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Abstract:  

Parkinson's Disease (PD) is a neurodegenerative condition that presents considerable 

challenges in achieving accurate early diagnosis and classification. This research explores 

the classification of PD through the application of advanced deep learning techniques 

integrated with optimization methods, compared to conventional machine learning 

approaches. The analysis is conducted using a diverse dataset incorporating clinical, vocal, 

and movement-related features to ensure comprehensive evaluation. Deep learning 

frameworks, such as multi-layer perceptron (MLP), Long Short-Term Memory (LSDM), the 

proposed deep learning model namely CNN-BiGRU were enhanced using strategies like 

hyperparameter optimization, regularization, and advanced gradient-based optimizers to 

boost performance and minimize overfitting. Similarly, traditional machine learning models, 

including Linear Regression, Random Tree, REP Tree, and Random Forest, were 

implemented and tested on the same dataset. Evaluation metrics, including accuracy, 

precision, recall, F1-score, and the area under the curve (AUC), were used to measure and 

compare the performance of all models. The findings reveal that optimized deep learning 

models significantly surpass traditional machine learning methods in both classification 

accuracy and generalization. This study emphasizes the effectiveness of optimization-

enhanced deep learning techniques in PD classification and their clear advantages over 

traditional models. 

Keywords: Parkinson's Disease (PD), Classification, Deep Learning, Optimization 
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1.0 Introduction  

Parkinson's Disease (PD) is a progressive neurodegenerative condition affecting millions globally. It 

manifests through motor symptoms such as tremors, rigidity, and slowed movements, along with non-

motor symptoms like cognitive decline and depression. Accurate and early diagnosis is essential to 

improving patient outcomes and facilitating timely intervention. However, traditional diagnostic 

approaches often depend on clinical assessments, which can be subjective and less reliable, particularly 

in the early stages of the disease (Serrano-Gotarredona et al., 2021). The advent of artificial intelligence 

(AI) has introduced new possibilities for automating PD diagnosis and classification through machine 

learning (ML) and deep learning (DL) methodologies. 

Machine learning algorithms, including Support Vector Machines (SVM), Random Forests (RF), and 

k-Nearest Neighbors (k-NN), have been widely applied in PD classification tasks. These models 

typically require manual feature engineering and have shown moderate predictive performance. 

Nevertheless, they often struggle with capturing complex relationships within data and demand 
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substantial domain expertise for effective application (Khan et al., 2020). Conversely, deep learning 

techniques, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 

offer distinct advantages by automatically extracting hierarchical features from raw data, resulting in 

superior classification outcomes (LeCun et al., 2015). The effectiveness of deep learning models can 

be further enhanced using optimization techniques like hyperparameter tuning, regularization, and 

gradient-based methods, which address challenges such as overfitting and improve generalization. 

Recent research underscores the potential of combining deep learning with optimization strategies to 

achieve advanced diagnostic capabilities in medical applications, including PD classification (Zhou et 

al., 2023). 

Presents a detailed comparison between optimized deep learning models and traditional machine 

learning approaches for Parkinson's Disease classification. A comprehensive dataset incorporating 

clinical, vocal, and movement-based features was utilized to ensure thorough evaluation. Performance 

metrics, including accuracy, precision, recall, F1-score, and area under the curve (AUC), were 

employed to measure and compare the effectiveness of the models. The findings highlight the 

significant advantages of optimization-enhanced deep learning models, demonstrating their ability to 

outperform conventional machine learning algorithms in predictive accuracy and generalization. 

2.0 Literature Review 

The effectiveness of these AI approaches is often evaluated using performance metrics such as 

accuracy, precision, recall, F1-score, and the area under the curve (AUC). These metrics provide a 

comprehensive framework for assessing and comparing the predictive capabilities of various models. 

While traditional ML methods have achieved satisfactory results in some cases, recent advancements 

in deep learning, especially when coupled with optimization strategies, have demonstrated significant 

improvements in PD classification (Rashid et al., 2022). Machine learning (ML) has become an 

essential tool in modern data analysis, enabling efficient solutions for complex problems across various 

domains. In fields such as healthcare, finance, and engineering, ML models have demonstrated their 

ability to process large datasets, identify patterns, and make accurate predictions. However, the success 

of these models depends heavily on their evaluation, which relies on appropriate performance metrics. 

