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Abstract: 

The main objective of this study is to solve unconstrained single-valued Neutrosophic 

Nonlinear Programming Problems using Cauchy’s Steepest Descent Method(CSDM) and 

the Fletcher-Reeves Method(FRM). Our approach is based on new arithmetic operations 

and ranking on the parametric representations of Triangular Neutrosophic Numbers(TNN). 

We prove some important theorems for Cauchy’s Steepest Descent Method and the 

Fletcher-Reeves Method. Numerical examples are presented to illustrate the theory 

developed in this article. The outcomes of the proposed methods are compared. 
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1. Introduction 

The notion of fuzzy sets, proposed by Zadeh [27], has played a vital role in addressing real-world 

challenges. Smarandache [21] introduced neutrosophic sets to shade the problem of fuzzy sets that 

handles less and inconsistent information. It was invented as an protracted system of fuzzy, 

intuitionistic and traditional sets. Here indeterminacy is included together with membership and non-

membership. Hence each element is associated with three parameters i.e., truth, indeterminacy, and 

falsity. The neutrosophic sets and logic are the utmost way of handling real-life problems, which 

obliges a generalization of fuzzy sets. Al-Naemi [1] introduced a novel parameter 𝛽𝑘
𝐺ℎ derived from 

the memoryless self-scaling DFP quasi-Newton method. The author demonstrated that any line 

search technique ensuring sufficient descent property can be employed, and further established the 

validity of the Zoutendijk condition, proving the method’s global convergence through a specific 

step-length approach. Using imprecise parameters to manage independent parameters. According to 

Andrei [2], an iterative process comprises two distinct components: determining a descent search 

direction 𝑑𝑘followed by a line search to identify an appropriate step size 𝛼𝑘. The search direction in 

the CSDM is precisely the negative gradient. Antczak [3] discussed an optimization problem 

involving a fuzzy objective function with inequality and equality constraints, all of which had locally 

Lipschitz functions. They successfully demonstrated that for this particular non-differentiable fuzzy 

optimization problem, they could create an associated bi-objective optimization problem. They also 

established a relationship between the vector optimization problem of Pareto solutions and the non-

dominated (weakly) solutions of the original non-differentiable fuzzy optimization problem. Basim 
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[4] the aim of this work has been to develop new, modified conjugate gradient formulas that perform 

better than the conventional FR-CG method for picture restoration. The outcomes validate the 

efficacy of the approach employed in this study to generate variations of the traditional CG 

procedure. Bellman et al. [5] delved into the field of decision-making processes under conditions of 

fuzziness. Chakraborty [6] discussed a trapezoidal neutrosophic number is a more useful concept 

than a triangular one. The removal of area method (i) and mean of interval method (ii) are two 

important de-neutrosophication methods that are effective in de-neutrosophicating the corresponding 

number. Hanachi et al. [7] introduced a novel hybrid approach in which the parameter is determined 

as a convex combination of three parameters 𝛽𝑘
𝐷𝑌, 𝛽𝑘

𝑃𝑅𝑃, 𝛽𝑘
𝑃𝑅 the adequacy of the descent and the 

global convergence has demonstrated. Practical results indicate that the chosen approach is betterÂ 

and more efficient when compared to the utilized methods. Hassan et al. [8] discussed that the 

research focus has centered on developing novel, modified conjugate gradient formulations that 

outperform the traditional FR CG approach in image restoration applications. The findings 

demonstrate the efficacy of the strategy employed in this research to derive variations of the 

traditional CG technique. The proposed methods have demonstrated global convergence under the 

rigorous Wolfe line search conditions. Husin et al. [9] presented a new steepest descent (SD) method, 

with the primary goal being the modification of the direction that has sufficient descent requirements 

and global convergence properties. The second strategy involves presenting regression analysis for 

real-world issues using the suggested modification of the SD method. Hepzibah et al. [10, 11] 

discussed how unconstrained optimization problems with fuzzy valued functions are taken into 

consideration as well as how to solve unconstrained optimization problems using Newton’s method 

with SVNTN coefficients. Moreover, single variable and multivariable fuzzy unconstrained 

optimization problems using Interval Newton’s Method are discussed with illustrations. 

