ISSN: 1074-133X Vol. 32 No. 2s (2024)

Pure and Weakly Pure Elements in Lattice Modules

Santosh Mitkari¹, Renu Pathak², Smita Nigam³, Pradip Girase⁴, Lakpa Sherpa⁵, Narayan Phadatare⁶

^{1, 2}Department of Mathematics, School of Science, Sandip University, Nashik (INDIA)

³Genba Sopanrao Moze College of Engineering, Pune (INDIA)

⁴Department of Mathematics, K. K. M. College Manwath, Parbhani (INDIA)

⁵Department of Mathematics, Savitribai Phule Pune University, Pune-411 007 (INDIA) ⁶Bharati Vidyapeeth Deemed to be University College of Engineering, Pune-411 043 (INDIA)

santosh.mitkari@bharatividyapeeth.edu, renu.pathak@sandipuniversity.edu.in, smita.nigam03@gmail.com, gpradipmaths22@gmail.com, csherpaap@gmail.com, nmphadatare@bvucoep.edu.in

Article History: Abstract:

Received: 25-09-2024

Revised: 02-11-2024

Accepted: 13-11-2024

This study concerns with investigation of Pure and Weakly pure elements of lattice modules. An element N of M is called pure, if $aN = N \wedge a1_M$, for each a of L. An element K of M is called weakly pure, if $aN = N \wedge a1_M$, for each idempotent element a of L. Also, this study obtains the relation between pure, idempotent and multiplication elements of lattice modules.

Keywords: Pure element, Weakly Pure element, Idempotent element, Multiplication element.

1. Introduction

A lattice L is called as a multiplicative lattice, if L is complete with commutative, associative and join distributive binary operation called as multiplication. An element 1_L of L act as a identity with respect to multiplication. For $a_1, a_2 \in L$, $(a_1 : a_2) = \bigvee\{x \in L | a_2x \leq a_1\}$. Element $p \in L$ such that $p \neq 1_L$ is *prime*, if $p_1.p_2 \leq p$ implies $p_1 \leq p$ or $p_2 \leq p$. The radical of $a \in L$ is denoted by \sqrt{a} and is defined as $\bigvee\{x \in L | x^k \leq a, \text{ for some } k \in Z^+\} = \bigwedge\{p \in L | a \leq p \text{ and } p \text{ is a prime element}\}$. An element $c \in L$ is called *compact*, if for $c \in L$ is an index set), $c \in V_{l}a_{l}$ and $c \in L$ is called a compact element of $c \in L$ is called a compact element of $c \in L$ is called a compact element of $c \in L$ is called meet [join] principal, if $c \in L$ is $c \in L$ is called principal element. If every element of $c \in L$ is a join of principal elements of $c \in L$, then $c \in L$ is called a $c \in L$ in the $c \in L$ is called a $c \in L$ in the $c \in L$ is a join of principal elements of $c \in L$. Then $c \in L$ is called a $c \in L$ in the $c \in L$ is a join of principal elements of $c \in L$ in the $c \in L$ is called a $c \in L$ in the $c \in L$ in the $c \in L$ in the $c \in L$ is a join of principal element of $c \in L$ in the $c \in L$ in the

An element $a \in L$ is called *semiprime or radical*, if $\sqrt{a} = a$. If $a \in L$ such that $a^2 = a$, then a is called an *idempotent*. Let $c \in L$. If for each $a \in L$ such that $a \leq c$ there exists an element $d \in L$ such that a = cd, then c is called *multiplication element*. Note that, $a \in L$ is a multiplication element if and only if it is weak meet principal element in L.

A complete lattice M is called a *lattice module* (L-module), where L is a multiplicative lattice, if the multiplication $aN \in M$, for $a \in L$ and $N \in M$ satisfies,(ab)N = a(bN); for all a,

ISSN: 1074-133X Vol. 32 No. 2s (2024)

b in L and for all N in M.

- 1. $(V_{\alpha} l_{\alpha})(V_{\beta} N_{\beta}) = (V_{\alpha\beta} l_{\alpha}N_{\beta})$; for all l_{α} in L and for all N_{β} in M.
- 2. $1_L N = N$; for $1_L \in L$ and $N \in M$.
- 3. $0_L N = 0_M$; for $0_L \in L$ and $N \in M$.