These metrics provide a quantitative framework to assess the effectiveness of models and ensure their 

reliability in real-world applications (Bishop, 2006). 

Popular machine learning algorithms such as Support Vector Machines (SVM), Random Forests (RF), 

and k-Nearest Neighbors (k-NN) are commonly used for classification and regression tasks. Their 

performance is often measured using metrics such as accuracy, precision, recall, F1-score, and the area 

under the curve (AUC). These metrics allow researchers to assess various aspects of model behavior, 

such as classification correctness, the ability to detect positive instances, and the trade-off between 

precision and recall (Fawcett, 2006). While accuracy is a straightforward measure of how often the 

model predicts correctly, it can be misleading in cases of class imbalance. Metrics like precision, recall, 

and F1-score provide a more nuanced understanding of model performance, particularly in datasets 

with skewed distributions (Sokolova & Lapalme, 2009). For instance, in medical applications, where 

false negatives can have severe consequences, recall is a critical metric. Conversely, precision becomes 

crucial in contexts where false positives must be minimized. Recent advancements in machine learning 

emphasize not only algorithmic development but also optimization techniques to enhance model 

performance. Techniques like hyperparameter tuning, regularization, and ensemble learning have been 

widely adopted to address overfitting, improve generalization, and achieve robust performance across 

diverse datasets (Goodfellow et al., 2016). By combining effective algorithms with comprehensive 

evaluation metrics, researchers can ensure that machine learning models deliver reliable and actionable 

insights. 
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Contributes to advancing AI-based methods for PD diagnostics by examining the strengths and 

limitations of different computational approaches. It emphasizes the transformative role of deep 

learning optimization in enhancing diagnostic accuracy and clinical applicability. Machine learning 

(ML) techniques have become indispensable in data-driven problem-solving, offering diverse 

algorithms tailored to different types of data and tasks. Among these, linear regression, a foundational 

statistical method, is widely used for predictive modeling. It provides a straightforward approach to 

establishing relationships between dependent and independent variables, making it suitable for tasks 

requiring interpretability and simplicity (Montgomery et al., 2021). However, linear regression 

assumes a linear relationship, which can limit its performance on complex datasets. 

Data mining serves as a powerful tool for analyzing large, pre-existing databases to uncover previously 

unknown and valuable insights. In the context of chronic disease data, each row represents a specific 

location, while the attributes encompass topics, questions, data values, and confidence limits (both low 

and high). Data is utilized for training and testing purposes across five classification algorithms. This 

paper evaluates the performance and accuracy of five decision tree algorithms, demonstrating that the 

M5P decision tree approach outperforms the others in building an effective predictive model (Rajesh 

et al., 2021). 

Each row is an instance characterized by attribute values such as Outlook, Temperature, Humidity, 

Windy, and the Boolean PlayGolf class variable. The dataset is used for training purposes and analyzed 

using seven classification algorithms. This study evaluates the performance and accuracy of various 

decision tree-based approaches implemented in the WEKA tool to identify key parameters of the tree 

structure. The algorithms include J48, Random Tree (RT), Decision Stump (DS), Logistic Model Tree 

(LMT), Hoeffding Tree (HT), Reduced Error Pruning Tree (REP), and Random Forest (RF). 

Experimental results show that among these algorithms, the Random Tree achieves the highest 

accuracy of 85.714%  (Rajesh et al., 2021). 