Kaliyaperumal and Das [12] introduced a fuzzy version of the problem, which they addressed using 

the necessary and sufficient conditions of Lagrangian multipliers with a focus on fuzziness. They 

illustrated this approach with a numerical example. By solving two numerical examples on using 

membership functions (MFs) and the other using robust rankings they clarified the model’s 

effectiveness. This model is designed to tackle uncertainties and subjective experiences of decision-

makers and can assist in resolving challenges associated with decision-making. Kanaya [13] 

discussed a method for solving multi-objective nonlinear programming problems involving fuzzy 

parameters in the objective functions. Utilizing an interactive cutting-plane algorithm, this method 

relies on the stability set corresponding to α-Pareto optimal solutions obtained through the same 

method. Comprehensive study on NLNNs and NLN-LPPs was presented by Lachhwani [14]. Based 

on the proposed modified possibility score function, the author developed a novel solution technique 

for NLN-LPPs. Nearly the whole range of NN values is covered by the suggested modified 

possibility score function. Maissam Jdid [15] demonstrated how binary integers can be used to 

convert certain nonlinear models into linear ones, resulting in integer solutions that are consistent 

with the nature of the problems being studied. Ming ma et al. [16] defined a new fuzzy arithmetic 

and applied to fuzzy linear equations. Nagoorgani and Sudha [17] studied the optimality 

requirements of fuzzy nonlinear unconstrained minimization issues. The cost coefficients are denoted 

by TFNs and illustrated with several numerical examples. An alternative definition for NLNN was 

provided by Reig-Mullor [18], which works over some of the limitations mentioned in the literature. 
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Also, they developed the notions of 𝛼, 𝛽, 𝛾-cuts, possibilistic variance, possibilistic mean, and 

possibilistic standard deviation, which are among the primary characteristics of NLNN. Seikh 

Mijanur Rahaman [19] proposed solution methodologies for solving a unique matrix game, whereby 

the payoffs are expressed using single-valued neutrosophic numbers (SVNNs). Two non-linear 

multi-objective programming tasks are defined to determine the ideal values and strategies for the 

participants. These multi-objective programming issues are converted into bi-objective programming 

problems by assigning equal significance to the objective functions. Shilpa Ivin Emimal and Irene 

Hepzibah [20] introduced the optimization of intuitionistic fuzzy valued functions in unconstrained 

problems. The Interval Newton's Method using an Intuitionistic approach addresses both single and 

multivariable optimization problems.  Fuzzy sets (FS) and neutrosophic sets (NS) were combined by 

Sujit Das [22] to formulate neutrosophic fuzzy sets (NFS). The primary characteristic of NFS is its 

ability to handle inconsistent and imprecise data, which is highly useful when managing uncertain 

and inconsistent real-world applications. Uma Maheswari and Ganesan [23] introduced a fuzzy 

interpretation of the KKT condition, specifically for FFNLPP, and successfully identified their 

optimal fuzzy outcomes. Utilizing the Gradient technique, also recognized as CSDM, they 

transformed it into an unconstrained optimization problem involving multiple fuzzy variables.  

Vanaja and Ganesan [24,25] developed an interior fuzzy penalty function method to solve Fuzzy 

Nonlinear Programming Problems (FNLPP). They introduced innovative fuzzy arithmetic and 

ranking techniques based on the parametric representation of triangular fuzzy numbers. Additionally, 

they applied the exterior penalty method using fuzzy-valued functions to solve these FNLPPs. Ye 

[26] presented the notions of NN linear and nonlinear functions, as well as inequalities that include 

indeterminacy I, along with some basic operations of neutrosophic numbers (NNs). Afterwards, the 

authors presented general solution techniques for a variety of optimization models for NN nonlinear 

programming (NN-NP) issues with unconstrained and restricted optimizations. 

In this paper, we discuss Single-Valued Neutrosophic Nonlinear Programming Problem (SVNNLPP) 

involving triangular neutrosophic numbers. We present a neutrosophic version of the Cauchy’s 

Steepest Descent Method (CSDM) and Fletcher- Reeves Method (FRM) approaches based on a new 

method of neutrosophic arithmetic operations on the parametric representations of neutrosophic 

numbers and ranking on the neutrosophic numbers of the parametric forms. We prove theorems for 

the solution of SVNNLPP without converting the given problem to its equivalent crisp form.  

Numerical examples are presented to illustrate the efficacy of the proposed solution methods. 

The rest of this article is organized as follows. Section 2 provides some basic preliminaries and 

results on neutrosophic numbers. Section 3 provides NNLPP. Theorems on CSDM and FRM are 

provided in section 4. Section 5 presents the algorithms for CSDM and FRM. Section 6 deals with 

numerical examples. Result and discussion are given section 7. Finally, a brief conclusion is given in 

section 8. 

