on their unique brain activity in specific usage scenarios. 

The utilization of EEG signals, which are derived from brain activity, holds great potential 

for addressing contemporary security concerns in conventional knowledge-based user 

authentication, including the vulnerability to shoulder surfing. This research investigates a 

new method for person identification that combines electroencephalogram (EEG) signals 

with facial video. A hybrid model is proposed, incorporating features from both MobileNet 

and a Convolutional Neural Network with Long short-term memory (LSTM-CNN) 

architecture giving a person identification accuracy of 99.81%. The model is trained and 

tested on the 'DEAP' dataset to identify individuals by leveraging unique EEG patterns and 

facial features, thereby improving biometric identification through the integration of these 

insights. 

Keywords: Biometric identification, Convolutional neural network(CNN), Long short-

term memory(LSTM), MobileNet architecture. 

 

1. Introduction 

In recent times, rapid advancements in biometrics, forensics, and informatics have created a conducive 

environment for safeguarding personal privacy and public security[1]. Among these developments, 

biometric technology has emerged as a vital tool for verifying individuals' identities. Biometrics 

involves the recognition of people based on their physiological or behavioral traits, including features 

like face[2], fingerprints[3], iris patterns[4], gait[5], signature[6], and voice[7]. Biometric technologies 

have seamlessly integrated into our daily lives, finding applications in various fields. For instance, 

smart phones incorporate facial[8] and fingerprint recognition for security, while airport security[9] 

relies on biometrics for passport control, among other uses. The widespread adoption of biometric 

systems depends on the assurance of reliable recognition processes and the secure management of the 
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generated data. Therefore, ensuring privacy and security has become pivotal for the success of 

biometrics, alongside its high accuracy. In an era where personal information is increasingly 

digitized[10] and shared, maintaining the trust of individuals in biometric technology is essential. 

Biometrics has the potential to improve security, but it also raises important concerns about protecting 

sensitive data and preventing unauthorized access[11]. The evolving relationship between biometrics, 

privacy, and security highlights the crucial need for ethical and secure practices. Balancing individual 

privacy with public safety remains a key challenge in our digital world. Biometric technology plays a 

significant role in this landscape, serving as a tool to protect both personal freedoms and collective 

well-being[12].Traditional approaches to EEG-based person identification typically involve two key 

steps: feature representation and classifier training. Deep learning has revolutionized the field, with 

various neural networks taking center stage in research. Some researchers opt for an end-to-end 

approach, combining feature representation and classification within a single framework. Others 

leverage deep learning models specifically for classification, applying them to independently 

developed feature spaces[13]. Biometric identification is a critical aspect of security systems, and 

recent advancements have seen a surge in research exploring novel modalities. This paper introduces 

a Hybrid model that integrates EEG and facial data for person identification. The motivation behind 

this approach lies in the potential synergy between temporal EEG patterns and spatial facial features. 

In the context of classical machine learning techniques, merely adding more features will unavoidably 

expand the dimension of the machine learning model. This becomes particularly pronounced when 

substantial redundancy exists among different features, causing the model's complexity to far exceed 

the actual feature dimension. As a consequence, over fitting may arise. 

 

Fig.1. The deep learning-based network structure for integrated facial recognition and EEG 

The study's significant contributions are summarised here. 

1) This paper proposes an EEG-based person identification (PI) strategy based on deep learning with 

CNN-LSTM and MobileNet algorithms. 

2) The proposed approach demonstrates improvement in accuracy for user identification through the 

fusion of biometric traits with the utilization of deep learning techniques. 
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Fig. 2. Implementation of the cascade CNN-LSTM-mobileNet model[14] according to EEG& 

Face videos 

2. Literature survey 

Recently, there has been increasing interest in EEG-based Person Identification (PI)[15]. EEG-based 

PI methods use two types of algorithms: standard machine learning and deep learning. Machine 

learning techniques, including support vector machines (SVM), random forests, and k-nearest 

neighbours (KNN), are commonly used in EEG-based PI. Deep learning (DL) is increasingly being 

used for EEG-based PI, following its great success in several sectors. DL models are being increasingly 

incorporated into EEG-based PI research, often involving fine-tuning parameters or redesigning 

architectures, including CNNs) and LSTM networks. In 2019, Banee Bandana Das and colleagues[16] 

developed a technique to identify persons using EEG waves. The system used convolutional neural 

networks (CNNs) to extract spatial features from raw data, resulting in robust and informative results. 

