ISSN: 1074-133X Vol 32 No. 2s (2025) # **Prime Labeling of Bull Graph** #### Dr. M. Ganeshan Assistant Professor, PG and Research Department of Mathematics, Agurchand Manmull jain college, University of Madras, Tamilnadu, chennai India. Email: sivananthan21oct@gmail.com Abstract: Article History: Received: 27-09-2024 Accepted: 14-11-2024 Revised: 02-11-2024 Let G be a graph. A bijection f: $V \rightarrow \{1,2,...,|V|\}$ is called a prime labeling [3] if for each edge e = uv in E, we have GCD $\{f(u), f(v)\} = 1$. A graph that admits a prime labeling is said to be a prime graph. In this paper we show that bull graph admits Prime labeling in the context of variety graph operations namely duplication of vertex, fusion of vertices and Switching in Bull graph. **Keywords:** Prime labeling, Bull graph, Duplication, Fusion and Switching. ## 1. Introduction Graph labeling is one of the stimulating areas with plentiful applications in various fields. In this paper we consider simple and finite graphs only. The notion of prime labeling was introduced by Roger Entringer and was discussed in a paper by A. Tout (1982 P 365-368). This paper is organized as follows. In section 2 we provide the preliminary definitions. In section 3, we prove the main results of the paper, where we prove the graph obtained by duplicating arbitrary vertex of bull graph is a Prime graph, The graph obtained by Switching of any vertex in a bull graph is a Prime graph and we also prove that in a bull graph fusion of any arbitrary vertex with v_1 produces a Prime graph In section 4, we conclude the paper and also provide the insight for future work. For number theory concept refer [2]. # 2.PRELIMINARY DEFINITIONS Definition [7]-2.1. Duplication of a vertex v_i of a graph G produces a new graph G₁ by adding a vertex v'_i with $N(v'_i) = N(v_i)$. In other words, a vertex v'_i is said to be a duplication of v_i if all the vertices adjacent to v_i are now adjacent to v_i also. Definition [7]-2.2. Let u and v be two distinct vertices of a graph G. A new graph G₁ is constructed by fusing two vertices u and v by a single vertex w such that every edge incident to u and v is now incident with w in G_1 . Definition [7] -2.3. A vertex switching G_u in a graph G is obtained by taking a vertex u of G, removing all the edges incident to u and adding edges joining u to every non-adjacent vertex of u in G. Definition [5], -2.4. The Bull graph is a graph with 5 vertices and 5 edges consisting of a triangle with two disjoint pendant edges. ## 3.MAIN RESULTS *Theorem-3.1.