Note that 0_M is a least and 1_M is a greatest element of M. For $N_1, N_2 \in M$, $(N_1 : N_2) =$

 $\forall \{x \in L | xN_2 \leq N_1 \}$. For $N \in M$ and $a \in L$, $(N: a) = \forall \{K \in M | aK \leq N \}$. An element

 $N \in M$ is called *compact*, if for $t \in I(I \text{ is an index set})$, $N \leq \bigvee_{t=0}^{n} B_{t_t}$, for some $n \in \mathbb{Z}^+$. If each element of M is a join of compact elements of M, then M is called a CG-lattice module. An element $N \in M$ is called meet [join] principal, if $(a \land (B:N))N = aN \land B[(a \lor (B:N)) = ((aN \lor B) : N)]$, $\forall a \in L$ and $B \in M$. If $B \in M$ is both meet and join principal, then B is called *principal* element. If each element of M is a join of principal elements of M, then M is called a PG-lattice module. An element $N \in M$ is said to be weak meet [join] principal, if $(B:N)N = B \land N \ [(aN:N) = a \lor (0_M:N)]$, $\forall a \in L$ and $B \in M$.

An element $N \in M$ is said to be proper, if $N < 1_M$. If $N \in M$ such that $N = (N : 1_M)N$, then N is an *idempotent* element of M. Element $N \in M$ is said to be *multiplication*, if for every $K \in M$ with $K \le N$ there exists an element $a \in L$ such that K = aN. It is also noted that, $N \in M$ is a multiplication element if and only if N is weak meet principal in M.

A *L*-lattice module *M* is called *second*, if for each $a \in L$, $a1_M = 1_M$ or $a1_M = 0_M$. A *L*-lattice module *M* is called *secondary*, if for each $a \in L$, $a1_M = 1_M$ or $a^n1_M = 0_M$ for some n > 0. If $annM = (0_M : 1_M) = 0_L$, then *M* is called *faithful L*-module. A *L*-module *M* is called *torsion-free*, whenever $aK = 0_M$ implies $K = 0_M$ or $a = 0_L$, for any $a \in L$ and $K \in M$. A *L*-module *M* is *multiplication*, if for each element $N \in M$ there exists $a \in L$ such that $N = a1_M$. Note that, *L*-module *M* is a multiplication if and only if $N = (N : 1_M)1_M$ for all $N \in M$ (see [4]).

For $N \in M$, $[N, 1_M]$ is a set of all $K \in M$ such that $N \le K \le 1_M$. Note that, $[N, 1_M]$ is a L-lattice module with multiplication $a \circ K = aK \vee N$, where $a \in L$ and $K \in M$ such that $N \le K$.

This study aims the generalization of some important results studied in [1], [2] for submodules of module over commutative ring to the lattice modules over multiplicative lattices and examine the concepts in multiplicative lattices and multiplication lattice modules.

Remark 1.1. Let M be a multiplication lattice module and N a element of M. If $(N:1_M)$ is an idempotent, then $N = (N:1_M)1_M = (N:1_M)^21_M = (N:1_M)N$, and N is idempotent in M. Conversely, if M is a CG and faithful multiplication L-module with N is idempotent in M, then $N = (N:1_M)1_M = (N:1_M)N$, and hence $N = (N:1_M)^21_M = (N:1_M)1_M$, which shows that $(N:1_M)^2 = (N:1_M)$ is an idempotent.

Further, for more information on modules, multiplicatice lattices, lattice modules, the reader may refer to [3], [7], [8], [9], [10].

ISSN: 1074-133X Vol. 32 No. 2s (2024)

2. Pure Element

We begin this section with the following definitions:

Definition 2.1. Let L be a multiplicative lattice and $c \in L$. c is said to be a *multiplication* element, if for every element a of L such that $a \le c$ there exists an element $d \in L$ such that a = cd. [5].

Definition 2.2. [5] Let L be a multiplicative lattice and M a lattice L-module. $N \in M$ is said to be a *multiplication* element, if for every element K of M such that $K \leq N$ there exists an element $a \in L$ such that K = aN.

Definition 2.3. Let L be a multiplicative lattice and M a lattice L-module. $N \in M$ is said to be a *idempotent* element in M, if $N = (N : 1_M)N$.

Proposition 2.4. Let L be a CG-lattice, M be a nonzero L-lattice module and $0_M \neq N$ is pure element of M. If M is p-secondary lattice module, then $[N, 1_M]$ and $[0_M, N]$ are both p-secondary lattice modules.