The features were fed into an LSTM to manage temporal data and identify it. The method achieved 

outstanding accuracy rates of 99.95% and 98% for individual identification. Yingnan Sun and 

colleagues[17] created a one-dimensional convolutional long short-term memory neural network-
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based EEG signal-based user recognition system. During the training process, EEG data from 

electrodes ranging from 4, 16, 32, to 64 were input into the network. The results revealed that an 

optimal classification accuracy of 99.58% was attained with 16 electrodes. Emanuele Maiorana [18] 

presented a deep learning method that uses Siamese convolutional neural networks to analyze EEG 

data from 45 subjects in a multisession database. The results suggest a promising potential for applying 

EEG-based biometric verification across different tasks. In 2022, Alyasseri Z [19] introduced a 

methodology that integrates the Gray Wolf Optimizer (BGWO) with a Support Vector Machine 

classifier employing a Radial Basis Function kernel (SVM-RBF) for biometric human identification 

utilizing EEG data. This methodology attained an accuracy rate of 94.13% while utilizing just 23 

sensors and 5 autoregressive coefficients.                                                                                

                                                                                                                                                              

Dropout layer (rate=0.2) Activation=”relu”     “ relu”      “ softmax”         

 

 

 

 

 

 

 

 

  

 

Fig. 3.Flowchart for  hybrid proposed technique cnn+lstm+mobilenet 

3. Deep Learning approach to EEG  

In recent years, the application of deep learning (DL) techniques for classifying EEG signals—bio-

potentials recorded from the scalp over time—has seen a substantial increase. Researchers frequently 

employ DL architectures to capture both the spatial and temporal features of these signals [16]. A 

typical approach involves using a combination of CNNs followed by Recurrent Neural Networks 

RNNs, such as Long Short-Term Memory (LSTM) networks. This layered architecture leverages the 

hierarchical structure of neural networks, where earlier layers extract features that are processed by 

later layers. CNNs are often used as the initial layers in deep learning models to capture significant 

patterns or features[20]. A key feature of CNNs is their use of convolution operations with small filter 

patches (kernels). These filters learn local patterns on their own, and when multiple CNN layers are 

stacked, they combine these patterns to create more complex features. Within this stack, pooling layers 

are often added to reduce the dimensionality by retaining only the maximum value from each small 

region, allowing subsequent convolutional layers to operate on a different scale. The features extracted 

by CNNs can then be used as input for other network architectures, aiding tasks like object detection 
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or semantic segmentation. In the context of EEG signals, LSTMs, which take input from the local 

features learned by CNNs, excel at capturing temporal information.[14]Wilaiprasitporn et al focus on 

improving EEG-based identification using deep learning, especially while people are in different 

emotional states (affective EEG) and uses a mix of  CNNs , RNNs to analyze both the spatial and 

temporal aspects of EEG signals. Utilizing biometric methods like EEG is vital for robust person 

recognition, addressing vulnerabilities in traditional modalities. Existing EEG approaches face 

limitations in scalability and generalization. Alsumari et al [21] introduce a lightweight CNN model, 

achieving high identification accuracy and authentication performance with minimal EEG data, 

promising real-world application in biometric security systems. Zhang et al.[22] attempted to use a 3-

D CNN to directly capture spatiotemporal information in a single layer. However, their results were 

slightly inferior to those achieved with the combined CNN-LSTM model. This difference may be due 

to the fact that LSTMs are generally more effective at handling temporal information. LSTMs can 

selectively retain or discard information based on context, which is crucial for processing sequential 

data. As a specialized type of recurrent neural network (RNN), LSTMs are designed to manage long-

range dependencies in time-series data. In this context, LSTMs use Rectified Linear Unit (ReLU) 

activation functions, which provide several benefits over traditional functions like tanh. The LSTM 

unit's output is calculated using the forget gate, input gate, and ReLU activation functions. 

