ISSN: 1074-133X Vol 32 No. 3s (2025)

Probiotics and Ascorbic Acid Specialized Product: Production and Quality Indicators

Lobach Evgenia Yurievna ¹, Poznyakovsky Valeriy Mikhailovich ², Boisjoni Tokhiriyon^{3*}, Danko Nadezhda Nikolaevna ³, Podzorova Galina Anatolyevna⁴, Latkov Nikolay Yurievich⁵

¹Department of Management and Technology in Tourism and Recreation, Sochi State University, Sochi, Russia.

²Scientific and Educational Center for Applied Biotechnology and Nutrition, Kemerovo State Medical University, Kemerovo, Russia.

³Department of Management, Entrepreneurship and Engineering, Ural State University of Economics, Ekaterinburg, Russia.

⁴Institute of Economics and Management, Kemerovo State University, Kemerovo Russia.

⁵Institute of Technological Entrepreneurship Kuzbass State Agrarian University named after V.N. Poletskov, Kemerovo Russia.

Article History:

Received: 25-09-2024 **Revised**: 04-11-2024

Accepted: 25-11-2024

Abstract:

A new type of probiotic coated tablets for particular nutritional uses has been developed, intended for children and adults, including pregnant and breastfeeding women. Probiotics are live microorganisms or products cultivated from them that have a beneficial effect on the human body, mainly by improving the health of the gastrointestinal tract (GIT). Experimental and industrial samples of Probiopan dragées enriched with bifidobacteria and lactobacilli were the subject of the study. Comprehensive studies of the product intended for particular nutritional uses allowed us to establish its high quality as regulated by applicable standards, as well as the shelf life of 1 year at a temperature of 25±5°C and a relative humidity of 75%. The obtained data indicated a fairly high stability of vitamin C, the preservation of which was 91.6%. Based on the studies conducted, the use of the product was recommended in the amount of three dragées per day to provide at least 30% of the daily requirement for vitamin C, bifidobacteria, and lactobacteria, which can serve as a factor in normalizing the microflora of the gastrointestinal tract and preventing the development of dysbacteriosis in children, adults, and women during pregnancy and breastfeeding. Probiopan dragées are also recommended for type II diabetes, because they contain no sugar. It was also found that when consuming calcium together with the developed confectionery product, the body absorbs calcium better because of the lactic acid bacteria Lactobacillus plantarum (strain 337D).

Keywords: Food supplements, vitamin and mineral complex, production, quality, functional properties.

1. Introduction

The development of products for particular nutritional uses, including biologically active food supplements (BAFS), is one of the most accessible and effective ways to improve the nutrition and health of modern man. This branch of nutritional science is of both theoretical and practical importance for implementation of the concept of state policy in the field of healthy nutrition of the population for

ISSN: 1074-133X Vol 32 No. 3s (2025)

the period up to 2030, the Resolution of the Government of the Russian Federation and the Presidential Decrees on the development of the food and processing industry [1-5].

The development of novel probiotic products is of particular importance [6-13]. Probiotics are live microorganisms or products cultivated from them that have a beneficial effect on the human body, mainly by improving the health of the gastrointestinal tract (GIT).

A new type of probiotic coated tablets for particular nutritional uses has been developed, intended for children and adults, including pregnant and breastfeeding women. Based on available literary sources and our own research, the functional properties of the main ingredients of the formula are characterised [14-22].

2. Materials and Methods

Experimental and industrial samples of a new probiotic dragées enriched with bifidobacteria and lactobacilli were the subject of the study. Standard and special methods for testing the quality and safety of the products for particular nutritional uses were used in accordance with the requirements of the technological regulations of the Customs Union 027/2012 on the assessment of the quality and safety of such products.

3. Results and Discussion

As a source of microorganisms, a microencapsulated form of probiotic bacteria was introduced into the product - balls $30-50 \,\mu m$ in size in a gum arabic shell, which is resistant to the acidic environment of the stomach and ensures the preservation of probiotics [23-26]. The shell is capable of dissolving in the slightly alkaline environment of the intestine, thereby ensuring the release of active bacteria. The proposed microencapsulation technology contributes to the preservation of bacteria in the finished product throughout the entire shelf life [27-31].

The ingredients of the dragées have a synergistic effect in terms of preventing dysbacteriosis, restoring the disturbed balance of microorganisms, improving the functioning of the digestive tract, maintaining the child's body at the proper functional level and the well-being of the expectant mother [32].