* The graph obtained by duplicating arbitrary vertex of bull graph is a Prime graph. ISSN: 1074-133X Vol 32 No. 2s (2025) **Proof**: Figure - 1. Bull graph Case-1. Duplication of the vertex v_1 Let G_1 be the graph obtained by duplicating the vertex v_1 Define $$\mathcal{B}: V(G_1) \rightarrow \{1,2,3,\ldots,6\}$$ by $$\mathcal{B}(v_i) = i + 1$$, $1 \le i \le 5$ and $\mathcal{B}(v_i) = 1$ Evidently all the vertex labels are distinct For edges in G_1 G.C.D ($$\mathcal{B}(v_i)$$, $\mathcal{B}(v_{i+1})$) = 1, 1 \le i \le 4 G.C.D ($$\mathcal{B}(v_2)$$, $\mathcal{B}(v_4)$) = 1 G.C.D $$(\mathscr{B}(v_1), \mathscr{B}(v_2)) = 1$$ Clearly \mathcal{B} is a prime labeling on G_I . Hence G_I is a prime graph. Figure - 2. Prime labeling of duplication of vertex v_1 in Bull graph Case-2. Duplication of the vertex v_2 Let G_2 be the graph obtained by duplicating the vertex v_2 Define $$\mathcal{B}: V(G_2) \rightarrow \{1,2,3,\ldots,6\}$$ by $$\mathcal{B}(v_i) = i + 1$$, $1 \le i \le 5$ and $\mathcal{B}(v_2) = 1$ ISSN: 1074-133X Vol 32 No. 2s (2025) clearly all the vertex labels are distinct For edges in G_2 G.C.D $$(\mathcal{B}(v_i), \mathcal{B}(v_{i+1})) = 1, 1 \le i \le 4$$ G.C.D ($$\mathcal{B}(v_2)$$, $\mathcal{B}(v_4)$) = 1 G.C.D $$(\mathscr{B}(v_2), \mathscr{B}(v_1)) = I$$ G.C.D $$(\mathcal{B}(v_2), \mathcal{B}(v_3)) = I$$ G.C.D $$(\mathscr{B}(v_2), \mathscr{B}(v_4)) = I$$ Therefore \mathcal{B} is a prime labeling on G_2 . Hence G_2 is a prime graph. Figure - 3. Prime labeling of duplication of vertex v_2 in Bull graph Case-3. Duplication of the vertex v_3 Let G_3 be the graph obtained by duplicating the vertex v_3 Define $$\mathcal{B}: V(G_3) \rightarrow \{1,2,3,\ldots,6\}$$ by $$\mathscr{B}(v_i) = i + 1, \ 1 \le i \le 5 \text{ and } \mathscr{B}(v_3) = 1$$ clearly all the vertex labels are distinct For edges in G_3 G.C.D $$(\mathcal{B}(v_i), \mathcal{B}(v_{i+1})) = 1, 1 \le i \le 4$$ G.C.D ($$\mathcal{B}(v_2)$$, $\mathcal{B}(v_4)$) = 1 G.C.D $$(\mathscr{B}(v_3), \mathscr{B}(v_2)) = 1$$ G.C.D ($$\mathscr{B}(v_3)$$, $\mathscr{B}(v_4)$) = 1 Thus \mathcal{B} is a prime labeling on G_3 . Hence G_3 is a prime graph. ISSN: 1074-133X Vol 32 No. 2s (2025) Figure - 4. Prime labeling of duplication of vertex v_3 in Bull graph Case-4. Duplication of the vertex v_4 Let G_4 be the graph obtained by duplicating the vertex v_4 Define $$\mathcal{B}: V(G_4) \rightarrow \{1,2,3,\ldots,6\}$$ by $$\mathscr{B}(v_i) = i + 1, \ 1 \le i \le 5 \text{ and } \mathscr{B}(v'_4) = 1$$ obviously all the vertex labels are distinct For edges in G_4 G.C.D ($$\mathcal{B}(v_i)$$, $\mathcal{B}(v_{i+1})$) = $l, l \le i \le 4$ G.C.D ($$\mathcal{B}(v_2)$$, $\mathcal{B}(v_4)$) = 1 G.C.D $$(\mathscr{B}(v_4), \mathscr{B}(v_2)) = 1$$ G.C.D $$(\mathscr{B}(v_4), \mathscr{B}(v_3)) = 1$$ G.C.D $$(\mathscr{B}(v_4), \mathscr{B}(v_5)) = 1$$ Clearly \mathcal{B} is a prime labeling on G_4 . Hence G_4 is a prime graph. Figure - 5. Prime labeling of duplication of vertex v_4 in Bull graph Case-5. Duplication of the vertex v_5 ISSN: 1074-133X Vol 32 No. 2s (2025) Let G_5 be the graph obtained by duplicating the vertex v_5 Define $\mathcal{B}: V(G_5) \rightarrow \{1,2,3,\ldots,6\}$ by $$\mathcal{B}(v_i) = i + 1$$, $1 \le i \le 5$ and $\mathcal{B}(v_5) = 1$ Evidently all the vertex labels are distinct For edges in G_5 G.C.D $$(\mathcal{B}(v_i), \mathcal{B}(v_{i+1})) = 1, 1 \le i \le 4$$ G.C.D ($$\mathcal{B}(v_2)$$, $\mathcal{B}(v_4)$) = 1 G.C.D $$(\mathscr{B}(v_5), \mathscr{B}(v_4)) = 1$$ Clearly \mathcal{B} is a prime labeling on G_5 . Hence G_5 is a prime graph. Figure - 6. Prime labeling of duplication of vertex v_5 of Bull graph Thus, in all the cases the graph obtained by duplication of any arbitrary vertex of bull graph is a Prime graph. *Theorem-3.2*. The graph obtained by Switching of any vertex in a bull graph is a Prime graph. *Proof.* Figure - 7. Bull graph ISSN: 1074-133X Vol 32 No. 2s (2025) Case-1. switching the vertex v_1 Let G_1 be the graph obtained by switching the vertex v_1 Define $\wp: V(G_1) \to \{1,2,3,....,5\}$ by $$\wp(v_1) = 1$$, $\wp(v_2) = 5$, $\wp(v_3) = 4$, $\wp(v_4) = 3$, $\wp(v_5) = 2$ Evidently all the vertex labels are distinct For edges in G_1 G.C.D $$(\wp(v_i), \wp(v_{i+1})) = 1, 2 \le i \le 4$$ G.C.D $$(\wp(v_2), \wp(v_4)) = 1$$ G.C.D $$(\wp(v_1), \wp(v_3)) = 1$$ G.C.D $$(\wp(v_1), \wp(v_4)) = 1$$ G.C.D $$(\wp(v_1), \wp(v_5)) = 1$$ Thus \wp is a prime labeling on G_1 . Hence G_1 is a prime graph. Figure - 8. Prime labeling of switching of vertex v_1 in Bull graph Case-2. switching the vertex v_2 Let G_2 be the graph obtained by switching the vertex v_2 Define $\wp: V(G_2) \to \{1,2,3,....,5\}$ by $$\wp(v_1) = 1$$, $\wp(v_2) = 5$, $\wp(v_3) = 4$, $\wp(v_4) = 3$, $\wp(v_5) = 2$ clearly all the vertex labels are distinct For edges in G_2 G.C.D $$(\wp(v_i), \wp(v_{i+1})) = 1, 3 \le i \le 4$$ G.C.D ($$\wp(v_2)$$, $\wp(v_5)$) = 1 Hence \wp is a prime labeling on G_2 . Thus G_2 is a prime graph. ISSN: 1074-133X Vol 32 No. 2s (2025) Figure - 9. Prime labeling of switching of vertex v_2 in Bull graph Case-3. switching the vertex v_3 Let G_3 be the graph obtained by switching the vertex v_3 Define $$\wp: V(G_3) \to \{1,2,3,....,5\}$$ by $$\wp(v_1) = 5$$, $\wp(v_2) = 4$, $\wp(v_3) = 1$, $\wp(v_4) = 3$, $\wp(v_5) = 2$ Visibly all the vertex labels are distinct For edges in G_3 G.C.D $$(\wp(v_1), \wp(v_2)) = 1$$ G.C.D $$(\wp(v_1), \wp(v_3)) = 1$$ G.C.D ($$\wp(v_2)$$, $\wp(v_4)$) = 1 G.C.D $$(\wp(v_4), \wp(v_5)) = 1$$ G.C.D $$(\wp(v_3), \wp(v_5)) = 1$$ Therefore \wp is a prime labeling on G_3 . Hence G_3 is a prime graph. Figure - 10. Prime labeling of switching of vertex v_3 in Bull graph Case-4. switching the vertex v_4 Let G_4 be the graph obtained by switching the vertex v_4 Define $$\wp: V(G_4) \to \{1,2,3,....,5\}$$ by $$\wp(v_1) = 1, \wp(v_2) = 5, \wp(v_3) = 4, \wp(v_4) = 