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Abstract: 

Aortic stenosis (AS) is a disease of the valve between the heart and aorta and may lead 

to heart failure if left untreated; it is one of the significant valvular heart diseases caused 

by the narrowing of this valve. Conventional diagnostic techniques are invasive and 

require resources. Machine learning and deep learning approaches for the non-invasive 

identification of AS were investigated using an extensive 12-lead ECG dataset of 

10,646 patient records. A range of models was assessed for diagnostic performance, 

including Support Vector Machine (SVM), Random Forest (RF), Convolutional 

Neural Network (CNN), Long Short-Term Memory (LSTM), a hybrid CNN-LSTM 

model, and a hybrid CNN-RNN-LSTM model. The results indicate that SVM and RF 

had 74% and 76% accuracy, respectively, while the CNN model improved the accuracy 

to 80%. The accuracy of the LSTM model was 82%, and the accuracy of the CNN-

LSTM model, which had an accuracy of 87% and high precision, recall, and F1 scores. 

The promise of deep learning, especially hybrid models, for advancing non-invasive 

diagnostic techniques for aortic stenosis, including those that could greatly aid early 

detection and improve patient outcomes in a clinical setting, is highlighted by this 

research. 

Keywords: Aortic Stenosis, Convolutional Neural Network, Random Forest, Long 

Short-Term Memory, Support Vector Machine, 12 Lead ECG 

1. Introduction

ECG is a graphic representation of voltage over time corresponding to the electrical activities accrued 

during the enfolding depolarisation and subsequent repolarisation of the cardiac muscle with each 

cardiac cycle. The ECG trace of a typical heartbeat encompasses a series of waves: a P wave, the 

process of atrial depolarisation; a QRS complex, ventricular depolarisation; and a T wave, ventricular 

repolarisation. The PR, ST and QT intervals are additional segments of the signal. Arrhythmias are a 

broad category of cardiac disorders manifested by abnormalities of the heart beating at an abnormal 

rate or rhythm. However, there is a multitude of such categories, each with a different presentation, 

such as sinus bradycardia (SB), atrial tachycardia (AT), premature ventricular contraction (PVC), and 

many other chaotic rhythms with absent or abnormal waveforms and intervals. Atrial fibrillation 

(AFIB) is the most prevalent and harmful type of arrhythmia and may occur with aortic stenosis at the 
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same time. These conditions are associated with a striking increase in the risk of severe cardiac 

dysfunction and cerebrovascular accidents.  

First, ECG data is screened and assessed according to the current diagnostic methodologies by either 

cardiologists or general practitioners to determine the correct diagnosis and subsequent treatment steps, 

including pharmacological treatments and radiofrequency catheter ablation. Nevertheless, public 

health initiatives related to broadening screening practices and increasing the adoption of ECG-capable 

wearable technology have increased the demand for increasingly precise automated diagnoses of 

cardiac conditions. For algorithm training, such classification techniques require massive datasets 

containing all possible types of conditions.  

A Deep Learning Model for early diagnosis and prediction of Aortic Stenosis is a breakthrough in 

cardiology, leveraging the latest in artificial intelligence to meticulously parse through a vast dataset 

from a 12-lead electrocardiogram (ECG) database. This is the first initiative to seek a deeper 

understanding of arrhythmias and the mechanisms behind their relation with aortic stenosis. The goal 

is to raise patient outcomes substantially through improved risk assessment methodologies and 

personalised treatment paradigms.  

This research aims to utilise the sophisticated algorithms built into deep learning to extract subtle 

patterns in ECG readings that could be early signals of the onset or progression of aortic stenosis. As 

these techniques allow for early disease detection, early detection is critical to let time-appropriate 

interventions and formulation of custom therapeutic strategies based on individual patient profiles. In 

addition, utilising clinical data alongside ECG analysis enables forming a more excellent breadth risk 

assessment model. This is a comprehensive approach to providing the health care providers with the 

means to make a clinical decision that is appropriate based on the inherent information of each patient 

and the evolving nature of the patient's condition.  

In addition, machine learning algorithms offer great explosive powers and provide intrinsic means for 

adapting to incorporate new databases and learn from them. It will lead us to even more personalised 

treatment plans based on innovative findings in cardiovascular care that will deliver the proper 

intervention, ensuring that the treatment plans coordinate closely. In short, this represents a game-

changing step toward an AI-driven future of cardiovascular health management and better care and 

outcomes for aortic stenosis patients and other disorders. 

While echocardiography is by far the mainstay of diagnosis of aortic stenosis (AS), it is essential to 

note that electrocardiograms can provide useful indirect markers that can be useful in the diagnostic 

process. ECG findings commonly seen in aortic stenosis include LVH, left atrial enlargement, and 

various repolarisation abnormalities, all of which may indicate increased left ventricular strain of this 

disease. 