Proof. see [6], Proposition 13.

Proposition 2.5. Let L be a domain. If M is a multiplication second L-module, then every element in M is pure.

Proof. Let N be any element of M. Since M is a multiplication second L-module, so M is either divisible or torsion [6]. If M is divisible, then $a1_M = 1_M$, for every $0_L \neq a \in L$. So $aN = N = N \land a1_M$, since M is multiplication L-module. If M is torsion, then $a1_M = 0_M$, for every $0_L \neq a \in L$. So, $aN = 0_M = N \land a1_M$.

Lemma 2.6. Let M be a multiplication L-module, and $0_M \neq N$ be a pure element of M. Then M is a p-second lattice module if and only if $[0_M, N]$ and $[N, 1_M]$ are both p-second lattice modules.

Proof. see [6], Proposition 14.

Lemma 2.7. Let M be a faithful multiplication L-module. If N is a pure element of M, then N is multiplication and is idempotent in M.

Proof. Let K be a element of M. Then $K = (K : 1_M)1_M$. Since N is a pure element of M, we have, $(K : N)N = N \land (K : N)1_M \ge N \land (K : 1_M)1_M = N \land K \ge (K : N)N$, so that $(K : N)N = K \land N \Rightarrow N$ a weak meet principal element in M, and N is multiplication. Since N is pure in M, we have that $(N : 1_M)N = N \land (N : 1_M)1_M = N$, and hence N is idempotent in M.

Lemma 2.8. Let M be a multiplication L-module. If N is a pure element of M, then $K = (N:1_M)K$ and $(K:N)N = (K:1_M)N$, for each K of M.

Proof. By Lemma 2.7, N is multiplication and is idempotent in M. Let $K \le N$, then $K = (K : N)N = (K : N)(N : 1_M)N = (N : 1_M)K$. Also, for $K \le N$, $(K : N)N = (K : N)(N : 1_M)N \le (K : N)N$, so that $(K : N)N = (K : 1_M)N$.

Lemma 2.9. Let M be a faithful multiplication L-module. If N is a pure element of M, then $a(N:1_M)=a \land (N:1_M)$, for every a in L.

ISSN: 1074-133X Vol. 32 No. 2s (2024)

Proof. Since N is a pure element of M, so $aN = N \wedge a1_M$. Hence $(aN : 1_M) = ((N \wedge a1_M) : 1_M) = (N : 1_M) \wedge (a1_M : 1_M) = (N : 1_M) \wedge a$. We need to show that $(aN : 1_M) = a(N : 1_M)$. Obviously, $a(N : 1_M) \leq (aN : 1_M)$. Conversely, let $x \leq (aN : 1_M)$. Then $x1_M \leq aN = a(N : 1_M)1_M$. Thus $x \leq a(N : 1_M)$, and hence $(aN : 1_M) \leq a(N : 1_M)$.

Lemma 2.10. Let M be a faithful multiplication L-module. If $a(N : 1_M) = a \land (N : 1_M)$, for every a of L, then N is multiplication and is idempotent in M.

Proof. Assume $a(N:1_M)=a \land (N:1_M)$, for all a of L. Take $a=(N:1_M)$. Then $(N:1_M)^2=(N:1_M)$ and hence $(N:1_M)$ is an idempotent element of L. Hence $N=(N:1_M)1_M=(N:1_M)^21_M=(N:1_M)(N:1_M)1_M=(N:1_M)N$, and hence N is idempotent in M. To prove that N is multiplication, let K be any element of M. Let $a=(K:1_M)$. Then $((K \land N):1_M)=(K:1_M) \land (N:1_M)=(K:1_M)(N:1_M) \leq (K:N)(N:1_M)$, and hence $K \land N=((K \land N):1_M)1_M \leq (K:N)(N:1_M)1_M \leq (K:N)(N:1_M)1_M \leq (K:N)N$ and N is multiplication. This completes the proof of the theorem.

Theorem 2.11. Let L be a CG-multiplicative lattice and M be a multiplication L-module. For N, K in M and a in L.

- 4. If a is pure in L and N pure in M, then aN is pure in M. In particular, if a is pure in L, then $a1_M$ is a pure element of M.
- 5. If K is pure in N and N pure in M, then K is pure in M.
- 6. Let $K \lor N$ be a multiplication element. If each of K and N is pure in M, then $K \lor N$ and $K \land N$ are pure in M.