Advanced ML models such as Multi-Layer Perceptrons (MLPs), Random Forests, REP Trees, and 

Random Trees have gained prominence to address nonlinear relationships and capture intricate 

patterns. MLP, a type of artificial neural network, excels in handling nonlinear data by leveraging 

multiple interconnected layers to learn hierarchical representations (LeCun et al., 2015). Meanwhile, 

Random Forests, a robust ensemble learning method, combine multiple decision trees to improve 

accuracy and reduce overfitting. Their ability to handle both regression and classification tasks has 

made them a popular choice in various applications (Breiman, 2001). Decision tree-based methods like 

REP Tree and Random Tree also play significant roles in machine learning. REP Tree employs reduced 

error pruning to enhance generalization, making it efficient for large datasets (Witten et al., 2017). In 

contrast, Random Tree introduces randomness in feature selection during tree construction, fostering 

diversity in predictions and improving robustness. These models offer flexibility and interpretability, 

making them particularly useful in scenarios requiring transparent decision-making. The effectiveness 

of these algorithms is typically evaluated using performance metrics such as mean squared error (MSE) 

for regression and accuracy, precision, recall, and F1-score for classification tasks. By applying these 

models and metrics to diverse datasets, researchers can identify the most suitable approaches for 

specific problems, ensuring reliable and actionable outcomes. 

3.0  Backgrounds and Methodologies  

Parkinson’s Disease (PD) poses considerable challenges for early detection due to its diverse and 

intricate nature. Addressing this complexity requires sophisticated computational methods capable of 

effectively processing multimodal datasets, including clinical, vocal, and movement-related data. In 

response, we introduce an innovative deep learning model designed specifically for PD classification, 

coupled with a novel optimization technique aimed at enhancing its accuracy and generalization. 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 3s (2025) 

 

107 
https://internationalpubls.com 

3.1  Proposed Deep Learning Model CNNBiGRU-DGR 

3.1.1 Proposed Deep Learning CNNBiGRU 

The proposed model, named CNN-BiGRU, leverages the combined strengths of Convolutional Neural 

Networks (CNNs) and Bidirectional Gated Recurrent Units (BiGRUs). CNNs are highly effective in 

capturing spatial features from structured inputs, while BiGRUs excel at learning temporal 

dependencies from sequential datasets. This hybrid approach ensures the model is versatile and capable 

of processing a wide range of static and dynamic PD-related data (LeCun et al., 2015; Cho et al., 2014). 

3.1.2 Innovative Optimization Technique 

To further improve the model's performance, we propose Dynamic Gradient Regularization (DGR). 

This optimization method introduces a flexible regularization term in the loss function that adapts 

based on the magnitude of gradients. By reducing the sensitivity to noisy gradients, DGR ensures 

smooth convergence and more effective learning. Unlike conventional optimizers such as Adam, DGR 

fine-tunes learning rates layer-by-layer, optimizing the training process and reducing convergence time 

(Kingma & Ba, 2015). 

3.1.3 Experimental Validation 

The effectiveness of the Hybrid CNN-BiGRU and DGR optimization technique was tested on a diverse 

dataset containing clinical, vocal, and movement-related features. The preprocessing steps included 

normalization and advanced feature engineering techniques, such as spectral analysis for vocal data 

and wavelet transformations for movement signals (Sakar et al., 2013). The model's performance was 

assessed using metrics like accuracy, precision, recall, F1-score, and area under the curve (AUC).  

3.1.4 Algorithms for CNNBiGRU-DGR 

1. Dual Input Processing: Simultaneously processes clinical and sequential data, such as vocal 

patterns and accelerometer readings, to enhance its analytical capability. 

2. Attention Mechanism: A post-BiGRU attention layer emphasizes the most critical temporal 

features, improving interpretability and prediction outcomes. 

3. Adaptive Dropout: Dynamically adjusts dropout rates during training to minimize overfitting 

and improve performance. 

4. Gradient Smoothing: Stabilizes high-gradient updates to reduce overfitting and ensure steady 

training. 

5. Layer-Specific Adjustments: Tailors learning rates for individual layers to maximize 

performance in complex architectures. 

6. Early Stopping Integration: Complements early stopping techniques to avoid overfitting 

while preserving high accuracy. 

4.0 Experimental Results  

The dataset used for this study was obtained from the publicly available Kaggle repository. The 

Parkinson's dataset comprises 24 features, encompassing various categories of data such as name, 

MDVP:Fo(Hz), MDVP:Fhi(Hz), MDVP:Flo(Hz), MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP, 

MDVP:PPQ, Jitter:DDP, MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, 

MDVP:APQ, Shimmer:DDA, NHR, HNR, RPDE, DFA, spread1, spread2, D2, PPE, and status 

(kaggle). The dataset is composed of a range of biomedical voice measurements with Parkinson's 

disease (PD). The attribute details are outlined as follows: 
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1. Name: ASCII representation of the subject's name and recording identifier. 