The rich diversity of ECG patterns in a large-scale database of 12 lead ECG recordings provides a 

large and varied space for training a machine learning model to identify subtle abnormalities related 

to aortic stenosis, provided that the model is subjected to rigorous and careful training protocols that 

maximise its performance. 
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2. Literature Review 

In a study of an AI-driven electrocardiogram (AI-ECG) for early identification of moderate to severe 

aortic valve stenosis (AS) to improve patient outcomes following aortic valve replacement procedures, 

Cohen-Shelly et al. (2021), An extensive dataset of 258,607 adults who had both echocardiography 

and ECG analysis was investigated, and 9,723 were successfully identified with moderate to severe 

AS. We designed and validated the AI-ECG on a cohort of 25,893 and then tested the AI-ECG on 

102,926 subjects from a total of 129,788, with an area under the curve (AUC) of 0.85. However, when 

demographic variables like age and gender were added to the model, the sensitivity increased to 78%, 

specificity to 74%, and accuracy overall was maintained at 74%, with performance significantly 

improved (AUC of 0.90). In addition, the 15-year hazard ratios for developing moderate or severe AS 

were high among those with false positive results (hazard ratio 2.18). Collectively, these results suggest 

that AI-ECG has the potential to act as a useful screening tool for the identification of patients at risk 

for AS and thus represent a critical first step to enabling early intervention and management of AS.  

Vaid et al. (2023) use advanced deep learning methodologies on electrocardiograms (ECGs) to help 

diagnose left heart valve dysfunction, specifically Aortic Stenosis (AS) and Mitral Regurgitation 

(MR), in this research. This was done using a retrospective cohort analysis of 617,338 ECGs and more 

than 120,000 echocardiograms from five medical centres affiliated with Mount Sinai. To derive the 

valvular condition, a Natural Language Processing (NLP) framework was used, and the deep learning 

models achieved an area under the receiver operating characteristic curve (AUROC) of 0.88 for MR 

and 0.89 for AS, indicating the great potential to improve early diagnosis of valvular disorders and to 

ensure accurate detection to improve patient outcomes and reduce healthcare costs. 

As Zhang et al. (2024) describe this research, AI is here to transform the clinical management of aortic 

stenosis (AS), a complex valvular heart condition. Socioeconomic disparities are addressed, AS is 

identified and treated early, and a complete understanding of the disorder is achieved through data-

driven risk assessments and tailored therapeutic interventions that are aware of the role of human 

expertise in mitigating AI’s shortcomings in healthcare decision-making. 

In this investigation, Hata et al. (2020) present a novel deep learning-based approach to the automated 

categorisation of aortic stenosis (AS) using electrocardiogram (ECG) images. On both 12 lead and 

four lead ECGs, the study uses finely tuned Convolutional Neural Networks (CNNs) to highlight key 

ST-T characteristics identified using Grad-CAM. It shows diagnostic accuracy that matches expert 

assessment, suggesting that ECG may be a valuable tool for AS identification, particularly in settings 

where access to echocardiography is limited. 

The authors of a scholarly article (Kwon et al., 2020) present a deep learning algorithm for aortic 

stenosis (AS) identification using electrocardiography (ECG), which is a non-invasive diagnostic 

technique. The proposed methodology addresses the diagnostic challenge of a prolonged 

asymptomatic period of AS, facilitating earlier detection and improving patient outcomes through 

timely medical interventions. 

In the study by Ahmadi et al. (2023), a new deep-learning architecture is presented to classify the 

severity of aortic stenosis from two-dimensional echocardiographic data without needing Doppler 

measurements, which cardiologists commonly use. The model uses a transformer-based 
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spatiotemporal framework to analyse echocardiography cine sequences independently and achieves 

95.2% and 91.5% in aortic stenosis detection and 78.1% and 83.8% in severity classification on private 

and public datasets, respectively while overcoming the challenges of low signal to noise ratios. 

Huang et al. (2024) introduce in this study an innovative deep learning architecture, Semi-supervised 

Multimodal Multiple-Instance Learning (SMMIL), to improve the analysis of echocardiograms for the 

diagnosis of aortic stenosis (AS). Integrating spectral Dopplers and 2D cine loops with labelled and 

unlabeled data significantly improves classification accuracy for AS severity assessment compared to 

conventional methods. 

3. Proposed Methodology 

The proposed Hybrid CNN-RNN-LSTM model for predictive diagnosis of Aortic Stenosis in a Large-

Scale 12-Lead ECG Dataset is explained in this section. In this section the authors meticulously  

explained the various data preprocessing techniques, feature extraction mechanisms and more 

specifically to feature extraction (LVH) related to aortic stenosis diagnosis. Also, the authors 

implemented various machine learning and deep learning models to compare the accuracy of the 

proposed methodology.   

3.1 Dataset 

We created a subset from a dataset of 45,152 patient ECGs available in the Physionet platform (Zheng 

et al. (2020)) and investigated the use of this data. The amount of delivered voltage per analog-to-

digital (A/D) bit was quantified at 4.88, and the resolution of the A/D converter was 32 bits. Amplitude 

was measured in microvolts for this unit. The maximum threshold was set at 32,767 and the minimum 

threshold at −32,768. ECG recordings were converted to WFDB format. In this WFDB format, each 

ECG is denoted by a pair of files: binary raw data is stored in a mat file, and a header is sent to you 

(also a mat file) of the same name but with the extension. The annotation details contained in the 

header file were lead configuration, patient age, gender and the SNOMED CT code. The original letter 

designations of the file ConditionNames_SNOMED-CT.xlsx corresponded with the SNOMED CT 

code. A comparative analysis of other datasets with the chosen is shown in Table 1. 