3, \wp(v_5) = 2$$ Clearly all the vertex labels are distinct ISSN: 1074-133X Vol 32 No. 2s (2025) For edges in G_4 G.C.D $$(\wp(v_i), \wp(v_{i+1})) = 1, 1 \le i \le 2$$ G.C.D $$(\wp(v_1), \wp(v_4)) = 1$$ Hence \wp is a prime labeling on G_4 . Therefore G_4 is a prime graph Figure - 11. Prime labeling of switching of vertex v_4 in Bull graph Case-5. switching the vertex v_5 Let G_5 be the graph obtained by switching the vertex v_5 Define $$\wp: V(G_5) \to \{1,2,3,....,5\}$$ by $$\wp(v_1) = 2$$, $\wp(v_2) = 3$, $\wp(v_3) = 4$, $\wp(v_4) = 5$, $\wp(v_5) = 1$ Visibly all the vertex labels are distinct For edges in G_5 G.C.D $$(\wp(v_i), \wp(v_{i+1})) = 1, 1 \le i \le 3$$ G.C.D $$(\wp(v_2), \wp(v_4)) = 1$$ G.C.D $$(\wp(v_1), \wp(v_5)) = 1$$ G.C.D $$(\wp(v_2), \wp(v_5)) = 1$$ G.C.D $$(\wp(v_3), \wp(v_5)) = 1$$ Hence \wp is a prime labeling on G_5 . So G_5 is a prime graph Figure - 12. Prime labeling of switching of vertex v_5 in Bull graph ISSN: 1074-133X Vol 32 No. 2s (2025) Thus, in all the cases the graph obtained by Switching of any arbitrary vertex of bull graph is a Prime graph. *Theorem-3.3.* In a bull graph fusion of any arbitrary vertex with v_1 produces a Prime graph. Proof. Figure - 13. Bull graph Case-1. Fusion of v_2 with v_1 Let G_1 be the graph obtained by fusion of v_2 with v_1 Define $$\mathcal{U}: V(G_1) \to \{1,2,3,4\}$$ by $$U(v_1 = v_2) = 1$$, $U(v_3) = 2$, $U(v_4) = 3$, $U(v_5) = 4$ Evidently all the vertex labels are distinct For edges in G_1 G.C.D $$(\mathcal{U}(v_i), \mathcal{U}(v_{i+1})) = 1, 3 \le i \le 4$$ G.C.D ($$U(v_1 = v_2)$$, $U(v_3)$) = 1 G.C.D ($$\mathcal{U}(v_1 = v_2)$$, $\mathcal{U}(v_4)$) = 1 Hence \mathcal{U} is a prime labeling on G_1 . So G_1 is a prime graph Figure - 14. Prime labeling of fusion of vertices v_2 with v_1 in Bull graph Case-2. Fusion of v_3 with v_1 ISSN: 1074-133X Vol 32 No. 2s (2025) Let G_2 be the graph obtained by fusion of v_3 with v_1 Define $\mathcal{U}: V(G_1) \rightarrow \{1,2,3,4\}$ by $$U(v_1 = v_3) = 1$$, $U(v_2) = 2$, $U(v_4) = 3$, $U(v_5) = 4$ Clearly all the vertex labels are distinct For edges in G_2 G.C.D ($$\mathcal{U}(v_1 = v_3)$$, $\mathcal{U}(v_2)$) = 1 G.C.D ($$\mathcal{U}(v_1 = v_3)$$, $\mathcal{U}(v_4)$) = I G.C.D ($$\mathcal{U}(v_2)$$, $\mathcal{U}(v_4)$) = 1 G.C.D ($$\mathcal{U}(v_4)$$, $\mathcal{U}(v_5)$) = 1 Hence \mathcal{U} is a prime labeling on G_2 . Therefore G_2 is a prime graph Figure - 15. Prime labeling of fusion of vertices v_3 with v_1 in Bull graph Case-3. Fusion of v_4 with v_1 Let G_3 be the graph obtained by fusion of v_4 with v_1 Define $\mathcal{U}: V(G_1) \rightarrow \{1,2,3,4\}$ by $$U(v_1 = v_4) = 1$$, $U(v_2) = 2$, $U(v_3) = 3$, $U(v_5) = 4$ Evidently all the vertex labels are distinct For edges in G_3 G.C.D ($$\mathcal{U}(v_1 = v_4)$$, $\mathcal{U}(v_2)$) = 