2. Preliminaries 

We explored Neutrosophic definitions, which capture the core of Neutrosophy by presenting subtle 

viewpoints on concepts frequently experienced in situations of uncertainty. By employing these 

definitions, our objective is to shed light the offer valuable perspectives on its impact on theoretical 

frameworks.  
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\textcolor{white}{``} 

Definition 2.1 Let Y be a universe of discourse. A neutrosophic set 𝒜̃𝔫 in υ is characterized by a 

truth-membership function T𝒜̃𝔫 a indeterminacy-membership function I𝒜̃𝔫 and a falsity-membership 

function F𝒜̃𝔫. T𝒜̃𝔫(υ); I𝒜̃𝔫(υ) and F𝒜̃𝔫(υ) are are real standard elements of [0,1]. It can be written as 

𝒜̃𝔫 = {< υ, (T𝒜̃𝔫(υ), I𝒜̃𝔫(υ),F𝒜̃𝔫(υ)) > |υ ∈ Y}. The function T𝒜̃𝔫(υ); I𝒜̃𝔫(υ) and F𝒜̃𝔫(υ) are real 

standard or non standard subsets of ]0−, 1+[ \textcolor{white}{''} 

i.e.,T𝒜̃𝔫(υ), I𝒜̃𝔫(υ),F𝒜̃𝔫:Y →]0−, 1+[ . There is No restriction is applied on the sum of 

T𝒜̃𝔫(υ); I𝒜̃𝔫(υ) and F𝒜̃𝔫(υ), so 0
− ≤ supT𝒜̃𝔫(υ),+supI𝒜̃𝔫(υ),+supF𝒜̃𝔫(υ) ≤ 3

+
. For a fixed υ = υ ∈

Y,T𝒜̃𝔫(υ), I𝒜̃𝔫(υ),F𝒜̃𝔫(υ), i.e., in simply, T𝒜̃𝔫(υ), I𝒜̃𝔫(υ),F𝒜̃𝔫(υ) is called Neutrosophic Number 

(NN). \textcolor{white}{``} 

Definition 2.2  Let Y be a universe of discourse. A single valued neutrosophic set (SVNS) 𝒜̃𝔫 over 

Y is an object having the form 𝒜̃𝔫 = {< υ, (T𝒜̃𝔫(υ), I𝒜̃𝔫(υ),F𝒜̃𝔫(υ)) > |υ ∈ Y} where T𝒜̃𝔫(υ):Y →

]0−, 1+[, I𝒜̃𝔫(υ):Y →]0−, 1+[,F𝒜̃n:Y →]0−, 1+[ are truth, indeterminacy and falsity membership with 

0 ≤ T𝒜̃𝔫(υ),+I𝒜̃𝔫(υ),+F𝒜̃𝔫(υ) ≤ 3 for all υ ∈ Y. \textcolor{white}{''} 

Definition 2.3  A Single Valued Neutrosophic Number (SVNN) 𝒜̃𝔫 = {<

υ, (T𝒜̃𝔫(υ), I𝒜̃𝔫(υ),F𝒜̃𝔫(υ)) > |υ ∈ Y}, subset of a real line, is called generalised neutrosophic 

number if  \textcolor{white}{``} 

    1.  𝒜̃𝔫 is neut-normal.  

    2.  𝒜̃𝔫 is neut-convex.  

    3.  T𝒜̃𝔫(υ) is upper semi-continuous, I𝒜̃𝔫(υ) is lower semi continuous and F𝒜̃𝔫(υ) is lower semi 

continuous.  

    4.  𝒜̃𝔫 is support, i.e. S(𝒜̃𝔫) = υ ∈ Y:T𝒜̃𝔫 > 0, I𝒜̃𝔫 < 1,F𝒜̃𝔫 < 1 is bounded.  

\textcolor{white}{''} 

Definition 2.4 A single valued neutrosophic number 𝒜̃𝔫 is Triangular Neutrosophic Number (TNN) 

and is denoted by 𝒜̃𝔫 = (〈𝔞T1
, 𝔞T2

, 𝔞T3
〉; 〈𝔞I1

, 𝔞I2
, 𝔞I3

〉; 〈𝔞F1
, 𝔞F2

, 𝔞F3
〉) having the membership function, 

indeterminacy function and non-membership function as follows.𝒶  

 μ
T
(υ) =

{
 
 

 
 

υ−𝔞T1

𝔞T2
−𝔞T1

,    𝔞T1
≤ υ ≤ 𝔞T2

𝔞T3
−υ

𝔞T3
−𝔞T2

,    𝔞T2
≤ υ ≤ 𝔞T3

0,  elsewhere 

  

  

 μ
I
(υ) =

{
 
 

 
 

υ−𝔞I1

𝔞I2
−𝔞I1

,    𝔞I1
≤ υ ≤ 𝔞I2

𝔞I3
−υ

𝔞I3
−𝔞I2

,    𝔞I2
≤ υ ≤ 𝔞I3

0,  elsewhere 
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 μ
F
(υ) =

{
 
 

 
 

υ−𝔞F1

𝔞F2
−𝔞F1

,    𝔞F1
≤ υ ≤ 𝔞F2

𝔞F3
−υ

𝔞F3
−𝔞F2

,    𝔞F2
≤ υ ≤ 𝔞F3

0,  elsewhere 

  

We use ℱ(ℛ) to represent the set of all triangular neutrosophic numbers defined on ℛ.  