Table 1 Comparison of Datasets 

Name Subjects Records (length) Sampling rate Age Male, n(%) Lead, n 

MIT-BIH Dataset 47 48 (30 min) 360 Hz 23–89 25 (52.08) 2 

EDB Dataset 79 90 (120 min) 250 Hz 30–84 70 (88.61) 2 

AHA Dataset N/A 154 (180 min) 250 Hz N/A N/A 2 

Proposed Dataset 10646 10646 (10 seconds) 500 Hz 4–98 5956 (55.95) 12 

The proposed flow diagram is given in Figure. 1. 
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Figure. 1 Process Flow Diagram 

3.2 Data Preprocessing 

3.2.1 Noise Removal 

ECG signals are highly vulnerable to an array of distinct types of noise, which can emanate from a 

multitude of diverse sources, including, but not limited to, Baseline Drift phenomena, Muscle Artifacts 

introduced during the acquisition process, Power Line Interference that interferes with signal integrity, 

Electrode Contact Noise arising from inadequate electrode adhesion, and Motion Artifacts resulting 

from patient movement during the recording procedure. 

3.2.2 Bandpass Filter 

To meticulously engineer a highly efficient bandpass filter designed explicitly for the nuanced 

characteristics of electrocardiogram (ECG) signals, our primary focus is a well-defined frequency 

spectrum encompassing the vital components of the ECG waveform, which conventionally ranges 

from 0.5 Hz to 45 Hz. This carefully selected frequency range is intentionally chosen due to its 

remarkable ability to effectively capture and represent the essential physiological signals intrinsic to 

the ECG while simultaneously filtering out any extraneous noise and artefacts that could compromise 

the accuracy and reliability of the readings we obtain. By employing such a precision-driven approach, 

we ensure that the resultant filter meets the stringent requirements for clinical applications and vastly 

enhances the clarity and integrity of the ECG signals being monitored and analysed. 

3.2.3 Notch Filter 

The challenge of powerline interference, which can destroy signal integrity, is addressed by a highly 

specialised notch filter that is intricately designed. Precisely engineered to attenuate powerline noise 

frequency components at 50 Hz or 60 Hz, this filter is precisely engineered to target and markedly 

attenuate the frequency components associated with powerline noise. The notch filter is essential in 

precisely isolating these frequencies and thus mitigating unwanted interference to the point where the 

transmitted signal is of much higher quality and clarity. By bridging two fundamental objectives, 

namely, reliability improvement in communication systems and maintaining data integrity, this 

advancement enhances the reliability of  
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communication systems, ultimately enhancing the system’s performance in many application areas. 

3.2.4 Adaptive Filter (LMS) 

Signal processing has long relied on adaptive filtering techniques to combat various and sometimes 

unpredictable sources of noise (S et al., 2024). The Least Mean Squares (LMS) algorithm is perhaps 

the most well-known and widely used of these techniques. Adaptive filtering is so powerful due to its 

ability to change continuously or adapt as the input signal changes over time. This adaption of the 

algorithm allows it to efficiently search and suppress noise, regardless of where it came from or how 

it fluctuated. The LMS algorithm continuously checks the signal and tunes the parameters 

corresponding to the real-time data to improve the overall quality and clarity of the desired output. The 

information is processed with integrity, and so the signal fidelity is improved. After applying the above 

filters for noise removal,  figure 2 shows the resultant ECG signal. 

 

Figure. 2 Noise Removal by applying Filters 

3.3 Feature Extraction 

3.3.1 Wavelet Decomposition 

The study shows that wavelet decomposition is essential in analysing frequency components in 

preprocessed ECG signals. The Daubechies wavelet (especially db4) was chosen as it was close to the 

QRS complex morphology needed for accurate feature extraction. It is decomposed into six levels to 

study its frequency components in detail. QRS complexes, peaks at high frequency (10 to 30 Hz), are 

important in recording and understanding heart electrical activity; P and T waves are low-frequency 

components, P waves are due to atrial depolarisation, and T waves to ventricular repolarisation. This 

analysis shows that wavelet decomposition is an effective method for ECG feature extraction and 

reveals the ECG signals and the underlying physiological processes. 

3.3.2 Pan-Tompkins Algorithm for QRS Complex Identification  

The signal is differentiated to highlight the rapid transitions of the QRS complex, which indicates 

ventricular depolarisation, and the analysis of electrocardiogram (ECG) signals starts. This 

differentiation is amplified for accurate QRS detection upon the steepest slopes. The next step is to 

square the differentiated signal, emphasise high-frequency components, and make the QRS complex 
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more visible. Next, a moving window integration technique with a duration of 150 milliseconds is 

employed to the squared signal to smooth the signal, removing noise while preserving QRS 

characteristics. We then define an adaptive threshold based on the mean value of the integrated signal, 

scaled between 0.6 and 0.8, to detect QRS complexes effectively. This threshold is then adapted to 

variations in signal amplitude leading to different heart rates and physiological conditions to improve 

detection reliability. Finally, QRS complexes are validated because the integrated signal crosses the 

adaptive threshold and allows accurate ECG analysis.  