1. Cell State 𝒄𝒕and Gates: 

The LSTM unit maintains a cell state 𝑐𝑡 that acts as its memory. 

Gates, including the forget gate 𝑓𝑡, input gate 𝑖𝑡, and output gate 𝑜𝑡, manage the flow of information 

within the LSTM: 

Forget Gate (𝑓𝑡): Decides which information from the previous cell state𝑐𝑡−1 should be removed. 

Input Gate (𝑖𝑡): Determines which new information should be added to the current cell state 𝑐𝑡. 

Output Gate (𝑜𝑡): RegRegulates which parts of the cell state contribute to the output ℎ𝑡. 

2. Equations for LSTM Operations with ReLU: 

The cell state 𝑐𝑡 is updated using the forget gate 𝑓𝑡, input gate 𝑖𝑡 , and a candidate update 𝑐𝑡

^
 (computed 

using ReLU activation): 

𝑓𝑡 = 𝜎൫𝑤𝑓.ൣℎ𝑡−1,𝑥𝑡൧ + 𝑏𝑓൯                                                             (1) 

𝑖𝑡 = 𝜎൫𝑤𝑖.ൣℎ𝑡−1,𝑥𝑡൧ + 𝑏𝑖൯                                                                 (2) 

𝑐𝑡

^
= 𝑅𝑒𝐿𝑈(𝑤𝑐.ൣℎ𝑡−1,𝑥𝑡൧ + 𝑏𝑐)                                                          (3)         

        𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡°𝑐𝑡

^
                                                                     (4) 

where𝑤𝑓,𝑤𝑖,𝑤𝑐,are weight matrix,ℎ𝑡−1,previous hidden state and 𝑥𝑡 with various𝑏𝑓𝑏𝑖𝑏𝑐 bias terms.𝑐𝑡

^
 

represents candidate cell update. 
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3. Hidden State 𝒉𝒕Computation: 

The output gate 𝑜𝑡modulates the cell state𝑐𝑡before passing it through ReLU activation to compute the 

hidden state ℎ𝑡: 

𝑜𝑡 = 𝜎൫𝑤𝑜.ൣℎ𝑡−1,𝑥𝑡൧ + 𝑏𝑜൯                                                         (5) 

ℎ𝑡 = 𝑜𝑡°𝑅𝑒𝐿𝑈(𝑐𝑡)                                                                   (6) 

ℎ𝑡 denotes the current hidden state at time step t and 𝑜𝑡 is Output of gate output. ReLU is a Rectified 

Linear Unit used as an activation function. 𝑐𝑡 represents the Current cell state,° shows Element-wise 

multiplication operation. 

Advantages of ReLU in LSTMs 

Non-Saturating Activation: ReLU does not suffer from the vanishing gradient problem encountered 

with tanh or sigmoid activations, which accelerates convergence during training. 

Sparse Activation: ReLU activations are sparser compared to sigmoid or tanh, promoting faster 

computation and improved network efficiency. 

Stability and Expressiveness: The linear nature of ReLU allows LSTMs to model complex non-linear 

relationships more effectively, enhancing the network 

3. Materials and Methods 

In this segment, we initially presented the DEAP affective EEG dataset [23], which served as the 

foundation for our experimental investigations, alongside outlining the preprocessing procedures 

integral to our solution. Given that DEAP was primarily crafted for mental state classification, we 

detailed our approach to partitioning the data to suit the demands of the PI task. Subsequently, we 

elaborated on the conceptualization and execution of our proposed deep learning (DL) methodology. 

A. Data Set: 

In this study, we carried out experiments with the DEAP affective EEG dataset, which is a widely 

established benchmark for emotion and recognition tasks. Thirty-two individuals of sound health were 

recruited to partake in the experiment. Their task is to watch emotionally charged music videos and 

provided subjective ratings of valence and arousal for forty video clips while their EEG data was 

collected. A detailed summary of data is given in further steps. 