Definition 2.5 The (α, β, γ)-cut of neutrosophic set is denoted by ℱ(α, β, γ), where (α, β, γ) ∈ [0,1] 

and are fixed numbers, such that α+ β+ γ ≤ 3 and is defined as ℱ(α, β, γ) = (μ
T
(υ),μ

I
(υ),μ

F
(υ)), 

where υ ∈ Y, μ
T
(υ) ≥ α, μ

I
(υ) ≤ β, μ

F
(υ) ≤ γ. 

Definition 2.6 A triangular neutrosophic number 𝒜̃𝔫 can also be represented as a pair 𝒜̃T
𝔫 =

(𝔞T;  𝔞T), 𝒜̃I
𝔫 = (𝔞I;  𝔞I), 𝒜̃F

𝔫 = (𝔞F;  𝔞F) of functions 𝔞T(r), 𝔞T(r), 𝔞I(r), 𝔞I(r), 𝔞F(r), 𝔞F(r) 0 ≤ r ≤ 1 

which satisfy the following requirements:   

    • 𝔞T(r) is a bounded monotonic increasing left continuous function for membership function.  

    • 𝔞T(r) is a bounded monotonic decreasing left continuous function for membership function.  

    • 𝔞I(r) is a bounded monotonic increasing left continuous function for indeterminacy function.  

    • 𝔞I(r) is a bounded monotonic decreasing left continuous function for indeterminacy function.  

    • 𝔞F(r) is a bounded monotonic increasing left continuous function for non-membership function.  

    • 𝔞F(r) is a bounded monotonic decreasing left continuous function for non-membership function.  

    • 𝔞T(r) ≤ 𝔞T(r), 𝔞I(r) ≤ 𝔞I(r), 𝔞F(r) ≤ 𝔞F(r),0 ≤ r ≤ 1.   

Definition 2.7 ( Parametric Form) 

Let 𝒜̃𝔫 = (𝔞T, 𝔞I, 𝔞F) be a triangular neutrosophic number and  𝔞T(r) = 𝔞T3
− (𝔞T3

− 𝔞T2
)r,  𝔞T(r) =

𝔞T1
+ (𝔞T2

− 𝔞T1
)r,  𝔞I(r) = 𝔞I3

− (𝔞I3
− 𝔞I2

)r,  𝔞I(r) = 𝔞I1
+ (𝔞I2

− 𝔞I1
)r,  𝔞F(r) = 𝔞F3

− (𝔞F3
−

𝔞F2
)r,  𝔞F(r) = 𝔞F1

+ (𝔞F2
− 𝔞F1

)r,  r ∈ [0,1]. The parametric form of the TNN is defined as 𝒜̃ =

(〈𝔞T0
, 𝔞T∗

, 𝔞T∗〉; 〈𝔞I0
, 𝔞I∗

, 𝔞I∗〉; 〈𝔞F0
, 𝔞F∗

, 𝔞F∗〉), where  𝔞T∗
= 𝔞T0

− 𝔞T and 𝔞T∗ = 𝔞T − 𝔞T0
,  𝔞I∗

= 𝔞I0
− 𝔞I 

and 𝔞I∗ = 𝔞I − 𝔞I0
,  𝔞F∗

= 𝔞F0
− 𝔞F and 𝔞F∗ = 𝔞F − 𝔞F0

 are the left and right fuzziness index functions 

respectively. The number 𝔞T0
= (

𝔞T(1)+𝔞T(1)

2
) , 𝔞I0

= (
𝔞I(1)+𝔞I(1)

2
) , 𝔞F0

= (
𝔞F(1)+𝔞F(1)

2
) is called the 

location index number. When r = 1, we get 𝔞T0
= 𝔞T2

, 𝔞I0
= 𝔞I2

, 𝔞F0
= 𝔞F2

.  

2.1 Arithmetic Operations on Neutrosophic Numbers  

We develop a new fuzzy arithmetic using the parametric form of triangular neutrosophic numbers. 