3.3.3 Peak Amplitudes of the P Wave, QRS Complex, and T Wave 

A segmented ECG signal can extract amplitude-based characteristics by measuring the amplitude 

attributes of P waves, QRS complexes, and T waves. The features provide insight into the ECG 

waveform morphologies and can be used to diagnose cardiac disorders. A step-by-step guide is 

presented for calculating these features: Peak value before the QRS complex is used to determine the 

P wave amplitude, the QRS complex amplitude is determined by the difference between the R peak 

and the minimum values at the Q or S points, and the T wave amplitude is determined by peak value 

after the QRS complex. The detected waves in the ECG signal are shown in Figure 3.  

 

Figure. 3 Detected Waves from the ECG Signal 

However, when these extracted features are used, they yield specific amplitude values for the P wave, 

QRS complex and T wave that can be used as foundational input for a sophisticated machine learning 

algorithm or can be subjected to a complete range of statistical analysis for a clinical diagnosis. Serious 

studies are essential to identify cardiac abnormalities, either aortic stenosis or conditions that can 

pressure patient health and treatment outcomes. Consequently, the design of the overall framework of 

cardiac diagnostics and research hinges on the thoughtful extraction and interpretation of these 

amplitude-based features. P_amplitude, QRS_amplitude and T_amplitude are computed by equations 

(1), (2), and (3), respectively. 

𝑃_amplitude = ECG[𝑃peak ] − ECG[𝑃start ]      (1) 

 QRS_amplitude = ECG⁡[𝑅peak ] − 𝑚𝑖𝑛(ECG⁡[𝑄point ], ECG[𝑆point ])   (2) 

 T_amplitude = ECG⁡[𝑇peak ] − ECG[𝑇start ]      (3) 

3.3.4 Frequency Domain Features 

Frequency domain features play a crucial role in comprehensively understanding the spectral 

characteristics of electrocardiogram (ECG) signals. Using the Fourier Transform, we effectively 

decompose the time domain ECG signal into its constituent frequency components. We can analyse 

the spectral power and energy distribution across different frequency bands. This analysis is very 
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useful for detecting and diagnosing cardiac abnormalities, such as aortic stenosis, which can show up 

as particular changes in the frequency spectrum of the ECG. 

3.3.5 Fast Fourier Transform (FFT) 

This study uses the Fast Fourier Transform (FFT) methodology to convert the electrocardiogram 

(ECG) signal from its original time domain representation to a more analytically advantageous 

frequency domain. In FFT, this transformation process provides critical insights into the amplitude 

characteristics of these frequency components picked out of the signal. It provides complete 

information on the signal’s behaviour through several frequencies. As a result, integrating both 

amplitude and phase data provided by the FFT provides for a much deeper and more nuanced analysis 

of the ECG signal, thereby enabling increased interpretations and applications in cardiovascular 

diagnostics such as aortic stenosis. 

𝑋(𝑓) = ∑  𝑁−1
𝑛=0 𝑥(𝑛) ⋅ 𝑒−𝑗2𝜋𝑓𝑛/𝑁       (4) 

In order to extract the power spectrum, all that needs to be carried out is a detailed analysis of critical 

information concerning the energy distribution of signal across different frequency bands to gain a 

total understanding of the signal characteristics. This squared magnitude of the Fast Fourier Transform 

(FFT), a commonly used technique to transform the signal from the time domain to the frequency 

domain, hence yields more insight into the behaviour of the signal. Is this power spectrum or, 

mathematically speaking? With the assumption that the spectra are stationary and the energy of all 

frequencies is allocated at near the same ratio among all frequencies, this provides a means to infer 

how this energy is allocated across different frequencies and, therefore, interpret how energy is 

expended across different frequencies, which is essential in applications from telecommunication to 

the field of audio engineering to the overall understanding of the signal's underlying properties. 

Power⁡(𝑓) = |𝑋(𝑓)|2         (5) 

When conducting a thorough analysis of electrocardiogram (ECG) signals, it is essential to consider 

several pivotal frequency bands that significantly contribute to the interpretation of cardiac activity, 

which include the following categories: 

Very Low Frequency (VLF): This frequency range is 0.0033 to 0.04 Hz, which is particularly 

important for understanding the heart's autonomic regulation and association with physiological and 

pathological states. Low Frequency (LF): This band extends from 0.04 to 0.15 Hz and is critical in 

reflecting the balance between sympathetic and parasympathetic nervous system influences on 

cardiovascular health and function. High Frequency (HF): This frequency band is predominantly due 

to respiratory influences on heart rate variability. Therefore, assessing the overall autonomic 

modulation of cardiac function and its health implications from 0.15 to 0.4 Hz is essential. 

