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Abstract: 

This study concerns with investigation of Pure and Weakly pure elements of  

lattice modules. An element N of M is called pure, if aN = N ∧ a1M , for each a 

of L. An element K of M is called weakly pure, if aN = N ∧ a1M , for each 

idempotent element a of L. Also, this study obtains the relation between pure, 

idempotent and multiplication elements of lattice modules. 
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1. Introduction 

A lattice L is called as a multiplicative lattice, if L is complete with commutative, associative 

and join distributive binary operation called as multiplication. An element 1L of L act as a identity 

with respect to multiplication.  For a1, a2 ∈ L, (a1 : a2) = ∨{x ∈ L|a2x ≤ a1}.  Element p  ∈ L  

such that p ≠1L  is  prime,  if  p1.p2  ≤ p  implies  p1  ≤ p  or  p2  ≤ p.   The radical of a ∈ Lis  denoted  

by √𝑎  and  is  defined  as  ∨{x  ∈ L|xk  ≤ a,  for  some  k  ∈ Z+} =  ∧{p  ∈ L|a  ≤ p and p is a 

prime element}. An element c ∈ L is called compact, if for t ∈ I(I is an index set), c ≤ ∨tat 

⇒ c ≤ ⋁𝑖=0
𝑛 𝑎𝑡𝑖

, for some n ∈ Z+.  If each element of L is a join of compact elements of L, 

then L is called a CG-lattice. An element p ∈ L is called meet [join] principal, if a1 ∧ a2p=((a1 

: p) ∧ a2)p [((a1p ∨ a2) : p) = a1 ∨ (a2 : p)], ∀ a1, a2 ∈ L. If p ∈ L is both meet and join principal, 

then p is called principal element. If every element of L is a join of principal elements of L, then 

L is called a PG-lattice. An element p ∈ L is said to be weak meet [join] principal, if a ∧ p = 

p(a : p) [a ∨ (0L : p) = (pa : p)], ∀ a ∈ L. 

An element a ∈ L is called semiprime or radical, if √𝑎 = a. If a ∈ L such that a2 = a, 

then a is called an idempotent.  Let c ∈ L.  If for each a ∈ L such that a ≤ c there exists an 

element d ∈ L such that a = cd, then c is called multiplication element. Note that, a ∈ L is a  

multiplication element if and only if it is weak meet principal element in L. 

A complete lattice M is called a lattice module (L-module), where L is a multiplicative 

lattice, if the multiplication aN ∈ M , for a ∈ L and N ∈ M satisfies,(ab)N = a(bN ); for all a, 
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b in L and for all N in M . 

1. (∨α lα)( ∨β Nβ) = (∨αβ lαNβ); for all lα in L and for all Nβ in M . 

2. 1LN = N ; for 1L ∈ L and N ∈ M . 

3. 0LN = 0M ; for 0L ∈ L and N ∈ M . 

Note that 0M  is a least and 1M  is a greatest element of M. For N1,N2  ∈ M , (N1  : N2) =  

∨{x  ∈ L|xN2  ≤ N1}. For N ∈ M and a ∈ L, (N:  a) = ∨{K  ∈ M |aK  ≤ N }.   An element 

N∈ M is called compact, if for t ∈ I(I is an index set), N ≤ ∨tBt ⇒ N≤ ∨𝑖=0
𝑛 𝐵𝑡𝑖

, for some n 

∈ Z+. If each element of M is a join of compact elements of M, then M is called a CG- lattice 

module. An element N ∈ M is called meet [join] principal, if (a ∧ (B : N ))N =aN ∧ B [(a ∨ (B : 

N )=((aN ∨ B) : N )], ∀ a ∈ L and B ∈ M. If B ∈ M is both meet and join principal, then B is called 

principal element. If each element of M is a join of principal elements of M, then M is called a 

PG-lattice module. An element N ∈ M is said to be weak meet [join] principal,  if (B : N )N = 

B ∧ N [(aN : N ) = a ∨ (0M : N )], ∀ a ∈ L and B ∈ M . 

An element N ∈ M is said to be proper, if N < 1M. If N ∈ M such that N = (N  : 1M )N, then N is an 

idempotent element of M . Element N ∈ M is said to be multiplication, if for every  K ∈ M with 

K ≤ N there exists an element a ∈ L such that K = aN. It is also noted that,  N ∈ M is a 

multiplication element if and only if N is weak meet principal in M .  

A L−lattice module M is called second, if for each a ∈ L, a1M = 1M or a1M = 0M. A L−lattice 

module M is called secondary, if for each a ∈ L, a1M = 1M or an1M = 0M for some n>0.  