Proof. 1 : \Rightarrow Let $b \in L$. We show that, $b(aN) = aN \wedge b1_M$. Assume that, L is local multiplicative lattice. Since a is a pure in L, then $a = 0_L$ or $a = 1_L$. If $a = 0_L$, then we are through. If $a = 1_L$, then the purity of N implies that $b(aN) = bN = N \wedge b1_M = aN \wedge b1_M$.

2: \Rightarrow Let $b \in L$. Then $bK = K \wedge bN$ and $bN = N \wedge b1_M$ and hence, $bK = (K \wedge N) \wedge b1_M = K \wedge b1_M$, since $K \leq N$. So K is pure in M.

 $3:\Rightarrow$ Given K and N are pure in M, $aK = K \wedge a1_M$ and $aN = N \wedge a1_M$. So $aK \wedge aN = (K \wedge N) \wedge a1_M$ and $a(K \vee N) = (K \wedge a1_M) \vee (N \wedge a1_M)$. Since $K \vee N$ is multiplication, so $a(K \wedge N) = aK \wedge aN$ and $(K \vee N) \wedge a1_M = (K \wedge a1_M) \vee (N \wedge a1_M)$ and this shows that $K \wedge N$ and $K \vee N$ are pure elements of M.

In the following theorem we give a relation between pure elements, multiplication elements and idempotent elements.

Theorem 2.12. Let L be a CG-multiplicative lattice and M be a faithful multiplication L-module such that 1_M compact. For N in M, the following are equivalent:

- 1. N is a pure element of M.
- 2. *N* is multiplication and is idempotent in *M*.
- 3. $(N:1_M) = a \wedge (N:1_M)$, for every $a \in L$.

Proof. $1 \Rightarrow 2$: Assume that N is a pure element of M. Let K be a element of M. We will

ISSN: 1074-133X Vol. 32 No. 2s (2024)

show that, $N \wedge K = (K:N)N$. Since M is multiplication, $K = (K:1_M)1_M$. Since N is a pure element of M, so we have, $(K:N)N = N \wedge (K:N)1_M$. Now $(K:N)N = N \wedge (K:N)1_M \geq N \wedge (K:1_M)1_M = N \wedge K \geq (K:N)N$. Hence, we get $(K:N)N = K \wedge N$. This implies that N is a multiplication in M. Since N is pure element, so we have $(N:1_M)N = N \wedge (N:1_M)1_M = N$.

 $N = (N:1_M)N = (N:1_M)(N:1_M)1_M = (N:1_M)^21_M$. Hence, we get $(N:1_M)^21_M = (N:1_M)1_M$. So we have $(N:1_M)$ is an idempotent element of L. And hence N is idempotent in M.

Also $aN = a(N : 1_M)N = a(N : 1_M)1_M$, so $a1_M \wedge (N : 1_M)1_M = a(N : 1_M)1_M$ for any $a \in L$, hence $a1_M \wedge (N : 1_M)1_M = (a \wedge (N : 1_M))1_M$. So we have, $a(N : 1_M) = a \wedge (N : 1_M)$.

 $3 \Rightarrow 1$: Let $a \in L$. we have $(N:1_M)1_M \wedge a1_M = ((N:1_M) \wedge a)1_M$. Since $(N:1_M) \wedge a = a(N:1_M)$, implies that $N \wedge a1_M = (N:1_M)1_M \wedge a1_M = ((N:1_M) \wedge a)1_M = a(N:1_M)1_M = aN$. Hence N is a pure element in M.

Theorem 2.13. Let L be a CG-multiplicative lattice and M a faithful multiplication L-module. If N is pure in M, then $(N:1_M)$ is the smallest element $a \in L$, such that N=aN.

Proof. Let Λ be the collection of all elements a of L with the property that N = aN. Then $N = \Lambda_{a \in \Lambda} aN = (\Lambda_{a \in \Lambda} a)N$. It follows that $(N:1_M) = ((\Lambda_{a \in \Lambda} a)N:1_M) = (\Lambda_{a \in \Lambda} a)(N:1_M)$, and hence $(N:1_M) \leq (\Lambda_{a \in \Lambda} a)$. But N is pure, and hence an idempotent. Thus $N = (N:1_M)N$, and this means that $(N:1_M) \in \Lambda$. So $(N:1_M)$ is the smallest element of Λ .