This involves expressing the numbers in terms of location index and fuzziness index functions for 

membership, indeterminacy, and non-membership functions. We propose a new neutrosophic 

arithmetic operation, where the lattice rule, which involves the least upper bound and greatest lower 

bound in the lattice L, defines the fuzziness index functions and the location index number 

corresponds to standard arithmetic. That is for 𝔞, 𝔟 ∈ L,  𝔞 ∨ 𝔟 = max{𝔞, 𝔟} and 𝔞 ∧ 𝔟 = min{𝔞, 𝔟}. For 
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any two fuzzy numbers 𝒜̃𝔫 = (〈𝔞T0
, 𝔞T∗

, 𝔞T∗〉; 〈𝔞I0
, 𝔞I∗

, 𝔞I∗〉; 〈𝔞F0
, 𝔞F∗

, 𝔞F∗〉), ℬ̃
𝔫
=

(〈𝔟T0
, 𝔟T∗

, 𝔟T∗〉; 〈𝔟I0
, 𝔟I∗

, 𝔟I∗〉; 〈𝔟F0
, 𝔟F∗

, 𝔟F∗〉) the arithmetic operations are defined as  

 

𝒜̃𝔫 ∗ ℬ̃
𝔫
= (〈𝔞T0

, 𝔞T∗
, 𝔞T∗〉; 〈𝔞I0

, 𝔞I∗
, 𝔞I∗〉; 〈𝔞F0

, 𝔞F∗
, 𝔞F∗〉) ∗ (〈𝔟T0

, 𝔟T∗
, 𝔟T∗〉;

〈𝔟I0
, 𝔟I∗

, 𝔟I∗〉; 〈𝔟F0
, 𝔟F∗

, 𝔟F∗〉)

                 = (〈𝔞T0
∗ 𝔟T0

, 𝔞T∗
∨ 𝔟T∗

, 𝔞T∗ ∨ 𝔟T∗〉, 〈𝔞I0
∗ 𝔟I0

, 𝔞I∗
∨ 𝔟I∗

, 𝔞I∗ ∨ 𝔟I∗〉,

〈𝔞F0
∗ 𝔟F0

, 𝔞F∗
∨ 𝔟F∗

, 𝔞F∗ ∨ 𝔟F∗〉)

 

 In particular for 𝒜̃𝔫 = (〈𝔞T0
, 𝔞T∗

, 𝔞T∗〉; 〈𝔞I0
, 𝔞I∗

, 𝔞I∗〉; 〈𝔞F0
, 𝔞F∗

, 𝔞F∗〉), 

ℬ̃
𝔫
= (〈𝔟T0

, 𝔟T∗
, 𝔟T∗〉; 〈𝔟I0

, 𝔟I∗
, 𝔟I∗〉; 〈𝔟F0

, 𝔟F∗
, 𝔟F∗〉) ∈ ℱ(ℛ), we have 

Addition:  

 

𝒜̃𝔫 ∗ ℬ̃
𝔫
= (〈𝔞T0

, 𝔞T∗
, 𝔞T∗〉; 〈𝔞I0

, 𝔞I∗
, 𝔞I∗〉; 〈𝔞F0

, 𝔞F∗
, 𝔞F∗〉) + (〈𝔟T0

, 𝔟T∗
, 𝔟T∗〉;

〈𝔟I0
, 𝔟I∗

, 𝔟I∗〉; 〈𝔟F0
, 𝔟F∗

, 𝔟F∗〉)

                 = (〈𝔞T0
+ 𝔟T0

, 𝔞T∗
∨ 𝔟T∗

, 𝔞T∗ ∨ 𝔟T∗〉, 〈𝔞I0
+ 𝔟I0

, 𝔞I∗
∨ 𝔟I∗

, 𝔞I∗ ∨ 𝔟I∗〉,

〈𝔞F0
+ 𝔟F0

, 𝔞F∗
∨ 𝔟F∗

, 𝔞F∗ ∨ 𝔟F∗〉)

 

 Subtraction:  

 

𝒜̃𝔫 ∗ ℬ̃
𝔫
= (〈𝔞T0

, 𝔞T∗
, 𝔞T∗〉; 〈𝔞I0

, 𝔞I∗
, 𝔞I∗〉; 〈𝔞F0

, 𝔞F∗
, 𝔞F∗〉) − (〈𝔟T0

, 𝔟T∗
, 𝔟T∗〉;

〈𝔟I0
, 𝔟I∗

, 𝔟I∗〉; 〈𝔟F0
, 𝔟F∗

, 𝔟F∗〉)

                 = (〈𝔞T0
− 𝔟T0

, 𝔞T∗
∨ 𝔟T∗

, 𝔞T∗ ∨ 𝔟T∗〉, 〈𝔞I0
− 𝔟I0

, 𝔞I∗
∨ 𝔟I∗

, 𝔞I∗ ∨ 𝔟I∗〉,

〈𝔞F0
− 𝔟F0

, 𝔞F∗
∨ 𝔟F∗

, 𝔞F∗ ∨ 𝔟F∗〉)

 

 Multiplication:  

 

𝒜̃𝔫 ∗ ℬ̃
𝔫
= (〈𝔞T0

, 𝔞T∗
, 𝔞T∗〉; 〈𝔞I0

, 𝔞I∗
, 𝔞I∗〉; 〈𝔞F0

, 𝔞F∗
, 𝔞F∗〉) × (〈𝔟T0

, 𝔟T∗
, 𝔟T∗〉;