If annM = (0M : 1M ) = 0L, then M is called faithful L−module. A L−module M is called 

torsion-free, whenever aK = 0M implies K = 0M or a = 0L, for any a ∈ L and K ∈ M.  A 

L−module M is multiplication, if for each element N ∈ M there exists a ∈ L such that  N 

= a1M. Note that, L−module M is a multiplication if and only if N = (N : 1M )1M for all  N 

∈ M (see [4]). 

For N ∈ M, [N, 1M ] is a set of all K ∈ M such that N ≤ K ≤ 1M. Note that, [N, 1M ]  is a  L-lattice  

module  with  multiplication a ◦ K = aK ∨ N, where a ∈ L and K ∈ M such that N ≤ K. 

This study aims the generalization of some important results studied in [1], [2] for submodules 

of module over commutative ring to the lattice modules over multiplicative lattices and examine 

the concepts in multiplicative lattices and multiplication lattice modules. 

Remark 1.1. Let M be a multiplication lattice module and N a element of M. If (N : 1M )  is 

an idempotent, then N = (N : 1M )1M = (N : 1M )21M = (N : 1M )N , and N is idempotent in 

M . Conversely, if M is a CG and faithful multiplication L-module with N is idempotent in  

M, then N = (N : 1M )1M = (N : 1M )N, and hence N = (N : 1M )21M = (N : 1M )1M, 

which shows that (N : 1M )2 = (N : 1M ) is an idempotent. 

Further, for more information on modules, multiplicatice lattices, lattice modules, the reader may 

refer to [3], [7], [8], [9], [10]. 
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2. Pure Element 

We begin this section with the following definitions: 

Definition 2.1. Let L be a multiplicative lattice and c ∈ L. c is said to be a multiplication 

element, if for every element a of L such that a ≤ c there exists an element d ∈ L such that   a 

= cd. [5]. 

Definition 2.2. [5] Let L be a multiplicative lattice and M a lattice L-module. N ∈ M is said 

to be a multiplication element, if for every element K of M such that K ≤ N there exists an 

element a ∈ L such that K = aN.  

Definition 2.3. Let L be a multiplicative lattice and M a lattice L-module. N ∈ M is said to 

be a idempotent element in M, if N = (N : 1M )N. 

Proposition 2.4. Let L be a CG-lattice, M be a nonzero L-lattice module and 0M ≠ N is pure 

element of M. If M is p-secondary lattice module, then [N, 1M] and [0M, N] are both p-secondary 

lattice modules.               

Proof. see [6], Proposition 13. 

Proposition 2.5. Let L be a domain. If M is a multiplication second L-module, then every 

element in M is pure. 

Proof. Let N be any element of M. Since M is a multiplication second L-module, so M is 

either divisible or torsion [6]. If  M is divisible, then a1M = 1M , for  every 0L ≠ a ∈ L. So aN = N 

= N ∧ a1M, since M is multiplication L-module. If M is torsion, then a1M = 0M, for every 0L 

≠ a ∈ L. So, aN = 0M = N ∧ a1M. 

Lemma 2.6. Let M be a multiplication L−module, and 0M ≠ N be a pure element of M. 

Then M is a p-second lattice module if and only if [0M , N ] and [N, 1M ] are both p-second lattice 

modules. 

Proof. see [6], Proposition 14.         

Lemma 2.7. Let M be a faithful multiplication L−module. If N is a pure element of M, then 

N is multiplication and is idempotent in M. 

Proof. Let K be a element of M. Then K = (K : 1M )1M . Since N is a pure element of M,  

we have, (K :  N )N  = N ∧ (K :  N )1M  ≥ N ∧ (K :  1M )1M = N ∧ K ≥ (K : N )N, so that (K 

: N )N = K ∧ N ⇒ N a weak meet principal element in M, and N is multiplication. Since N is 

pure in M, we have that (N : 1M )N = N ∧ (N : 1M )1M  = N, and hence N  is idempotent in M . 

Lemma 2.8. Let M be a multiplication L−module. If N is a pure element of M, then K = 

(N : 1M )K and (K : N )N = (K : 1M )N, for each K of M. 

Proof.  By Lemma 2.7, N is multiplication and is idempotent in M.  Let K ≤ N, then K = (K : 

N )N = (K : N )(N : 1M )N = (N : 1M )K. Also, for K ≤ N , (K : N )N = (K : N )(N : 1M 

)N ≤ (K : 1M )N ≤ (K : N )N , so that (K : N )N = (K : 1M )N .        