The composition of the dragées is given in Table 1.

Table 1. Ingredients of Probiopan dragées.

Ingredient	Quantity,	Quantity,
	mg/1 dragée	g/ 100 g
Dry milk substitute	759.26	75,926
Crystalline fructose	80	8.0
Bifidobacterium adolescentis (1*10 ¹⁰ CFU/g)	5.0	0.5
Lactobacillus plantarum (1*10 ¹⁰ CFU/g)	0.25	0.025
probiotic sourdough Lactobacillus acidophilus (1*10 ¹⁰ CFU/g)	0.25	0.025
Jerusalem artichoke root powder	50	5.0
Inulin	40	4.0
Ascorbic acid	9.0	0.9
Natural flavor: grapefruit or lemon	5.0	0.5

ISSN: 1074-133X Vol 32 No. 3s (2025)

Stevioside	1.0	0,1
Natural dye " turmeric " or "carmine" + " turmeric "	0.24 or 0.16 and 0.08	0.024
Total weight of the core	950	-
Gum arabic	5.0	0.5
Maltitol	45.0	4.5
Total weight of the coated dragée	1000.0 mg	-

All raw materials used for production meet the hygienic requirements for food safety and are accompanied by documents confirming their quality.

The Production Technology

The coated tablets are produced using tableting process.

Preparation of Raw Materials

The raw materials have passed the incoming inspection of the company's Quality Control Department (QCD) with an analytical passport for compliance with the legal documentation. The use of excipients is authorised in accordance with a certificate or certificate of state registration and the manufacturer's data report [33-38].

In order to deagglomerate and remove mechanical impurities, the raw materials are sieved on a vibrating sieve with a mesh size of 0.5 mm and poured through a bowl into a container.

The fructose is first sieved through a No. 20 metal sieve and ground in a micro-mill.

The component composition is taken as a proportion by mass in the ratio specified in the recipe.

The weighed proportions of the functional ingredients - vitamin premix, trimagnesium orthophosphate, zinc citrate, copper aspartate, iron carbonyl, plant extracts, flavourings, dry apple juice - are mixed with a small amount of dry milk whey, thoroughly blended to achieve an even distribution and sieved through a No. 22 silk sieve.

An aqueous solution is used to add and distribute potassium iodide evenly. For this purpose, a weighed portion of the preparation is dissolved in water, poured onto a weighed portion of microcrystalline cellulose (MCC) and mixed thoroughly [39, 40]. Then the mixture is sifted through a silk sieve No. 22. The prepared components are placed in a SMU-150 mixer and mixed for 30–40 minutes. The finished mixture is unloaded into polyethylene bags, weighed and the weight of the formulation is recorded in the process log. The quality of mixing is controlled: by the even distribution of components, by coloring, a sample is taken to determine the mass fraction of moisture.

Tableting is carried out on the ZP 1100 press. The diameter of the die is 16 mm, the shape of the core is biconvex [41-44].

After the core has been produced, it is dedusted using a ZWS137 rotary deduster.

The dragée core is coated with a shell on a BQ 1000 coating machine using the dragée technique. For the coating, an aqueous gum arabic solution (with a dry substance content of 25-30%) is prepared according to the technological instructions. Then the cores are loaded into the drum according to the

ISSN: 1074-133X Vol 32 No. 3s (2025)

calculated quantity, the drum is rotated and the coating is applied by alternately pouring the solution and drying each layer with warm air (temperature 30 - 40° C), the coating is applied until a uniform glossy coating appears [45-47].

During tableting and coating, the mass and appearance of the coating are checked. Once the appearance has been assessed, the dragées are unloaded into trays and sent for weighing and packaging. Organoleptic, physicochemical, microbiological and toxicological indicators of quality and safety were studied during production and storage [48-50]. The product was stored in polymer jars for 15 months at a temperature of 25±5°C and a relative humidity of no more than 75%. The content of active components was studied considering the functional positioning of the product. The assessment of organoleptic properties of the dragées during storage is presented in Table 2.

Table 2. Change in organoleptic indicators of Probiopan dragées during storage (n=8).

Shelf Life,	Qı	Average Total Quality		
months	Colour	Taste	Odour	Score, points
0	4,9±0,5	4,5±0,4	4,1±0,5	13,5±0,7
6	4,9±0,5	4,4±0,4	4,0±0,5	13,3±0,7
15	4,9±0,5	4,1±0,4	3,7±0,3	12,7±0,6

The results of physicochemical, microbiological and toxicological studies are shown in Table 3.