〈𝔟I0
, 𝔟I∗

, 𝔟I∗〉; 〈𝔟F0
, 𝔟F∗

, 𝔟F∗〉)

                = (〈𝔞T0
× 𝔟T0

, 𝔞T∗
∨ 𝔟T∗

, 𝔞T∗ ∨ 𝔟T∗〉, 〈𝔞I0
× 𝔟I0

, 𝔞I∗
∨ 𝔟I∗

, 𝔞I∗ ∨ 𝔟I∗〉,

〈𝔞F0
× 𝔟F0

, 𝔞F∗
∨ 𝔟F∗

, 𝔞F∗ ∨ 𝔟F∗〉)

 

 Division:  

 

𝒜̃𝔫 ∗ ℬ̃
𝔫
= (〈𝔞T0

, 𝔞T∗
, 𝔞T∗〉; 〈𝔞I0

, 𝔞I∗
, 𝔞I∗〉; 〈𝔞F0

, 𝔞F∗
, 𝔞F∗〉) ÷ (〈𝔟T0

, 𝔟T∗
, 𝔟T∗〉;

〈𝔟I0
, 𝔟I∗

, 𝔟I∗〉; 〈𝔟F0
, 𝔟F∗

, 𝔟F∗〉)

                 = (〈𝔞T0
÷ 𝔟T0

, 𝔞T∗
∨ 𝔟T∗

, 𝔞T∗ ∨ 𝔟T∗〉, 〈𝔞I0
÷ 𝔟I0

, 𝔞I∗
∨ 𝔟I∗

, 𝔞I∗ ∨ 𝔟I∗〉,

〈𝔞F0
÷ 𝔟F0

, 𝔞F∗
∨ 𝔟F∗

, 𝔞F∗ ∨ 𝔟F∗〉)

 

 provided 𝔟T0
, 𝔟I0

, 𝔟F0
≠ 0.   

2.2 Ranking of neutrosophic Numbers  

The ranking of neutrosophic numbers plays an essential role in the decision-making process within a 

fuzzy environment. Various authors in the literature have proposed different types of ranking 

methods. This article uses a highly effective ranking technique based on the graded mean. For 𝒜̃𝔫 =
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(〈𝔞T0
, 𝔞T∗

, 𝔞T∗〉; 〈𝔞I0
, 𝔞I∗

, 𝔞I∗〉; 〈𝔞F0
, 𝔞F∗

, 𝔞F∗〉) ∈ ℱ(ℛ), define ℜ:ℱ(ℛ) → ℛ by ℜ(𝒜̃𝔫) =

(
〈𝔞T∗+4𝔞T0

+𝔞
T∗〉,〈𝔞I∗+4𝔞I0

+𝔞
I∗〉,〈𝔞F∗+4𝔞F0

+𝔞
F∗〉

6
). For any two triangular fuzzy numbers 𝒜̃𝔫 =

(〈𝔞T0
, 𝔞T∗

, 𝔞T∗〉; 〈𝔞I0
, 𝔞I∗

, 𝔞I∗〉; 〈𝔞F0
, 𝔞F∗

, 𝔞F∗〉) and ℬ̃
𝔫
= (〈𝔟T0

, 𝔟T∗
, 𝔟T∗〉; 〈𝔟I0

, 𝔟I∗
, 𝔟I∗〉; 〈𝔟F0

, 𝔟F∗
, 𝔟F∗〉) ∈

ℱ(ℛ), we have the following comparison:  

    • If ℜ(𝒜̃𝔫) < ℜ(ℬ̃
𝔫
), then 𝒜̃𝔫 ≺ ℬ̃

𝔫
  

    • If ℜ(𝒜̃𝔫) > ℜ(ℬ̃
𝔫
), then 𝒜̃𝔫 ≻ ℬ̃

𝔫
  

                • If ℜ(𝒜̃𝔫) = ℜ(ℬ̃
𝔫
), then 𝒜̃𝔫 ≈ ℬ̃

𝔫
. 

Note 1. ℜ(𝒜̃𝔫 + ℬ̃
𝔫
) = ℜ(𝒜̃𝔫) +ℜ(ℬ̃

𝔫
) 

Note 2. ℜ(𝒜̃𝔫. ℬ̃
𝔫
) = ℜ(𝒜̃𝔫).ℜ(ℬ̃

𝔫
) 

Note 3. ℜ(𝒜̃𝔫/ℬ̃
𝔫
) = ℜ(𝒜̃𝔫)/ℜ(ℬ̃

𝔫
), provided ℜ(ℬ̃

𝔫
) ≠ 0. 