3.4 Extraction of ECG Features Related to Aortic Stenosis 

3.4.1 Left Ventricular Hypertrophy (LVH) 

Left ventricular hypertrophy (LVH) is an enlargement of the left ventricle, typically due to a 

cardiovascular disorder, such as aortic stenosis. In response to increased workload demands, the heart 

hypertrophies are more robust and have elevated electrical activity; this hypertrophy occurs. A narrow 
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aortic valve means that the heart will regularly pump more blood through an increasingly thickened 

left ventricle that must exert more force. On an electrocardiogram (ECG), we can see that with this 

change, the voltage in the ECG is elevated above ordinary, meaning that the heart is working harder 

now. Severe complications of LVH include arrhythmias such as aortic stenosis, heart failure and 

increased risk of cardiovascular disease. Equations (6) and (7) show the following methods of detecting 

the LVH. 

3.4.1.1 Sokolow-Lyon Index 

This particular criterion is based on the cumulative total of the amplitudes of designated components 

making up the specific QRS complex, a critical part of the analysis of electrocardiograms, to gain 

information about cardiac electrical activity and overall heart function. 

 Sokolow-Lyon Index = 𝑆V1 + 𝑅V5 or V6      (6) 

Where 𝑆V1⁡ Is the S wave amplitude in lead V1, and  𝑅V5 or V6⁡is the R wave amplitude in lead V5 or 

V6. 

Threshold: 

• LVH is suggested if the index is greater than 35 mm. 

3.4.1.2 Cornell Voltage Criteria 

The Cornell voltage criteria combine the cumulative value of the R wave in lead aVL with the S wave 

in lead V3 to form a complete assessment of cardiac electrical activity. 

 Cornell Voltage = 𝑅aVL + 𝑆V3       (7) 

Threshold: 

• LVH is suggested if this sum is more significant than 28 mm in men and 20 mm in women. 

3.4.2 QRS Duration and Amplitude 

In LVH settings, a prolonged QRS duration of more than 120 ms is not uncommon and is attributed to 

the higher muscle mass in the left ventricle. Therefore, a prolongation of time is needed for the 

depolarisation process to take place effectively and efficiently. 

3.4.3 Systolic and diastolic abnormalities (QRS Complex and T Waves) 

Careful examination of the QRS complex and T wave patterns is done to comprehensively analyse 

systolic and diastolic abnormalities associated with aortic stenosis by electrocardiogram (ECG). 

Abnormalities in these segments of ECG reflect structural and functional changes of the heart - left 

ventricular hypertrophy (LVH) and delayed ventricular repolarisation due to increased strain on the 

left ventricle, for example. These ECG manifestations must be understood to help us gain insights into 

the pathophysiological mechanisms of aortic stenosis and changes in the heart. 

3.4.3.1 QRS Complex 

An elevation in the amplitude of the QRS complex, or an extended duration of the QRS complex, can 

be an important clinical indicator of left ventricular hypertrophy, a condition in which the walls of the 

heart’s left ventricle thicken in response to increased workload or pressure. Additionally, suppose one 
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specifically observes systolic abnormalities in the form of notched QRS complexes. In that case, these 

may suggest a significant delay in conduction pathways and strain on the ventricular muscle (which 

may reflect ischemic injury, cardiac myopathy, and aortic stenosis). 

3.4.3.2 T Wave 

Absolute or asymmetric T wave deflection and decrease or inversion often indicate repolarisation 

abnormalities associated with ventricular strain and with the more chronic iron deficiency or ischemic 

events. These abnormalities are common in conditions like aortic stenosis, where the aortic valve is 

stiff, blood flow is obstructed, and increased heart strain is needed during relaxation. Visualisation and 

careful examination of these features can help to interpret systolic and diastolic abnormalities and to 

understand aortic stenosis and related cardiovascular problems. 

3.4.3.3 QRS Duration 

Longer than 120 milliseconds (the threshold) will indicate an elevation in ventricular mass that 

necessitates more time to adequately depolarise the heart's muscle, possibly indicating left ventricular 

overload or a bundle branch block. 

3.4.3.4 QRS Axis 

Left Axis Deviation (LAD) is when the axis is between -30° and -90° and may be due to left ventricular 

hypertrophy or left bundle branch block associated with ventricular overload due to aortic stenosis. A 

Normal Axis of -30° to +90° indicates good health and no major cardiac problems. Right Axis 

Deviation (RAD) with an axis greater than +90° does not represent left ventricular overload and is not 

associated with right ventricular disease. 

4 Model Development 

4.1 Support Vector Machine (SVM) 

A large dataset of aortic stenosis diagnosis and detection was trained meticulously on a large scale 12 

lead electrocardiogram (ECG) database using a Support Vector Machine (SVM) classifier with a radial 

basis function (RBF) kernel. The feature extraction process was designed to extract frequency domain 

characteristics and intricate signal morphology descriptors in the ECG signals. The motivation for this 

approach was to extract the rich information from ECG recordings to a set of hand-engineered features 

that could effectively represent the patterns of aortic stenosis. Although feature extraction was done 

with great effort and the SVM model was deployed, the results were not good in accuracy and recall. 

This suboptimal performance is due to the inherent complexities and high dimensionality of 12 lead 

ECG data. For example, conventional feature extraction techniques might not be able to express the 

rich, multi-faceted relationships in these datasets by extracting subtle and nuanced patterns, such as 

those of aortic stenosis. Moreover, since these basic methods have some limitations, there is a need to 

develop more advanced analytical methods to fully utilise the complexity of ECG signals to improve 

diagnostic accuracy for aortic stenosis, for example. 