Let M be a L-module. A proper element P of M is called a *prime* element of M, if $P \neq 1_M$ and whenever $rN \leq P$, for some $N \in M$ and $r \in L$, then $N \leq P$ or $r \leq (P : 1_M)$. The M-radical, rad N, of an element N of M is defined as the meet of all prime elements of M containing N. If A is an element of A, then A is defined as the meet of all prime elements of A containing A. If A is a pure (and hence idempotent) element of A, then A is a pure (and hence idempotent) element of A.

Lemma 2.14. Let N be a element of an L-module M. Then $\sqrt{(N: 1_M)} 1_M \le radN$.

Proof. If $radN = 1_M$, the result is clear. Otherwise, if P is any prime element of M which contains N, then $(N:1_M) \le (P:1_M)$. As P is a prime element of M, so $(P:1_M)$ is a prime element of M. Hence $\sqrt{(N:1_M)} \le (P:1_M)$ and thus $\sqrt{(N:1_M)} 1_M \le (P:1_M) 1_M = P$. Since P is an arbitrary element containing N, we have $\sqrt{(N:1_M)} 1_M \le radN$.

Proposition 2.15. [4] Let L be a multiplicative PG-lattice. Let M be a multiplication L-module and $ann(M) \le b$ for some prime element $b \in L$. If $a1_M \le b1_M$ for some $a \in L$, then $a \le b$ or $b1_M = 1_M$.

Lemma 2.16. Let L be a multiplicative PG-lattice. Let M be a multiplication L-module such that

ISSN: 1074-133X Vol. 32 No. 2s (2024)

 1_M compact and $ann(M) \le a$ for prime element $a \in L$. Then $a1_M$ is a prime element of M.

Proof. Note that $a1_M \neq 1_M$ and for $b \in L$ and $N \in M$, suppose that $bN \leq a1_M$. As M is a multiplication L-module, we have $N = c1_M$, for $c \in L$, so $bN = b(c1_M) \leq a1_M$. Proposition 2.15 implies that $bc \leq a$, hence $b \leq a$ or $c \leq a = (a1_M : 1_M)$, then $N = c1_M \leq a1_M$ and the proof is complete.

Theorem 2.17. Let L be a multiplicative PG-lattice. Let M be a multiplication L-module such that 1_M compact and let B be a element of M. Then $radB = \sqrt{(B:1_M)}1_M$.

Proof. By Lemma 2.14, $\sqrt{(B:1_M)}1_M \le radB$. Since M is a multiplication L-module, $radB = (radB:1_M)1_M$. it suffices then to show that $(radB:1_M) \le \sqrt{(B:1_M)}$. Let a be any prime element such that $(B:1_M) \le a$. Since a is a prime element containing annM, then $a1_M$ is a prime element of M containing $B = (B:1_M)1_M$. Hence, $(radB:M)1_M = radB \le a1_M$, so that $(radB:1_M) \le a$. Consequently, $(radB:1_M) \le \sqrt{(B:1_M)}$.

The next result generalizes the above facts to pure element of multiplication L-module.

Proposition 2.18. Let L be a CG-multiplicative lattice and M a faithful multiplication L-module. Let N be a pure element of M. Then

1.
$$N = \sqrt{(N : 1_M)}N$$
,

2. $(N:1_M)radN = N = (radN:1_M)N$.

Proof. $1:\Rightarrow$ Let be the collection of all prime elements a of L contains $(N:1_M)$. Then $\sqrt{(N:1_M)} = \bigwedge_{a \in \Lambda} a$, and so, $\sqrt{(N:1_M)} N = (\bigwedge_{a \in \Lambda} a)N = \bigwedge_{a \in \Lambda} aN$. For each $a \in \Lambda$, $N = (N:1_M)N \le aN \le N$ so that N = aN, and hence $N = \bigwedge_{a \in \Lambda} a N = \sqrt{(N:1_M)}N$.

 $2:\Rightarrow It$ follows from (1), and theorem 2.17, that $N=\sqrt{(N:1_M)}\ N=\sqrt{(N:1_M)}\ (N:1_M)\ 1_M=(N:1_M)radN$. But $radN\leq 1_M$ and M is a multiplication L-module. Thus $radN=(radN:1_M)\ 1_M$, and hence $(N:1_M)radN=(N:1_M)(radN:1_M)\ 1_M=(radN:1_M)\ N$.