1 G.C.D ($$\mathcal{U}(v_1 = v_4)$$, $\mathcal{U}(v_3)$) = 1 G.C.D ($$\mathcal{U}(v_1 = v_4)$$, $\mathcal{U}(v_5)$) = I G.C.D $$(\mathcal{U}(v_2), \mathcal{U}(v_3)) = 1$$ Hence \mathcal{U} is a prime labeling on G_3 . So G_3 is a prime graph ISSN: 1074-133X Vol 32 No. 2s (2025) Figure - 16. Prime labeling of fusion of vertices v_4 with v_1 in Bull graph Case-4. Fusion of v_5 with v_1 Let G_4 be the graph obtained by fusion of v_5 with v_1 Define $\mathcal{U}: V(G_I) \to \{1,2,3,4\}$ by $$U(v_1 = v_5) = 4$$, $U(v_2) = 3$, $U(v_3) = 2$, $U(v_4) = 1$ Obviously all the vertex labels are distinct For edges in G_4 G.C.D ($$\mathcal{U}(v_2)$$, $\mathcal{U}(v_3)$) = 1 G.C.D ($$\mathcal{U}(v_2)$$, $\mathcal{U}(v_4)$) = 1 G.C.D ($$\mathcal{U}(v_3)$$, $\mathcal{U}(v_4)$) = 1 G.C.D ($$\mathcal{U}(v_1 = v_5)$$, $\mathcal{U}(v_2)$) = 1 G.C.D ($$\mathcal{U}(v_1 = v_5)$$, $\mathcal{U}(v_4)$) = 1 Thus \mathcal{U} is a prime labeling on G_4 . Hence G_4 is a prime graph. Figure - 17. Prime labeling of fusion of vertices v_5 with v_1 in Bull graph ISSN: 1074-133X Vol 32 No. 2s (2025) Thus, in all the cases the graph obtained by fusion of any arbitrary vertex to v_I of bull graph is a Prime graph. ## 4.CONCLUSION AND FUTURE WORK In this paper we have proved that bull graph admits Prime labeling in the context of graph operations namely duplication, fusion and switching. There exist many such graphs that admit Prime labeling. An investigation to identify such graphs can be considered as future work. #### REFRENCES - [1] Ashokkumar. S, and Maragathavalli. S,(2015), *Prime Labeling of Some Special Graphs*, vol. 11, no.1, ISOR Journal of Mathematics, pp. 01-05. - [2] Burton, D. M (1980) Elementary number theory, Second Edition, Wm. C. Brown Company publishers, - [3] Fu, H, Huang, K. (1994). On prime labelings. Discrete Math. 127(1–3): 181–186. - [4] Gallian, J. (2019). A dynamic survey of graph labeling. Electron. J. Combin.https://www.combinatorics.org/ojs/index.php/eljc/article/viewFile/DS6/pdf - [5] Ganeshan M (2022), Sum Divisor cordial Labeling of almost complete bipartite graph and Bull graph, A Journal Of Composition Theory, ISSN: 0731-6755, Volume XV, Issue VIII, pp.120-124. - [6] Keerthi Kamal Adusumilli, Member, IAENG, *Odd Even Based Cryptography*, 36:1, IJAM_36_1_12 Advance Online publication:1 February 2007, ISSN: 1992-9986 (online version); - [7] Meena. S and Vaithilingam. K (2012), *Prime labeling for some fan related graphs*, International Journal of Engineering Research & Technology (IJERT) Vol. 1, Issue 9. - [8] Tout, A ,Dabboucy, A.N and Howalla K. (1982) Prime labeling of graphs. Nat. Acad. Sci letter 11 365-368. - [9] Vaidya, S. K and Kanmani, K.K (2010), *Prime Labeling for some Cycle Related Graphs*, Journals of Mathematics Research Vol.2. No.2., 98-104.