Lemma 2.9. Let M be a faithful multiplication L−module. If N is a pure element of M, then 

a(N : 1M ) = a ∧ (N : 1M ), for every a in L. 
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Proof. Since N is a pure element of M, so aN = N ∧ a1M.  Hence  (aN  : 1M ) = ((N ∧ a1M ) : 1M ) 

= (N : 1M ) ∧ (a1M : 1M ) = (N : 1M ) ∧ a. We need to show that (aN : 1M ) = a(N : 1M ). 

Obviously, a(N : 1M ) ≤ (aN : 1M ).  Conversely, let x ≤ (aN  : 1M ).  Then x1M ≤ aN = a(N : 

1M )1M. Thus x ≤ a(N : 1M ), and hence (aN : 1M ) ≤ a(N : 1M ).        

Lemma 2.10. Let M be a faithful multiplication L−module. If a(N : 1M) = a ∧ (N : 1M), for 

every a of L, then N is multiplication and is idempotent in M. 

Proof. Assume a(N : 1M) = a ∧ (N : 1M ), for all a of L. Take a = (N : 1M ). Then (N : 

1M )
2 = (N : 1M ) and hence (N : 1M )  is an idempotent element of L. Hence N = (N : 1M )1M = (N 

: 1M )
21M = (N : 1M )(N : 1M )1M = (N : 1M)N, and hence N is idempotent in M. To prove that 

N is multiplication, let K be any element of M. Let a = (K : 1M). Then ((K ∧ N ) : 1M) = 

(K : 1M ) ∧ (N : 1M ) = (K : 1M )(N : 1M ) ≤ (K : N)(N : 1M), and hence K ∧ N = ((K 

∧ N) : 1M )1M ≤ (K : N)(N : 1M )1M  ≤ (K : N )N ≤ K ∧ N, so that K ∧ N = (K : N )N and 

N is multiplication. This completes the proof of the theorem.       

Theorem 2.11. Let L be a CG-multiplicative lattice and M be a multiplication L-module. 

For N, K in M and a in L. 

4. If a is pure in L and N pure in M, then aN is pure in M. In particular, if a is pure 

in L, then a1M is a pure element of M. 

5. If K is pure in N and N pure in M, then K is pure in M. 

6. Let K ∨ N be a multiplication element.  If each of K and N is pure in M, then K ∨ N 

and K ∧ N are pure in M. 

Proof. 1 :⇒ Let b ∈ L. We show that, b(aN) = aN ∧ b1M. Assume that, L is local multiplicative 

lattice. Since a is a pure in L, then a = 0L or a = 1L. If a = 0L, then we are through. If a = 1L, 

then the purity of N implies that b(aN ) = bN = N ∧ b1M = aN ∧ b1M . 

2:⇒ Let b ∈ L. Then bK = K ∧ bN and bN = N ∧ b1M and hence, bK = (K ∧ N ) ∧ b1M = 

K ∧ b1M , since K ≤ N . So K is pure in M . 

3 :⇒ Given K  and  N  are  pure  in  M ,  aK  = K ∧ a1M  and  aN  = N ∧ a1M .  So  aK ∧ aN  = 

(K ∧ N ) ∧ a1M and a(K ∨ N ) = (K ∧ a1M ) ∨ (N ∧ a1M ). Since K ∨ N is multiplication, so 

a(K ∧ N ) = aK ∧ aN and (K ∨ N ) ∧ a1M = (K ∧ a1M ) ∨ (N ∧ a1M ) and this shows that K ∧ N 

and K ∨ N are pure elements of M .         

In the following theorem we give a relation between pure elements, multiplication elements and 

idempotent elements. 

Theorem 2.12. Let L be a CG-multiplicative lattice and M be a faithful multiplication L-

module such that 1M compact. For N in M, the following are equivalent: 

1. N is a pure element of M. 

2. N is multiplication and is idempotent in M. 

3. (N : 1M ) = a ∧ (N : 1M ), for every a ∈ L. 

Proof. 1 ⇒ 2 : Assume that N is a pure element of M . Let K be a element of M. We will 
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show that, N ∧ K = (K : N )N . Since M is multiplication, K = (K : 1M )1M . Since N is a 

pure element of M, so we have, (K : N )N = N ∧ (K : N )1M . Now (K : N )N = N ∧ (K : N 

)1M  ≥ N ∧ (K : 1M )1M  = N ∧ K ≥ (K : N )N. Hence, we get (K : N )N = K ∧ N. This implies 

that N is a multiplication in M. Since N is pure element, so we have (N : 1M )N = N ∧ (N : 

1M )1M = N. 