4.2 Random Forest (RF) 

The Random Forest (RF) model was a modest but significant improvement over the Support Vector 

Machine (SVM) on a sizeable 12-lead electrocardiogram (ECG) database for diagnosing and 
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identifying aortic stenosis. This incremental improvement is primarily because the Random Forest 

algorithm also has an ensemble learning approach, which is very good at capturing various features in 

the ECG signals. RF aggregates predictions of multiple decision trees to use different aspects of the 

data to build a more robust model that can handle the complexity of cardiovascular signals. 

Nevertheless, the Random Forest model could not overcome the severe challenges of achieving high 

sensitivity levels to detect aortic stenosis accurately. In particular, this cardiovascular condition 

presents subtle changes in the electrical signals recorded in the ECG that are very difficult to capture 

by models that do not exploit sequential data patterns. The ECG readings for aortic stenosis are 

intricate, and the temporal changes in the ECG readings are often very nuanced and, therefore, 

necessary for a precise diagnosis. The limitations of non-sequence-based models such as RF become 

evident in complex ECG datasets, where these subtle signal variations are essential. This leaves the 

task of achieving optimal sensitivity in detecting aortic stenosis still a complex problem, and there is 

a need for more sophisticated machine-learning techniques that can capture these complex signal 

dynamics. 

4.3 Convolutional Neural Network (CNN) 

A CNN model trained on raw signals from an extensive 12-lead electrocardiogram (ECG) database 

could accurately diagnose and detect aortic stenosis. This model was particularly good at identifying 

spatial features over the 12 leads of the ECG, demonstrating that it could effectively extract local 

patterns in ECG signals. Such spatial properties are critical to detecting abnormalities, such as aortic 

stenosis, which would otherwise be visually imperceptible. However, despite the CNN model’s 

success in spatial analysis, the temporal dependencies were not well incorporated for accurate aortic 

stenosis detection. However, this limitation resulted in a lower recall rate than a hybrid model 

combining spatial and temporal analysis capabilities. ECG signals are temporal, meaning the dynamic 

changes in heart activity over time are essential to fully understanding cardiac conditions like aortic 

stenosis. Here, we identify a shortcoming of this work. Since CNN is designed to extract spatial 

features only, it cannot analyse temporal sequences, highlighting the need for a more hybrid 

architecture that combines the advantages of CNNs for spatial feature extraction with models 

specialised for analysing sequence data. Incorporating temporal analysis into such a hybrid model 

would enable it better to model the delicate temporal patterns of aortic stenosis. 

4.4 Long Short-Term Memory (LSTM)  

We found a standalone Long Short-Term Memory (LSTM) model promising in its ability to diagnose 

and detect aortic stenosis when applied to a complete 12-lead electrocardiogram (ECG) database. This 

model learned how the signals changed over time and demonstrated its strength by capturing the 

temporal patterns in the ECG signals. The LSTM model was able to model these temporal dynamics 

well but could not extract the spatial features of the ECG signals. This approach was limited when 

compared to the performance of the CNN-RNN-LSTM hybrid model. The hybrid model combines 

neural network architectures with convolutional and recurrent layers (specifically LSTMs). 

Convolutional layers in spatial feature extraction do very well and can understand and interpret the 

spatial relations and patterns in the ECG signals. LSTM layers also have their strength in sequential 

pattern learning, which means the data can be analysed across time to determine how a pattern affects 

it. The synergistic approach results in a more global and more robust model capable of accounting for 
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the temporal and spatial components in the ECG signals and, at the same time, raises the diagnostic 

accuracy of aortic stenosis.  

4.5 CNN-LSTM Hybrid Model 

To make a significant advance in the quest to improve diagnostic accuracy for aortic stenosis, a large-

scale 12-lead electrocardiogram (ECG) database has been used. Significant improvement over a 

conventional standalone convolutional neural network (CNN) and long short-term memory (LSTM) 

models has been achieved by a CNN-LSTM hybrid model that does not require an intermediate 

recurrent neural network (RNN) layer. This hybrid architecture is novel in its ability to simultaneously 

capture the delicate spatial patterns across the various ECG leads and appropriately model the temporal 

dependencies in ECG signal dynamics. Despite being a more lightweight and hybrid architecture, this 

hybrid has resulted in a marginal decrease in precision and recall metrics compared to higher 

complexity models like the CNN-RNN-LSTM. The latter framework offers a richer and more nuanced 

view of the data and a more complete integration of spatial and temporal features. Therefore, this more 

accurate model is a better diagnostic tool for clinicians trying to diagnose a patient with aortic stenosis. 

The results suggest a trade-off between model complexity and performance and that simpler models 

are beneficial but that more layers may be required to achieve optimal diagnostic outcomes in complex 

medical settings. 

4.6 Proposed CNN-RNN-LSTM hybrid model  

The CNN-RNN-LSTM hybrid model is a ground-breaking methodology in medical diagnostics. It is 

beneficial for aortic stenosis diagnosis from a complete 12-lead electrocardiogram (ECG) database. 