Table 3. Consumer properties of Probiopan dragées during storage (n=3).

	Requir		Test result after production and during storage, months			
Indicator	ements accordi ng to applica ble regulati ons	exp	pon piry of nonths	Upon expiry of 6 months	_	oon expiry of 15 months
1	2	3		4		5
		I	Physico	chemical ind	icators	
Moisture content, %, no more than	6,5	5,8	8±0,1	5,0±0,1	4,9±0,1	
			Microbi	iological ind	cators	
Bifidobacterium content (Bifidobacterium adolescentis), CFU/ 100 g, not less than	5,0 * 1	09 6,2		25 * 10°	5,81 * 109	5,15 * 109
Lactobacillus content (Lactobacillus plantarum и Lactobacillus acidophilus),	5,0 * 1	08 5,9		9 * 10 ⁸	5,6 * 108	5,1 * 108

ISSN: 1074-133X Vol 32 No. 3s (2025)

CFU/ 100	g, not less					
tl	han					
Product weight	Coliform Bacteria	0,1	Not detected in 0.1 g	Not detected in 0.1 g	Not detected in 0.1 g	
(g),	(coliforms)					
which	Pathogenic,		Not detected in	Not detected in	Not detec	eted in 25 g
does not	including	25	25 g	25 g	Not detec	ted iii 23 g
allow:	salmonella					
	J/g, not more	50	Not detected	Not detected	Not d	etected
	J/g, not more han	50	Not detected	Not detected	Not detected	
			Toxicological indic	cators		
Toxic	elements	Lead	1,0	0,3±0,02	0,3±0,02	0,3±0,2
		Arsenic	1,0	0,1±0,01	0,1±0,01	0,1±0,01
		Cadmium	0,1	0,03±0,01	0,03±0,01	0,03±0,01
		Mercury	0,01	0, 005±0,001	0, 005±0,001	0, 005±0,001
Radio	nuclides	Cesium-137	160	7,0±0,1	7,0±0,1	7,0±0,1
		Strontium- 90	100	1,0±0,05	1,0±0,05	1,0±0,05

It follows from the presented data that the analyzed indicators of the quality and safety of the dragées remain practically unchanged during the entire testing period. High stability of the introduced bifidobacteria and lactobacteria was noted, the losses of which during the entire storage period (considering the safety margin) amounted to 17.6% and 13.6%, respectively. The preservation of ascorbic acid, the most labile component of the formulation, was also studied (Figure 1).

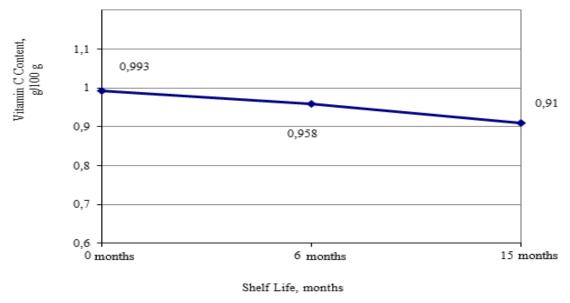


Figure 1. Dynamics of changes in the content of vitamin C in Probiopan dragées during storage.

ISSN: 1074-133X Vol 32 No. 3s (2025)

The obtained data indicated a fairly high stability of the tested vitamin, the preservation of which was 91.6% [51-54]. Conducting comprehensive studies of a product intended for particular nutritional uses allowed us to establish quality indicators regulated by applicable standards (Tables 4 and 5) as well as the shelf life of the developed product of 1 year at a temperature of 25±5°C and a relative humidity of 75% (considering the safety margin of 3 months).

Table 4. Requirements for organoleptic and physicochemical quality indicators of Probiopan dragées.

Indicator	Description
Taste and Odour	Strong, characteristic of this flavoring and components, without any off-flavour or off-odour.
Colour	According to composition, depending on the taste - yellow or reddish-orange with dark inclusions
Visual Appearance	Smooth, glossy surface
Average weight of one dragée, g	1,00±10%
Moisture Content, %, not more than	6,5

Table 5. Nutritional and energy value of Probiopan dragées (per 100 g of product).