• The sampling data sample frequency was decreased to 128 Hz. 

• EOG (electrooculogram) artefacts were eliminated. 

• Applying a bandpass filter with a range of 4.0 Hz to 45.0 Hz. 

• By averaging the data to a common reference point, the data was normalised. 

• After discarding the baseline 3-second trial, the data was segmented into 60-second trials. Most 

of the researchers have been using this dataset for human emotion classification. However, we used 

this dataset to study EEG-based person identification.  
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B. Data Organization: 

• There are 32 persons (or subjects) in the dataset. 

• Each person performed 40 trials, possibly in an experimental task or study. 

• The EEG data was collected from 40 channels, which could represent different electrode 

placements on the scalp. 

C.Data Segmentation: 

• The continuous EEG data for each trial is segmented into fixed-size chunks. 

• Each trial is segmented into a 60-second period and a 3-second pre-trial baseline. 

• The baseline segment (3 seconds) serves as the reference or initial period before any stimulus 

or event occurs. 

D. Data Sampling Rate: 

The EEG data is sampled at a rate of 128 Hz, resulting in 128 data points (samples) per second for 

each channel. 

E. Calculation of Samples per Trial: 

• For each trial, the duration is 63 seconds (60 seconds trial + 3 seconds baseline). 

• Since the data is recorded at 128Hz, there are 128 data points (samples) for each second of 

recording. 

• Therefore, for each trial, there are 63 seconds x 128Hz = 8064 samples. 

F. data: 

• A 4-dimensional array of shapes (32, 40, 40, 8064). 

• The first dimension represents the 32 persons (subjects) in the dataset. 

• The second dimension represents the 40 trials performed by each person. 

• The third dimension represents the 40 EEG channels. 

• The fourth dimension represents the 8064 samples for each trial. 

G. Data Transformation 

Based on the provided information, the data transformation involves mapping EEG data to a 9x9 image 

plane for person identification using short-length EEG segments.  

H. EEG Data Segmentation: 

• Each EEG trial is originally 60 seconds long (7680 samples after removing the 3-second pre-

trial baseline). 

• The 60-second trial is further divided into 6 equal parts, each of 10 seconds in duration. These 

10-second segments are referred to as "subsamples." 
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• Each 10-second subsample contains 1280 EEG data points (10 seconds × 128 Hz sampling 

rate). 

I. Mapping to 9x9 Image Plane: 

• To convert each 10-second subsample into an image representation, they are mapped to a 9x9 

image plane. 

• The 9x9 image plane likely represents a grid of 9 rows and 9 columns shown in Fig 4. 

• Each data point of the 10-second subsample is mapped to a corresponding position in the 9x9 

grid as shown in Figure 4. 

J. Data and Label Structure: 

• The data consists of EEG subsamples from multiple participants. 

• For each participant, there are 30 subsamples (6 subsamples × 5 trials) for each affective state 

or condition. 

The data is structured as follows: 

• Data: (number of participants) × 30 subsamples × 1280 EEG data points (10 seconds at a 128 

Hz sampling rate). 

• Label: (number of participants) × 30 subsamples × 1 (participant's ID). 

K. Person Identification: 

• The analysis aims to identify individuals based on short EEG segments, each lasting 10 

seconds. 

• The labels used for this identification are the participant's ID, which is a unique identifier for 

each participant. 

In summary, the data is transformed into a format suitable for person identification using short-length 

EEG segments. Each 60-second trial is divided into 6 equal 10-second subsamples, which are then 

mapped to a 9x9 image plane. The image plane representation allows for the application of various 

image-based machine learning or pattern recognition techniques for person identification based on 

EEG data. The labels used for identification are the participant's ID, and the goal is to classify 

individuals based on their EEG responses during the 10-second subsamples. 
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Fig.4. Multichannel EEG signals are transformed into sequences of 2-D images. 