This model had a high accuracy rate of 87% on testing datasets and a high F1 score, and this shows 

that the model can be used in such an important field in healthcare. The success of this model is due 

to its innovative architecture, which uniquely synergistically combines Convolutional Neural 

Networks (CNNs) with Recurrent Neural Networks (RNNs) and Long Short Term Memories (LSTM) 

networks. The model can detect slight changes and characteristics of ECG signals that might be related 

to aortic stenosis, and CNN layers are good at extracting spatial features of ECG signals. However, 

the RNN and LSTM components do a great job of solving the task, which deals with the complex 

temporal dependencies we see in ECG data. The dual approach of this model enables it to learn subtle 

patterns essential for a correct diagnosis. We integrate these disparate architectures to extract fine 

signal features and long-range temporal information necessary for accurate aortic stenosis 

identification. Thus, the hybrid model has performed better than traditional machine learning methods 

and single architecture deep learning models in sensitivity and specificity of detection of this condition. 

A layered architecture is used to build the model, which produces a robust representation of the ECG 

signals with high recall rates and intense precision. This balance of information is essential for 

diagnostic reliability, especially in reducing the risk of clinical false negatives and positives. This 

model's ability to accurately capture delicate spatial and temporal patterns in ECG data improves its 

diagnostic accuracy. It suggests its potential for broader applications in medical diagnostics where 

high sensitivity and precision are needed. We finally demonstrate that the CNN-RNN-LSTM hybrid 

model is a robust diagnostic tool for aortic stenosis and can be used in the clinic for reliable detection. 

Its innovative design and improved performance will provide a significant step forward in cardiology 

and the potential for better patient outcomes through faster and more accurate diagnosis. 
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5. Results and Discussions

In this considerable study, we presented an innovative hybrid model that uses the power of 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short Term 

Memory (LSTM) networks to detect Aortic Stenosis from electrocardiogram (ECG) signals. Next, we 

evaluated our proposed model against various traditional machine learning algorithms and other 

contemporary deep learning architectures in a rigorous performance evaluation. To provide a 

comprehensive means of assessing the detection capability of the model, critical metrics for assessing 

these models were chosen to be accuracy, precision, recall, and F1-score. Each metric offers unique 

insights: The overall correctness of the model is called accuracy, the proportion of actual positive 

results to all optimistic predictions is precision, the model’s ability to find all relevant instances is 

recall, and the F1-score is a harmonic mean of precision and recall, which is helpful in case of 

imbalanced datasets. The findings of this evaluation are presented systematically and organised in 

Table 2, where the comparative performance metrics of our CNN-RNN-LSTM hybrid model are 

compared with the traditional and deep learning counterparts. This detailed analysis reveals the 

strengths and weaknesses of each approach. It points out the advantages of combining approaches in 

a hybrid model for better Aortic Stenosis detection from ECG signals. 

Table.2 Models Performance Comparison 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Support Vector Machine (SVM) 74 70 68 69 

Random Forest (RF) 76 73 70 71 

CNN 80 79 75 77 

LSTM 82 80 79 79 

CNN-LSTM Hybrid 85 83 82 82 

Proposed CNN-RNN-LSTM Hybrid 87 85 86 85.5 

The study demonstrates that deep learning models, particularly hybrid architectures, are superior for 

detecting Aortic Stenosis (AS) from 12-lead electrocardiogram (ECG) signals. However, traditional 

machine learning methods such as Support Vector Machines (SVM) and Random Forests (RF) could 

not handle the complicated spatial-temporal dependencies of ECG data and had only moderate 

performance. However, Convolutional Neural Network (CNN) and Long Short Term Memory 

(LSTM) based deep learning models outperformed (lacking comprehensive detection capabilities) 

individually. Significant accuracy improvement was achieved by introducing hybrid models, 

specifically CNN, CNN-RNN and CNN-RNN-LSTM hybrid models, as they can efficiently exploit 

spatial and temporal features of ECG signals. The confusion matrix of this is given in Figure 4. 
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Figure. 4 Confusion Matrix of Models 

On a large scale 12 lead electrocardiogram (ECG) database, various models were evaluated for 

detecting aortic stenosis, and we found that simpler models like SVM and RF had moderate 

performance but could not capture the complex ECG patterns. However, CNN and LSTM models 

achieved higher AUC scores because CNN can extract spatial features and LSTM can process data 

sequentially effectively. The hybrid CNN-LSTM model further improved these strengths. Finally, the 

CNN-RNN-LSTM hybrid model achieved the highest AUC. It is the best model for early detection of 

aortic stenosis because it can well analyse complex ECG signal patterns and temporal dependencies. 

Figure 5 depicts the same. 