3. Neutrosophic Non Linear Programming Problems (NNLPP) 

     Let general NNLPP  

 

"      𝓂𝒾𝓃 𝑓𝒩(𝜐̃𝑖)

 𝑠𝑢𝑏.  𝑡𝑜  ℎ̃𝒾
𝒩
(𝜐̃𝑖) ≈ 0̃  𝑓𝑜𝑟  𝒾 = 1,2, ⋯ , ℓ

𝑔̃𝑗
𝒩(𝜐̃𝑖) ⪯ 0̃  𝑓𝑜𝑟  𝒿 = 1,2, ⋯ ,𝓂

𝜐̃𝑖 ⪰ 0̃"

 (1) 

 where 𝑓𝒩 , ℎ̃1

𝒩
, ⋯ , ℎ̃𝑙

𝒩
, 𝑔̃1

𝒩 , ⋯ , 𝑔̃𝓂
𝒩 are continuous neutrosophic valued functions defined on 𝑅𝓃.  

       A vector 𝜐̃𝑖 = (𝜐̃1, 𝜐̃2, 𝜐̃3,⋯ , 𝜐̃𝑛) is considered a feasible solution to the NNLPP (1) if it meets all 

the constraints and adheres to the non-negativity condition of the NNLPP. The collection of all such 

feasible solutions is known as the feasible region, which is defined by these criteria. 

 𝜐̃ = {𝝊̃𝒊 ∈ R𝓃/ℎ̃𝒾
𝒩
(𝜐̃) ≈ 0̃  𝑓𝑜𝑟  𝒾 = 1,2, ⋯ , ℓ, 𝑔̃𝒿

𝒩(𝜐̃)𝑓𝑜𝑟  𝒿 = 1,2,⋯ ,𝓂  𝑎𝑛𝑑  𝜐̃𝑖 ⪰ 0̃}. 

4. Solution Methods 

We investigate two Neutrosophic optimization methods namely Neutrosophic Cauchy’s Steepest 

Descent Method and the Fletcher-Reeves Method (also called the Conjugate Gradient Method). 

These techniques give strong frameworks for improving objective functions when facing uncertainty, 

incompleteness, and inconsistency. Our goal is to explain the theoretical basics and real-world 

impacts of these Neutrosophic optimization methods using a series of theorems and proofs. This will 

show how effective they are in handling complicated optimization problems. 

      4.1  Neutrosophic Cauchy’s Steepest Descent Method 

      Consider an unconstrained minimization problem min𝑓𝒩(𝜐̃1, 𝜐̃2, … , 𝜐̃𝔫). The goal is to discover   

a local minimizer, also known as a minimizer. 𝑓𝒩(𝜐̃) represents the objective function for this 

minimization job. Gradient-based approaches are based on the observation that 𝑓𝒩 decreases the 
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fastest at a point 𝑝 in ℛ while advancing in the direction of −∇𝑓𝒩(𝑃). As a result, the iterative 

approach consists of,  

 𝜐̃𝜅+1 = 𝜐̃𝜅 + (𝛾̃𝜅𝑑̃(𝜐̃𝜅))𝒩 (2) 

 where as 𝜐̃𝜅 is the current estimate of 𝜐̃∗, (𝑑̃κ)𝒩 = (𝑑̃(𝜐̃𝜅))𝒩 is the search direction and 𝛼(κ) is the 

step length parameter in the space ℛ𝒩 of design variables. 

If we take (𝑑̃κ)𝒩 = −(𝔤̃κ)𝒩 = −∇𝑓𝒩(𝜐̃κ), we get the method of steepest descent. We have 𝜐̃(κ+1) =

𝜐̃𝜅 − (𝛼𝜅(𝔤̃κ))𝒩 , (𝔤̃κ)𝒩 = ∇𝑓𝒩(𝜐̃κ), where 𝛾̃(κ) is the minimizer of the function 𝜙(𝛾̃) = 𝑓𝒩(𝜐̃κ −

(𝛾̃𝑔̃κ))𝒩. To get the value of 𝛼(κ), one can use any of the one-dimensional search techniques. To 

start the iterative process effectively, the first approximation 𝜐̃0 must be chosen carefully and 

according to the particular problem at hand. 

4.1.1 Analyzing the Convergence of Quadratic Functions using the Neutrosophic steepest 

Descent Technique 

To demonstrate the convergence properties of gradient-based techniques, we will use a quadratic 

function represented as  

 𝑓𝒩(𝜐̃) ≈
1

2
𝜐̃𝑇𝒬̃𝜐̃ ≈

1

2
〈𝒬̃𝜐̃, 𝜐̃〉 (3) 

 where 𝒬̃ is positive definite. If f̃
𝒩

 has a minimum at υ̃∗ ≈ 0̃ with f̃
𝒩
(υ̃∗) ≈ 0̃, 

  𝔤̃𝒩 ≈ ∇f̃
𝒩
(υ̃) ≈ 𝒬̃υ̃ and  ∇2f̃

𝒩
(υ̃) ≈ 𝒬̃ . 