2. MDVP:Fo(Hz): Mean fundamental frequency of the voice. 

3. MDVP:Fhi(Hz): Maximum fundamental frequency of the voice. 

4. MDVP:Flo(Hz): Minimum fundamental frequency of the voice. 

5. Jitter Measures: Includes MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, 

and Jitter:DDP, which represent various metrics of fundamental frequency variation. 

6. Shimmer Measures: Includes MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3, 

Shimmer:APQ5, MDVP:APQ, and Shimmer:DDA, reflecting amplitude variation in the voice. 

7. NHR and HNR: Metrics quantifying the ratio of noise to tonal components in the voice signal. 

8. RPDE and D2: Nonlinear dynamical complexity measures of the signal. 

9. DFA: The fractal scaling exponent of the signal. 

10. Spread1, Spread2, PPE: Nonlinear measures representing variations in the fundamental 

frequency. 

11. Status: Health status indicator of the subject, where "1" represents Parkinson's Disease and "0" 

indicates a healthy condition. 

Table 1a. Parkinson's Dataset 
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104.4000 206.0020 77.9680 0.0063 0.0001 0.0032 0.0038 0.0095 0.0377 0.3810 0.0173 

171.0410 208.3130 75.5010 0.0046 0.0000 0.0025 0.0023 0.0075 0.0197 0.1860 0.0089 

146.8450 208.7010 81.7370 0.0050 0.0000 0.0025 0.0028 0.0075 0.0192 0.1980 0.0088 

155.3580 227.3830 80.0550 0.0031 0.0000 0.0016 0.0018 0.0048 0.0172 0.1610 0.0077 

162.5680 198.3460 77.6300 0.0050 0.0000 0.0028 0.0025 0.0084 0.0179 0.1680 0.0079 

197.0760 206.8960 192.0550 0.0029 0.0000 0.0017 0.0017 0.0050 0.0110 0.0970 0.0056 

199.2280 209.5120 192.0910 0.0024 0.0000 0.0013 0.0014 0.0040 0.0102 0.0890 0.0050 

198.3830 215.2030 193.1040 0.0021 0.0000 0.0011 0.0014 0.0034 0.0126 0.1110 0.0064 

202.2660 211.6040 197.0790 0.0018 0.0000 0.0009 0.0011 0.0028 0.0095 0.0850 0.0047 

203.1840 211.5260 196.1600 0.0018 0.0000 0.0009 0.0011 0.0028 0.0096 0.0850 0.0047 

 

Table 1b. Parkinson's Dataset 
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0.0225 0.0378 0.0520 0.0289 22.0660 0.5227 0.7379 -5.5718 0.2369 2.8464 0.2195 1 

0.0117 0.0187 0.0267 0.0110 25.9080 0.4186 0.7209 -6.1836 0.2263 2.5897 0.1474 1 

0.0114 0.0183 0.0265 0.0133 25.1190 0.3588 0.7267 -6.2717 0.1961 2.3142 0.1630 1 

0.0101 0.0166 0.0231 0.0068 25.9700 0.4705 0.6763 -7.1209 0.2798 2.2417 0.1085 1 

0.0106 0.0180 0.0238 0.0117 25.6780 0.4278 0.7238 -6.6357 0.2099 1.9580 0.1352 1 
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0.0068 0.0080 0.0169 0.0034 26.7750 0.4222 0.7414 -7.3483 0.1776 1.7439 0.0856 0 

0.0064 0.0076 0.0151 0.0017 30.9400 0.4324 0.7421 -7.6826 0.1733 2.1031 0.0685 0 

0.0083 0.0095 0.0192 0.0012 30.7750 0.4659 0.7387 -7.0679 0.1752 1.5123 0.0963 0 

0.0061 0.0072 0.0141 0.0007 32.6840 0.3685 0.7421 -7.6957 0.1785 1.5446 0.0561 0 

0.0061 0.0073 0.0140 0.0007 33.0470 0.3401 0.7419 -7.9650 0.1635 1.4233 0.0445 0 

 