4. Proposed Approach 

The LSTM-CNN model integrates Long Short-Term Memory (LSTM) and Convolutional Neural 

Network (CNN) architectures for sequence modeling. The LSTM part handles temporal features and 

long-range dependencies, while the CNN part learns local patterns or spatial features from the data. 

whereas MobileNet that are trained on the deep dataset video frames for facial recognition. 

4.1 CNN (Convolutional Neural Network): 

The CNN architecture employs a 2D convolutional layer, where the initial layer extracts low-level 

features using 128 filters with a 3x3 kernel size, followed by Batch Normalization and a ReLU 

activation function. Batch Normalization standardizes the outputs of the convolutional layer, 

accelerating the training process and enhancing model stability. The ReLU activation introduces non-

linearity, allowing the network to capture more complex patterns. The second convolutional layer 

further enhances feature extraction with 64 filters, refining the low-level features identified by the first 

layer. This layer also includes Batch Normalization and a ReLU activation function, ensuring 

consistency in activation and normalization throughout the network.The third convolution layer 

extracts higher-level features with 32 filters. By progressively reducing the number of filters, the 

network hones in on more specific features. Similar to the previous layers, Batch Normalization and 

ReLU activation are applied. The subsequent layer, known as the Flatten layer, converts the 2D matrix 

outputs from the convolutional layers into 1D vectors, preparing them for input into the Dense layer. 

The Dense layer, consisting of 1024 units, then processes these flattened vectors, enabling the network 

to learn high-level representations of the image data. 

4.2 LSTM (Long Short-Term Memory): 

LSTM, a variant of recurrent neural network (RNN), is specifically designed to effectively process 

sequences and time-series data. It excels at capturing long-range dependencies in sequential data and 

is capable of retaining pertinent information across extended time steps.In the context of sequence 

modeling, LSTM is frequently employed to capture and process the temporal features of data. In This 

work output from the CNN is passed to first LSTM layers to capture temporal dependencies. its 

purpose Captures long-range dependencies in the sequence data, with 512 units. The second Lstm layer 

processes the sequential data, with 256 units. 
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4.3 Integration of LSTM and CNN in the LSTM-CNN Model: 

The final model combines both the CNN and LSTM components to leverage the strengths of both 

architectures. The CNN layers effectively capture spatial features from each frame, while the LSTM 

layers model the temporal dynamics across frames. This hybrid approach is powerful for applications 

like video classification, where understanding both spatial and temporal patterns is essential. The 

concatenated features from both models are processed through additional dense layers, resulting in a 

comprehensive and robust model for sequence-based image classification tasks.By freezing the layers 

of the feature extractor and focusing on training only the top dense layers, the model leverages pre-

trained knowledge while fine-tuning the classification layers for the specific task. This approach 

balances the need for robust feature extraction with the flexibility to adapt to new data, making it a 

versatile solution for various sequence classification problems. LSTM-CNN will get trained from 

scratch since there are no pre-trained weights. Take person ID, form an array with relative indices, and 

extrapolate those 22 into 22x6x40 samples according to our input data.  

4.4 MobileNet 

In this work, we are using the networks of MobileNet that are trained on the deep dataset video frames. 

MobileNet is often referred to as a lightweight convolutional neural network, making it an efficient 

architecture for mobile applications. One of the key advantages of MobileNet is its minimal 

computational requirements. Unlike standard convolutions, MobileNet employs depth-wise separable 

convolutions, which result in a lower number of multiplications compared to traditional convolutions. 

This reduction in computational complexity contributes to the overall efficiency of MobileNet. Depth-

wise separable convolution comprises both depth-wise convolutions and point-wise convolutions. 

Unlike standard CNNs where convolution is applied to all channels simultaneously, depth-wise 

convolution involves applying convolution to one channel at a time. A 5D NumPy array is initialized 

to hold facial images with dimensions set as (number of persons, 240, 224, 224, 3). The pixel values 

of these images are then rescaled from their original range of [0, 255] to a new range of [-1, 1].The 

division by 127.5 centres the data around 0, and subtracting 1 scales it to the range [-1, 1]. Scaling 

pixel values to a range of [-1, 1] is a common preprocessing step in machine learning, especially for 

neural networks. It can improve convergence during training and help the model better handle the data. 