Item	Nutrition Value in 100 g	Amount in 1 dragée	Amount in 3 dragées
Vitamin C, mg	900,00±5	9,00±0,5	27±0,5
Lactobecteria, CFU	5,0 *108	5,0*106	15,0*106
Bifidobacteria, CFU	5,0 *109	5,0 *107	15,0 *107
Fats, g	20,5±0,3	0,20±0,03	0,6±0,05
Carbohydrates, g	67,3±0,8	0,67±0,8	2,01±0,1
Energy Value, kcal	453,8±1,0	4,5±0,05	13,6±0,08

Recommended consumption rates for the product intended for particular nutritional uses have been developed (Table 6).

Table 6. Recommended Daily Intake of Probiopan Dragées.

Age Group	Recommended Daly Intake,	
Age Gloup	pcs/day	
Children from 3 to 7 years old	2-3	
Children from 7 to 11 years old	2-3	
Children from 11 to 14 лет	3-4	
Children from 14 years old, adults, pregnant or breast-feeding	3-5	
women		

ISSN: 1074-133X Vol 32 No. 3s (2025)

4. Conclusion

Based on the studies conducted, recommendations were made for the use of the new product. The use of the product in the recommended amount of three dragées per day provides at least 30% of the daily requirement for vitamin C, bifidobacteria, and lactobacteria, which can serve as a factor in normalizing the microflora of the gastrointestinal tract and preventing the development of dysbacteriosis in children, adults, and women during pregnancy and breastfeeding. Probiopan dragées are recommended for type II diabetes because they contain no sugar, whereas fructose, inulin, or Jerusalem artichoke powder do not have a negative effect in the case of this disease. It was found that when consuming dragées enriched with calcium, together with the developed confectionery product, the body absorbs calcium better because of the lactic acid bacteria *Lactobacillus plantarum* (strain 337D).

References

- [1] Avstrievskykh AN, Vekovtsev AA, Chelnakova NG, Poznyakovsky VM. Healthy food products: new technologies, quality assurance, efficiency of use: monograph. Moscow: INFRA M. 2022. 414 p.
- [2] Lobach EY, Fesikova PV, Poznyakovsky VM. Study of factors that form consumer characteristics of a functional food based on plant materials. Food commodity expert. 2016;1:36-40.
- [3] Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J Oral Microbiol. 2009;1(1):1949.
- [4] Makhoahle P, Gaseitsiwe T. Efficacy of disinfectants on common laboratory surface microorganisms at R.S Mangaliso Hospital, NHLS Laboratory, South Africa. Bull Pioneer Res Med Clin Sci. 2022;1(1):1-12.
- [5] Ansari S, Alshamrani B, Alzahrani A, Alfayez A, Alhebshan N, Alshamrani A. Prevalence of dental fluorosis among teenagers: A cross-sectional study in the schools of Riyadh. Bull Pioneer Res Med Clin Sci. 2022;1(1):13-7.
- [6] Enwa FO, Jewo AO, Oyubu LO, Adjekuko CO, Effiong V. Incidence of vaginal infections among females of different age categories in Delta State, Nigeria. Bull Pioneer Res Med Clin Sci. 2022;1(1):18-23.
- [7] Dhanasekar P, Rajayyan JS, Veerabadiran Y, Kumar KS, Kumar KS, Chinnadurai N. Evaluation of alum and purification process of water by coagulation method. Bull Pioneer Res Med Clin Sci. 2022;1(2):1-6.
- [8] Ahmad S, Khan TM, Ayub F, Mubarak N, Khaliel AM, Elhanish AAS, et al. Meta-analysis of urinary tract infections among patients with chronic kidney disease. Bull Pioneer Res Med Clin Sci. 2022;1(2):7-27.
- [9] Poznyakovsky VM, Chugunova OV, Tamova MY. Food ingredients and biologically active additives. Moscow: INFRA-M, 2017. 143 p.
- [10] Poznyakovsky VM, Tokhiriyen B, Tolmachev OA. Food systems: foodstuffs intended for particular nutritional uses, new technologies, application efficiency: monograph. St. Petersburg: GIORD, 2023. 240 p.
- [11] Abouelela ME, Helmy YA. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms. 2024;12(3):430.
- [12] Roux AE, Langella P, Martin R. Overview on biotics development. Curr Opin Biotechnol. 2024;86:103073.
- [13] Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: the upcoming biotherapeutics. Mol Biol Rep. 2024;51(1):505.
- [14] Correa AC, Lopes MS, Perna RF, Silva EK. Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydr Polym. 2024;323:121396.
- [15] Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, et al. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release. 2024;375:20-46.
- [16] Dong Y, Li M, Yue X. Current Research on Probiotics and Fermented Products. Foods. 2024;13(9):1406.
- [17] Venkatesh GP, Kuruvalli G, Syed K, Reddy VD. An Updated Review on Probiotic Production and Applications. Gastroenterol Insights. 2024;15(1):221-36.
- [18] Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, et al. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms. 2024;12(2):234.