N = (N : 1M )N = (N : 1M )(N : 1M )1M = (N : 1M )21M. Hence, we get (N : 1M )21M = 

(N : 1M )1M. So we have (N : 1M ) is an idempotent element of L. And hence N is idempotent 

in M. 

2 ⇒ 3 : Assume that N is multiplication and idempotent in M . So (N : 1M ) is an idempotent 

element, then we have N = (N : 1M )1M = (N : 1M )21M = (N : 1M )(N : 1M )1M = (N : 1M 

)N.  So for any element K of M, we have, (K : N )N = (K : N )(N : 1M )N ≤ (K : 1M )N 

≤ (K : N )N , that implies (K : N )N = (K : 1M )N . Since N  is multiplication element of M , 

so for every a of L, a1M ∧ N = (a1M : N )N = (a1M : 1M )N = aN = a1M ∧ (N : 1M )1M . 

Also aN = a(N : 1M )N = a(N : 1M )1M , so a1M ∧ (N : 1M )1M = a(N : 1M )1M for any a ∈ L, 

hence a1M ∧ (N : 1M )1M = (a ∧ (N : 1M ))1M . So we have, a(N : 1M ) = a ∧ (N : 1M ). 

3 ⇒ 1 : Let a ∈ L. we have (N : 1M )1M ∧ a1M = ((N : 1M ) ∧ a)1M . Since (N : 1M ) ∧ a = a(N 

: 1M ), implies that N ∧ a1M = (N : 1M )1M ∧ a1M = ((N : 1M ) ∧ a)1M = a(N : 1M )1M = aN . 

Hence N is a pure element in M.       

Theorem 2.13. Let L be a CG-multiplicative lattice and M a faithful multiplication L-module. If N 

is pure in M, then (N : 1M ) is the smallest element a ∈ L, such that N = aN. 

Proof.  Let Λ be the collection of all elements a of L with the property that N = aN .  Then N 

= ∧a∈Λ aN  = (∧ a∈Λa)N .  It follows that (N  : 1M ) = ((∧ a∈Λ a)N  : 1M ) = (∧ a∈Λ a)(N  : 1M 

), and hence (N  : 1M ) ≤(∧ a∈Λ a). But N is pure, and hence an idempotent. Thus N= (N  : 1M )N, 

and this means that (N : 1M ) ∈ Λ. So (N : 1M ) is the smallest element of Λ.          

Let M be a L-module. A proper element P of M is called a prime element of M, if P ≠ 1M and 

whenever rN ≤ P, for some N ∈ M and r ∈ L, then N ≤ P or r ≤ (P : 1M). The M -radical, rad N, of 

an element N of M is defined as the meet of all prime elements of M containing N. If a is an element 

of L, then √𝑎  is defined as the meet of all prime elements of L containing a. If a is a pure (and 

hence idempotent) element of L, then a = a√𝑎. 

Lemma 2.14. Let N be a element of an L-module M. Then √(𝑁 ∶  1𝑀) 1M ≤ radN. 

Proof. If radN = 1M , the result is clear. Otherwise, if P is any prime element of M which 

contains N, then (N : 1M)≤(P : 1M). As P is a prime element of M, so (P : 1M) is a prime element 

of L. Hence √(𝑁 ∶ 1𝑀) ≤ (P : 1M ) and thus √(𝑁 ∶ 1𝑀)1M ≤ (P : 1M ) 1M  = P. Since P is an 

arbitrary element containing N, we have √(𝑁 ∶ 1𝑀)1M ≤ radN.      

Proposition 2.15. [4] Let L be a multiplicative PG-lattice. Let M be a multiplication L-

module and ann(M ) ≤ b for some prime element b ∈ L. If a1M ≤ b1M for some a ∈ L, then a ≤ b 

or b1M = 1M.  

Lemma 2.16. Let L be a multiplicative PG-lattice.  Let M be a multiplication L-module such that 
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1M compact and ann(M ) ≤ a for prime element a ∈ L. Then a1M is a prime element of  M. 

Proof. Note that  a1M ≠ 1M and for b  ∈ L and N ∈ M, suppose that bN ≤ a1M . As M is a 

multiplication L-module, we have N = c1M, for c ∈ L, so bN = b(c1M ) ≤ a1M. Proposition 

2.15 implies that bc ≤ a, hence b ≤ a or c ≤ a = (a1M : 1M ), then N = c1M ≤ a1M  and the 

proof is complete.                 