III. Weakly Pure Element

In this section we give basic definition of weakly pure element of multiplication L-module, and prove some results related to weakly pure element. We begin with following definition.

Definition 3.1. A proper element N of L-module M is called *weakly pure*, if $aN = N \wedge a1_M$, for every idempotent element a of L.

Lemma 3.2. Let M be a faithful multiplication L-module. If N is a weakly pure element of M, then $a(N : 1_M) = a \land (N : 1_M)$, for every idempotent element a of L.

Proof. Proof follows by Lemma 2.9.

Proposition 3.3. Let M be a faithful multiplication L-module. If N is a weakly pure element of M, then $(N:1_M)$ is idempotent.

Proof. By Lemma 3.2, we have $(N:1_M)^2 = (N:1_M) \land (N:1_M) = (N:1_M)$.

Theorem 3.4. Let M be a faithful multiplication L-module, and N is a weakly pure element

ISSN: 1074-133X Vol. 32 No. 2s (2024)

of M. Then N is primary element of M if and only if it is weakly primary element of M.

Proof. It is enough to show that, if N is weakly primary, then N is primary. Assume that $0_M \neq N$ is a weakly primary element of M that is not primary. Then by Proposition 3.3, we have $N = (N : 1_M)1_M = (N : 1_M)^2 1_M = (N : 1_M)N = 0_M$, which is a contradiction. Thus N is primary.

Proposition 3.5. Let M be a prime multiplication faithful L-module and $0_M \neq N$ be a proper weakly pure element of M. Then $ann(N:1_M)=0_L$.

Proof. For every $a \le ann(N:1_M)$, we have $a(N:1_M) = 0_L$, hence $aN = a(N:1_M)N = 0_M$, so that $a \le annN = annM = 0_L$, since M is prime. Hence $a = 0_L$, so $ann(N:1_M) = 0_L$.

Proposition 3.6. Let L be a Noetherian multiplicative lattice with Jacobson radical r^* , and M amultiplication L-module and N is a weakly pure element of M. Then there is a maximal element r of L such that $(N:1_M) \nleq r$.

Proof. Otherwise, $(N:1_M) \le r^*$, so $(N:1_M) = \Lambda_{i=1}^{\infty} (N:1_M)^i = 0_L$, by Proposition 3.3, hence $N = (N:1_M)1_M = 0_M$, which is a contradiction. Hence there is a maximal element r of L such that $(N:1_M) \not \le r$.

REFERENCES

- [1] M. M. Ali, *Idempotent and nilpotent submodules of multiplication modules*, Comm. Algebra, **36(12)** (2008), 4620-4642.
- [2] M. M. ALI AND D. J. SMITH, *Pure submodules of multiplication modules*, Beitrage zur Algebra and Geometrie, **45(1)** (2004), 61-74.
- [3] V. BORKAR, P. GIRASE AND N. PHADATARE, *Zariski second radical elements of lattice modules*, Asian-Eur. J. Math., **2150055** (2021), 11-pages doi:10.1142/S1793557121500558.
- [4] F. CALLIALP AND U. TEKIR, Multiplication lattice modules, Iran. J. Sci. Technol., 35(4) (2011), 309-313.
- [5] F.CALLIALP, U. TEKIR AND E. ASLANKARAYIGIT, *On Multiplication Lattice Modules*, Hacet. J. Math. Stat., 43(4) (2014), 571-579.
- [6] F. Callialp, U. Tekir, E. A. Ugurlu and K. H. Oral, *Second and Secondary Lattice Modules*, The Scientific World Journal, ID **291924**(2014), 4- pages.
- [7] J. JENKINS AND P. F. SMITH, On the Prime Radical of a Module Over a CommutativeRing, Comm. Algebra, **20(12)** (1992), 3593-3602.
- [8] C. P. Lu, M-Radicals of Submodules in Modules, Math. Japonica, 34(2) (1989), 211-219.
- [9] M. E. MOOR AND R. L. MCCASLAND, On Radicals of Submodules of Finitely GeneratedModules, Canad. Math. Bull., **29**(1) (1986), 37-39.
- [10] P. GIRASE, V. BORKAR AND N. PHADATARE, Zariski prime radical elements of lattice modules, Southeast Asian Bull. Math., **44(3)** (2020), 335-344.