ISSN: 1074-133X Vol 32 No. 3s (2025)

- [19] Zhao N, Huang X, Liu Z, Gao Y, Teng J, Yu T, et al. Probiotic characterization of Bacillus smithii: Research advances, concerns, and prospective trends. Compr Rev Food Sci Food Saf. 2024;23(2):e13308.
- [20] Ahmed II, Sorour MAR, Abbas MS, Soliman AS. Diffraction scanning calorimetric analysis of fully hydrogenated soybean oil and soybean oil blends. Bull Pioneer Res Med Clin Sci. 2022;1(2):28-33.
- [21] Ağaçkıran M, Avşaroğullar OL, Şenol V. Examining the frequency of violence versus nurses and the factors affecting it in hospitals. J Integr Nurs Palliat Care. 2023;4:11-6.
- [22] Erlina Y, Kusnanto K, Mishbahatul E. Studying the relationship between job enthusiasm and job resources in nurses. J Integr Nurs Palliat Care. 2024;5:76-82.
- [23] Brandão T, Tavares R, Schulz MS, Matos PM. Studying the effect of awareness and emotional expression interventions on the intensity of pain and anger in women with breast cancer. J Integr Nurs Palliat Care. 2024;5:83-90
- [24] Sivasli A, Pasinlioglu T. Knowledge levels of neonatal intensive care nurses in retinopathy of prematurity and affecting factors. J Integr Nurs Palliat Care. 2023;4:59-68.
- [25] Wu C, Cheng S, Wu J, Zhang Y, Lin Y, Li L, et al. Factors influencing job satisfaction and work of male nurses. J Integr Nurs Palliat Care. 2023;4:38-45.
- [26] Bukhary AM, Own AA, Almuarfaj AM, Ahmed NA, Alwakil AIA, Alshareef GAG, et al. An overview on substance use disorders management approach. World J Environ Biosci. 2021;10(3):27-30.
- [27] Taba H, Manivel N, Durairaj D. Indigenous agricultural practices among tribal farmers on Lower Subansiri District of Arunachal Pradesh. World J Environ Biosci. 2021;10(3):51-3.
- [28] Alrusayyis NS, Alghamdi M, Alahmari M, Barnawi M, Alfuraydan YA, Alharbi BA, et al. Multiple sclerosis flare-ups: Diagnostic and management approach in emergency department. World J Environ Biosci. 2021;10(4):9-12.
- [29] Alqarni GJ, Almahmudi KH, Alamri LA, Alzubaidi MA, Katib HA, Emam ASA, et al. An overview on diagnosis and management of placenta previa. World J Environ Biosci. 2021;10(4):6-8.
- [30] Badauod AA, Sufta AA, Alabbadi AM, Alzahrani AA, Allahiani WK, Alzahrani YM, et al. An overview on the role of family physician in diagnosis and management of back pain. World J Environ Biosci. 2021;10(4):20-2.
- [31] Albahrani KA, Alrushud SS, Albulaihed AK, Alqahtani DSF, Aloush KM, Alshanqiti HMA, et al. An overview on the role of statins in dyslipidemia management in primary health care. World J Environ Biosci. 2021;10(4):33-7.
- [32] Mhedhbi C, Jabli M, Mabrouki N, Hidouri M, Boughzala K. Purification of phosphoric acid solution using natural and activated clays. J Biochem Technol. 2023;14(4):83-9.
- [33] Edziri H, Alsaiari NA, Al-Qadri FA, Mastouri M. Consequence of water deficit on biological activities of olive extract (Olea europaea L.) growing in Tunisia. J Biochem Technol. 2024;15(1):33-7.
- [34] Bhat R, Gopikrishna G, Krishna N, Prarthan P, Pradeep S, Shetty S, et al. Phytochemical constituent and anti-bacterial activity of Tabernaemontana divaricata (dwarf) leaves. J Biochem Technol. 2024;15(1):46-51.
- [35] Sowbaraniya SM, Syam S. Genomic libraries An overview and a narrative review. J Biochem Technol. 2024;15(2):18-22.
- [36] Benhmida S, Trabelsi H. Fatty acid composition in bone fluid from knee osteoarthritis patients. J Biochem Technol. 2024;15(2):23-6.
- [37] Öksüzoğlu TÖ, Çoban GS. Awareness of undergraduate students towards social entrepreneurship. J Organ Behav Res. 2021;6(2):122-33.
- [38] Huong DT, Ngoc Huy DT. Measurement of internal marketing ingredients at garment enterprises in Thai Nguyen Province. J Organ Behav Res. 2021;6(2):73-88.
- [39] Hamid NHM. Loneliness among the students of Faculty of Science and Arts during the COVID-19. J Organ Behav Res. 2021;6(2):31-45.
- [40] Maneea ASB, Alqahtani AD, Alhazzaa AK, Albalawi AO, Alotaibi AK, Alanazi TF. Microbiological effect of various concentrations of sodium hypochlorite (NaOCL) during endodontic treatment: A systematic review. Ann Dent Spec. 2023;11(1):95-101.
- [41] Saleh AAM. Comparative study: Physical and chemical properties of new "Cerafill" versus old "iRoot" bioceramic root canal sealers. Ann Dent Spec. 2023;11(3):19-23.