This sets up a feature extractor using the MobileNetV3Small model from Tensor Flow's Keras 

applications. This sets up a pre-trained MobileNetV3Small model for feature extraction. The model is 

configured to exclude the top layer, use ImageNet pre-trained weights, take images with dimensions 

(224, 224, 3) as input, and use global average pooling. All layers of the model are frozen, preventing 

them from being updated during subsequent training. This feature extractor can then be used as part of 

a larger model for tasks such as facial feature analysis or classification. 

5. Hybrid Approach 

The proposed model, illustrated in Figure 3 consists of extracted feature result of mobile net 

architecture and the Lstm-cnn model. The proposed model architecture consists of a bottleneck 

structure with two hidden layers having 256 and 64 neurons, with alternative dropout layer and an 

output layer with 22 neurons using softmax activation. The bottleneck structure with reduced 

dimensions (256 and 64 neurons) is often used for dimensionality reduction and feature abstraction. It 
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helps in learning a compact representation of the input features. The weights of the LSTM-CNN layers 

and the bottleneck layers are trained together. This enables the model to learn a task-specific 

representation while preserving the valuable features learned by MobileNet. The output layer uses 

softmax activation to transform the model's raw outputs into probabilities, making it ideal for multi-

class classification.Training the LSTM-CNN layers along with the bottleneck ensures that the model 

adapts to the specific task of classifying persons, taking into account both the facial features from 

MobileNet and the temporal and spatial features from the LSTM-CNN. In deep learning training, the 

categorical cross-entropy loss function is used to quantify the difference between the predicted class 

probabilities and the actual labels. This loss guides the optimization process, adjusting the model 

parameters to minimize the discrepancy and improve classification accuracy. During testing, the 

categorical cross-entropy loss function is also applied to assess the model's performance on unseen 

data. By comparing predicted probabilities to the actual labels, it measures the model's ability to 

generalize and make accurate predictions beyond the training set. In both training and testing, this loss 

function plays a vital role in evaluating the model's effectiveness and generalization capabilities in 

classification tasks, as illustrated in Figure 5. 

 

Fig. 5. training loss and testing loss against the number of epochs 

6. Comparative performance analysis 

In this section, a comparative analysis has been conducted with a previous study [14] that utilized deep 

learning for subject classification. The prior method employed two deep learning models, CNN-GRU 

and CNN-LSTM, achieving an impressive correct recognition rate of 99.17% by focusing on brain 

signals from the frontal region. Even with a reduction in EEG sensors from 32 to 5 for practicality, the 

approach maintained strong performance. In contrast, the current work achieved a maximum accuracy 

of 99.81% by integrating EEG brain wave data with a facial multimodal recognition system, further 

enhancing identification accuracy. 

7. Results and discussion: 

The electroencephalogram (EEG) and peripheral physiological data of 32 participants were captured 

while they watched 40 one-minute clips of music videos. This dataset, which is publicly accessible, is 
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encouraged for use by other researchers to test their affective state estimation methods.. For each trial, 

the duration is 63 seconds (60 seconds trial + 3 seconds baseline). Since the data is recorded at 128Hz, 

there are 128 data points (samples) for each second of recording. Therefore, for each trial, there are 63 

seconds x 128Hz = 8064 samples. To focus on identifying individuals using short EEG segments, we 

used 10-second subsamples. Each 60-second EEG trial in the DEAP dataset was divided into six 

subsamples, giving us 30 subsamples (6 subsamples × 5 trials) per participant for each affective state. 

In these experiments, the labels represent the participants' unique IDs. The data and labels are 

structured as follows: 

Data: number of participants × 30 subsamples × 1280 EEG data points (10 seconds with 128 Hz 

sampling rate) 

Label: number of participants × 30 subsamples × 1(ID). The analysis aims to identify a person from 

the short-length EEG segments (10-second subsamples). 