Figure. 5 ROC Curve Comparison 

The analysis in Figure 6 examines the computational durations of various machine learning models 

and deep learning models: We implement Support Vector Machine (SVM), Random Forest (RF), 

Convolutional Neural Network (CNN), Long Short Term Memory (LSTM) networks, a CNN-LSTM 

hybrid model, and a proposed CNN-RNN-LSTM hybrid model.   Both SVM and RF have a 

computational time of around 200 seconds, which is efficient for small to medium datasets, but SVM 

computational time can grow with large datasets because it has a quadratic optimization problem. The 

computational time for this CNN becomes around 220 seconds as its architecture is complex and it 

makes intensive operations. The complexity of LSTM networks with additional gates for managing 

698

Vol 32 No. 3 (2025)



https://internationalpubls.com 

Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

 

sequential dependencies requires about 280 seconds.  The CNN-LSTM hybrid model shows a 

reduced computational time of about 260 seconds, which shows good integration. The proposed 

CNN-RNN-LSTM hybrid model is shown to have the lowest time of around 170 seconds, 

indicating improved parallelism and optimization. Overall, non-deep learning models (SVM and RF) 

have moderate times, deep learning models (CNN and LSTM) are more resource intensive, and 

hybrid models are more efficient. This indicates that the hybrid model is a potential solution for 

applications that require lower computational times while preserving the advantages of the integrated 

neural network architectures. 

Figure. 6 Models Computational Time 

6. Conclusion

A hybrid model that combines Convolutional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs) and Long Short Term Memory (LSTM) networks is proposed for Aortic Stenosis diagnosis 

using a 12-lead electrocardiogram (ECG) database. The CNNs in this model extract spatial features 

from multi-dimensional ECG data to identify subtle patterns and anomalies necessary for Aortic 

Stenosis identification. ECG signals are captured by RNNs, which can capture the temporal dynamics 

of the ECG signals, representing the progression of cardiac conditions by changes in electrical activity 

over time. LSTMs handle long-range dependencies in time series data and keep information across 

delays or complex temporal relations. These architectures combined enhance pattern recognition and 

diagnostic accuracy in ECG signals. Future work will investigate hyperparameter tuning and testing 

on larger, more diverse datasets to make the model more robust and generalisable so that the model 

continues to be a valuable tool for clinicians in early detection and diagnosis, which will help improve 

patient outcomes. 

References 

[1] Ahmadi, N., Tsang, M. Y., Gu, A. N., Tsang, T. S. M., & Abolmaesumi, P. (2023). Transformer-Based Spatio-

Temporal Analysis for Classification of Aortic Stenosis Severity from Echocardiography Cine Series. IEEE 
Transactions on Medical Imaging, 43(1), 366–376. https://doi.org/10.1109/tmi.2023.3305384

[2] Cohen-Shelly, M., Attia, Z. I., Friedman, P. A., Ito, S., Essayagh, B. A., Ko, W., Murphree, D. H., Michelena, H. I., 
Enriquez-Sarano, M., Carter, R. E., Johnson, P. W., Noseworthy, P. A., Lopez-Jimenez, F., & Oh, J. K. (2021). 
Electrocardiogram screening for aortic valve stenosis using artificial intelligence. European Heart Journal, 42(30), 
2885–2896. https://doi.org/10.1093/eurheartj/ehab153

699

Vol 32 No. 3 (2025)



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

 

https://internationalpubls.com 

[3] Hata, E., Seo, C., Nakayama, M., Iwasaki, K., Ohkawauchi, T., & Ohya, J. (2020). Classification of aortic stenosis        
 using ECG by deep learning and its analysis using Grad-CAM. https://doi.org/10.1109/embc44109.2020.9175151
[4] Huang, Z., Yu, X., Wessler, B. S., & Hughes, M. C. (2024). Semi-supervised multimodal Multi-Instance learning    
 for Aortic stenosis diagnosis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2403.06024
[5] Kwon, J., Lee, S. Y., Jeon, K., Lee, Y., Kim, K., Park, J., Oh, B., & Lee, M. (2020). Deep Learning–Based 
 algorithm for detecting aortic stenosis using electrocardiography. Journal of the American Heart Association, 9(7). 
 https://doi.org/10.1161/jaha.119.014717
[6] S, S., P, S., S, S., M, S., & D, U. a. K. S. (2024). Design of efficient adaptive LMS filter for noise reduction in 
 ECG. https://doi.org/10.1109/ic-etite58242.2024.10493643
[7] Vaid, A., Argulian, E., Lerakis, S., Beaulieu-Jones, B. K., Krittanawong, C., Klang, E., Lampert, J., Reddy, V. Y., 
 Narula, J., Nadkarni, G. N., & Glicksberg, B. S. (2023). Multi-centre retrospective cohort study applying deep  
 learning to electrocardiograms to identify left heart valvular dysfunction. Communications Medicine, 3(1). https://
 doi.org/10.1038/s43856-023-00240-w
[8] Zhang, Y., Wang, M., Zhang, E., & Wu, Y. (2024). Artificial intelligence in the screening, diagnosis, and 
 management of aortic stenosis. Reviews in Cardiovascular Medicine, 25(1), 31. https://doi.org/10.31083/
 j.rcm2501031
[9] Zheng, J., Chu, H., Struppa, D., Zhang, J., Yacoub, M., El-Askary, H., Chang, A., Ehwerhemuepha, L., 
 Abudayyeh, I., Barrett, A., Fu, G., Yao, H., Li, D., Guo, H., & Rakovski, C. (2020). Optimal Multi-Stage 
 Arrhythmia Classification Approach. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59821-7

700

Vol 32 No. 3 (2025)