ISSN: 1074-133X Vol 32 No. 3s (2025)

- [42] Ansari SH, Alhussain B, Almarri AF, Alqahtani AA, Alquaiz AM, Qahtan EMA, et al. Successful gingival retraction using diode laser vs retraction cord: A systematic review. Ann Dent Spec. 2023;11(3):45-52.
- [43] Kumar D, Gurunathan D, Jabin Z, Talal S. Aromatherapy versus conscious sedation evaluation in reducing dental anxiety in pediatric dental patients. Ann Dent Spec. 2024;12(2):25-31.
- [44] Raygan E, Sefidbakht E, Khosravi H. The effects of COVID-19 and the impact of sudden shocks on the various industry indices. J Adv Pharm Educ Res. 2022;12(4):114-22.
- [45] Chu KY. Medication considerations including safety and its principles in geriatric dentistry. J Adv Pharm Educ Res. 2022;12(4):67-76.
- [46] Barasker K, Jain N, Jain P, Gour K. Analysis of biological activity like antioxidant, antimicrobial, and DNA damage of paracetamol. J Biochem Technol. 2024;15(1):19-26.
- [47] Subramanian S, Anbarasu P, Nallusamy A, Ramesh B. An in vitro study on the efficacy of four remineralizing agents. Ann Dent Spec. 2022;10(1):87-94.
- [48] Davani SA, Rahimi C, Imani M. Comparison of family communication patterns and attachment styles among depressed OCD patients. J Adv Pharm Educ Res. 2022;12(4):107-13.
- [49] Burghate S, Mundada A. Comprehensive overview of vaccines and their types for human immunization. Bull Pioneer Res Med Clin Sci. 2023;2(1):9-16.
- [50] Eteng OE, Bassey N, Eteng EI, Okwe EP, Ekpo G, Ekam V, et al. Effect of vanillic acid and morin on bisphenol S and diethyl phthalate-induced nephrotoxicity in male rats. Bull Pioneer Res Med Clin Sci. 2023;2(1):25-34.
- [51] Shaker NS, Hussein ZA, Tahseen NJ, Al-Musalahi AS, Sahib HB. Hepatoprotective effect of Olea europaea L. seeds extracts against methotrexate-induced liver injury in mice. J Adv Pharm Educ Res. 2022;12(3):113-21.
- [52] Ahmed A, Dafaalla AA, Waggiallah HA. Assessment of plasma level of D-dimer, platelets, and MPV in myocardial infarction patients. J Adv Pharm Educ Res. 2022;12(4):55-9.
- [53] Bisri DY, Hallis IK, Saputra TA, Bisri T. Brain relaxation score on craniotomy brain tumour removal with adjuvant thiopental and dexmedetomidine: A case report. J Adv Pharm Educ Res. 2023;13(3):73-8.
- [54] Çakar S, Özyer K, Azizoğlu O. The mediating role of emotional labor in the impact of organizational climate on burnout. J Organ Behav Res. 2022;7(1):1-13.