The labels used for this identification are the participant's ID, which is a unique identifier for each 

participant. For each 10-second segment (sample) in the 5-dimensional array. For each channel (32 

channels), interpolate the data points onto the 9x9 mesh grid. This can be done using various 

interpolation techniques such as bilinear, bicubic, or spline interpolation. The interpolated values for 

each channel will be represented on the 9x9 grid. This mesh representation allows you to observe and 

analyze the spatial patterns of EEG data across the 9x9 grid, which could be helpful for further analysis, 

visualization, or feature extraction. Performance is evaluated using three statistical metrics: 

classification accuracy, precision, and recall. A confusion matrix (shown in Figure 6) is used to 

determine true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

Additionally, categorical cross-entropy, precision, and recall are plotted against the number of epochs 

for both training and testing loss (as seen in Figure 5). Table 1 summarizes the classification results. 

The classification report provides a detailed summary of precision, recall, and F1 score for each class, 

while the last column, "support," indicates the number of samples for each class. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
∗ 100                                         (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100                                                                  (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100                                                                          (9) 
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Fig.6. Confusion matrices of the combined model with predicted label accuracy 

Table 1: Classification Report for the Feature-Level Fusion using cnn-lstm and mobileNet 

architecture 

subjects Precision Recall F1-score support 

S01 0.96 1.00 0.98 48 

S02 1.00 1.00 1.00 48 

S03 1.00 1.00 1.00 48 

S04 1.00 1.00 1.00 48 

S05 1.00 1.00 1.00 48 

S06 1.00 0.98 0.99 48 

S07 1.00 1.00 1.00 48 

S08 1.00 0.98 0.99 48 

S09 1.00 1.00 1.00 48 

S10 1.00 1.00 1.00 48 

S11 1.00 1.00 1.00 48 

S12 1.00 1.00 1.00 48 

S13 1.00 1.00 1.00 48 

S14 1.00 1.00 1.00 48 

S15 1.00 1.00 1.00 48 
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S16 1.00 1.00 1.00 48 

S17 1.00 1.00 1.00 48 

S18 1.00 1.00 1.00 48 

S19 1.00 1.00 1.00 48 

S20 1.00 1.00 1.00 48 

S21 1.00 1.00 1.00 48 

S22 1.00 1.00 1.00 48 

Macro avg 1.00 1.00 1.00 1056 

Weighted avg 1.00 1.00 1.00 1056 

8. Conclusion 

This research presents an innovative method for person identification by integrating EEG and facial 

data. The study seeks to enhance the effectiveness of EEG-based person identification (PI) through the 

use of an LSTM-CNN model, which combines Long Short-Term Memory (LSTM) and Convolutional 

Neural Network (CNN) architectures for a robust sequence modeling approach. The LSTM component 

is responsible for processing temporal features and capturing long-range dependencies, while the CNN 

component is used to learn local patterns or spatial features from the data. The proposed method is 

assessed using the DEAP dataset, a state-of-the-art benchmark for affective data. The findings reveal 

that the CNN-LSTM model, enhanced with MobileNet, can achieve a mean correct recognition rate of 

up to 99.81% for person identification (PI). This study employs the LSTM-CNN model, which 

integrates Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures 

for effective sequence modeling.The LSTM component is responsible for processing temporal features 

and capturing long-range dependencies, while the CNN component is used to learn local patterns or 

spatial features from the data. The proposed hybrid model demonstrates promising results, and the 

findings contribute to the evolving field of biometric identification. Future research could focus on 

optimizing the model architecture, investigating additional features, and enlarging the dataset to 

improve generalization capabilities. 

Data availability   

The DEAP dataset (Database for Emotion Analysis using Physiological Signals) is publicly 

accessible online via the dataset DOI: 10.1109/TAFFC.2012.12. It can be found at the following 

URL: http://www.eecs.qmul.ac.uk/mmv/datasets/deap/ (accessed on May 13, 2023). 
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