Here is a comparative table summarizing performance metrics for Parkinson's Disease analysis using 

machine learning and deep learning approaches: 

Table 3. Performance metrics for Parkinson's Disease analysis using ML and DL 

Model/Algorithm Accuracy Precision Recall /Sensitivity Specificity F1-Score 

Linear Regression  86.56 84.21 87.42 85.85 85.52 

Random Tree 88.23 86.21 89.25 87.96 87.55 

REP Tree 91.24 90.77 92.65 90.41 91.42 

Random Forest 93.56 92.88 94.82 91.74 93.21 

MLP 94.42 93.17 95.56 92.85 94.21 

LSTM 95.85 94.14 95.96 93.56 94.52 

CNNBiGRU-DGR 98.15 97.18 99.22 96.41 98.29 

 

 
Figure 1. Accuracy of Parkinson's Disease 

analysis using ML and DL 

 
Figure 2. Precision and Recall of 

Parkinson's Disease analysis using ML and 

DL 

 
Figure 3. Specificity and F1-Score of Parkinson's Disease analysis using ML and DL 
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4.1 Prediction model using Linear Regression 

status =   -0.0026 * MDVP:Fo(Hz) +   -20.1221 * MDVP:Jitter(%) +    -28.2455 * Shimmer:APQ5 

+7.981  * MDVP:APQ +  9.0399 * Shimmer:DDA +  -1.8278 * NHR + -0.0159 * HNR + -0.9554 * 

PDE+ 0.1958 * spread1 + 0.6389 * spread2 + 0.1579 * D2 + 2.6353 

5.0 Results and Discussions  

The evaluation of Parkinson’s Disease classification using machine learning (ML) and deep learning 

(DL) techniques revealed notable variations in performance metrics across different algorithms. The 

results are presented in Table 3 and illustrated in Figures 3, 4, and 5 for clarity. Top-Performing 

Model: The CNN-BiGRU-DGR model emerged as the best-performing approach, achieving an 

accuracy of 98.15%, precision of 97.18%, recall of 99.22%, specificity of 96.41%, and an F1-Score of 

98.29%. These results underscore the effectiveness of integrating CNN and BiGRU with the Dynamic 

Gradient Regularization (DGR) method. 

Performance of Machine Learning Models: Conventional ML models, such as Random Forest and 

REP Tree, demonstrated strong outcomes with accuracy scores of 93.56% and 91.24%, respectively. 

Nonetheless, they were outperformed by DL models, especially when dealing with complex datasets. 

Advantages of Deep Learning: Advanced deep learning models like MLP and LSTM also achieved 

impressive metrics; however, the CNN-BiGRU-DGR model, with its hybrid architecture and 

optimization features, delivered the highest performance. 

• Figure 1: A bar chart depicting the accuracy of various ML and DL models, highlighting the 

superior performance of the CNN-BiGRU-DGR model. 

• Figure 2: A comparison of precision and recall across the algorithms, demonstrating the 

consistent and balanced performance of DL methods. 

• Figure 3: A graphical representation of specificity and F1-Score metrics, showcasing the 

robustness and reliability of the CNN-BiGRU-DGR model. 

The CNN-BiGRU-DGR model shows great promise in enhancing AI-based diagnostic tools for 

Parkinson’s Disease, leveraging its capability to process multimodal data effectively and apply 

advanced optimization methods. 

6.0 Conclusion 

This innovative Hybrid CNN-BiGRU model, augmented by the DGR optimization method, offers an 

effective approach for classifying Parkinson’s Disease. By integrating multimodal data processing with 

advanced optimization techniques, it demonstrates significant promise in enhancing AI-powered 

medical diagnostics and facilitating the early detection of PD. Deep learning models often achieve 

superior performance compared to traditional machine learning models across metrics such as 

accuracy, precision, recall, F1-score, and AUC, especially when working with large and complex 

datasets. However, machine learning models may remain advantageous in situations where data is 

limited or computational resources are restricted. Selecting the appropriate approach requires careful 

consideration of the dataset size, feature complexity, and the need to balance interpretability with 

performance. 
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