Theorem 2.17. Let L be a multiplicative PG-lattice. Let M be a multiplication L-module 

such that 1M compact and let B be a element of M. Then radB = √(𝐵 ∶  1𝑀)1M. 

Proof.  By Lemma 2.14, √(𝐵 ∶  1𝑀)1M ≤ radB. Since M is a multiplication L-module, radB 

= (radB : 1M )1M. it suffices then to show that (radB : 1M ) ≤√(𝐵 ∶  1𝑀). Let a be any prime 

element such that (B : 1M ) ≤ a. Since a is a prime element containing annM , then a1M is a 

prime  element of M  containing B = (B : 1M )1M . Hence, (radB : M )1M  = radB ≤ a1M , so that 

(radB : 1M ) ≤ a. Consequently, (radB : 1M ) ≤ √(𝐵 ∶  1𝑀) . 

The next result generalizes the above facts to pure element of multiplication L-module. 

Proposition 2.18. Let L be a CG-multiplicative lattice and M a faithful multiplication L- 

module. Let N be a pure element of M. Then 

1. N = √(𝑁 ∶  1𝑀)N, 

2. (N : 1M )radN = N = (radN : 1M )N. 

Proof. 1 :⇒  Let be the collection of all prime elements a of L contains (N : 1M ). Then 

√(𝑁 ∶  1𝑀)= ∧ a∈Λa, and so, √(𝑁 ∶  1𝑀) N= (∧ a∈Λa)N= ∧ a∈ΛaN. For each a  ∈ Λ, N = (N : 

1M )N  ≤ aN  ≤ N so that N  = aN, and hence N  = ∧ a∈Λa N=√(𝑁 ∶  1𝑀)N. 

2 :⇒ It follows from (1), and theorem 2.17, that N = √(𝑁 ∶  1𝑀) N = √(𝑁 ∶  1𝑀) (N : 1M ) 1M 

= (N : 1M )radN . But radN ≤ 1M and M is a multiplication L-module. Thus radN = (radN : 

1M ) 1M, and hence (N : 1M )radN = (N : 1M )(radN : 1M ) 1M = (radN : 1M ) N. 

III. Weakly Pure Element 

In this section we give basic definition of weakly pure element of multiplication L-module, and 

prove some results related to weakly pure element. We begin with following definition. 

Definition 3.1. A proper element N of L-module M is called weakly pure, if aN = N ∧ a1M, 

for every idempotent element a of L. 

Lemma 3.2. Let M be a faithful multiplication L−module. If N is a weakly pure element 

of M, then a(N : 1M ) = a ∧ (N : 1M ), for every idempotent element a of L. 

Proof. Proof follows by Lemma 2.9.  

Proposition 3.3. Let M be a faithful multiplication L−module. If N is a weakly pure element 

of M, then (N : 1M ) is idempotent. 

Proof. By Lemma 3.2, we have (N : 1M )2 = (N : 1M ) ∧ (N : 1M ) = (N : 1M ).           

Theorem 3.4. Let M be a faithful multiplication L−module, and N is a weakly pure element 
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/ 

of M. Then N is primary element of M if and only if it is weakly primary element of M. 

Proof.  It is enough to show that, if N is weakly primary, then N is primary. Assume that 0M 

≠ N is a weakly primary element of M that is not primary. Then by Proposition 3.3, we have 

N = (N : 1M )1M = (N : 1M )21M = (N : 1M )N = 0M, which is a contradiction. Thus N is 

primary.                    

Proposition 3.5. Let M be a prime multiplication faithful L-module and 0M ≠ N be a proper 

weakly pure element of M. Then ann(N : 1M ) = 0L. 

Proof. For every a ≤ ann(N : 1M ), we have a(N : 1M ) = 0L, hence aN = a(N : 1M )N = 0M 

, so that a ≤ annN = annM = 0L, since M is prime. Hence a = 0L, so ann(N : 1M ) = 0L.  

Proposition 3.6. Let L be a Noetherian multiplicative lattice with Jacobson radical r∗,and M 

a multiplication L-module and N is a weakly pure element of M.  Then there is a maximal element 

r of L such that (N : 1M ) ≰ r. 

Proof.  Otherwise, (N : 1M ) ≤ r∗, so (N : 1M ) =∧𝑖=1
∞  (N : 1M )i = 0L, by Proposition 3.3, hence 

N = (N  : 1M )1M  = 0M , which is a contradiction.  Hence there is a maximal element r of L such 

that (N : 1M ) ≰ r.                  
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