Then  

 ℛ(Φ(γ̃𝒩)) = ℛ (f̃
𝒩
(υ̃− γ̃𝔤̃𝒩)) =

1

2
ℛ(〈[𝒬̃ − 2γ̃𝒬̃2 + γ̃2𝒬̃3]υ̃, υ̃〉) 

 This gives ℛ(γ̃𝒩) =
ℛ(〈𝒬̃2υ̃,υ̃)〉)

ℛ(〈𝒬̃3υ̃,υ̃)〉)
=

ℛ(⟨𝒬̃υ̃,𝒬̃υ̃⟩)

ℛ(⟨𝒬̃(𝒬̃υ̃),𝒬̃υ̃⟩)
=

ℛ(⟨𝔤̃𝒩 ,𝔤̃𝒩⟩)

ℛ(⟨𝒬̃𝔤̃𝒩 ,𝔤̃𝒩⟩)
 

                                                               

Therefore, the iteration process of steepest descent for the quadratic function is expressed as  

 ℛ(υ̃κ+1) = ℛ (υ̃κ −
⟨(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩⟩

⟨𝒬̃(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩⟩
(𝔤̃κ)𝒩) (4) 

 Using the above formulation and the fact that  

 ℛ (f̃
𝒩
(υ̃κ+1)) = ℛ (f̃

𝒩
(υ̃κ) −

1

2

[〈(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉]2

〈𝒬̃(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉
) 

 The gives  

 ℛ (
f̃
𝒩
(υ̃κ)−f̃

𝒩
(υ̃κ+1)

f̃
𝒩
(υ̃κ)

) = ℛ (
[〈(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉]2

〈𝒬̃(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉〈(𝔤̃κ)𝒩 ,𝒬̃−1(𝔤̃κ)𝒩〉
) 

 and hence  
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                                  ℛ(f̃
𝒩
(υ̃κ+1)) = ℛ((1− μ

κ
)f̃
𝒩
(υ̃κ))                                                      

(4a)         

 where μ
κ
=

[〈(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉]2

〈𝒬̃(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉〈(𝔤̃κ)𝒩 ,𝒬̃−1(𝔤̃κ)𝒩〉
 

Theorem 4.1  Let the neutrosophic quadratic function denoted as f̃
𝒩

, defined by the expressions in 

(3), f̃
𝒩
(υ̃) ≈

1

2
υ̃T𝒬̃υ̃ ≈ 

1

2
〈𝒬̃υ̃, υ̃〉 and (υ̃κ) represent the iterates generated by the process  

 υ̃κ+1 = υ̃κ −
〈(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉

〈𝒬̃(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉
(𝔤̃κ)𝒩 

The sequence υ̃κ converges linearly towards the minimizer υ̃∗, which is approximately identical to 0̃, 

starting from any initial approximation υ̃0.  

 Proof: To prove υ̃κ+1 = υ̃κ −
〈(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉

〈𝒬̃(𝔤̃κ)𝒩 ,(𝔤̃κ)𝒩〉
(𝔤̃κ)𝒩, it is enough to prove  

ℛ(υ̃κ+1) = ℛ (υ̃κ −
⟨(𝔤̃κ)𝒩 , (𝔤̃κ)𝒩⟩

⟨𝒬̃(𝔤̃κ)𝒩 , (𝔤̃κ)𝒩⟩
(𝔤̃κ)𝒩) 

outlined in Equation (4) . That is it is enough to prove  

 ℛ (f̃
𝒩
(υ̃κ+1)) = ℛ((1− μ̃

κ
)f̃
𝒩
(υ̃κ)) (5) 

 This gives ℛ (f̃
𝒩
(υ̃κ)) = ∏κ−1

i=0 ℛ((1− μ̃
κ
)f̃
𝒩
(υ̃(0))), (υ̃κ) converges to ℛ(υ̃∗) = 0 if and only if 

ℛ(f̃
𝒩
(υ̃κ)) → 0 and in the view the above equation, this is possible if and only if 

 ∏∞
i=0 ℛ(1− μ̃

κ
) = 0, which is true, because ℛ(1− μ̃

κ
) ≤ ℛ (

γ̃
max

−γ̃
min

γ̃
max

) ≤ 1. 

As ℛ(υ̃∗) = 0 and ℛ (f̃
𝒩
(υ̃)) =

1

2
ℛ(𝒬̃υ̃, υ̃), Rayleigh inequality gives  

 
ℛ (

γ̃min

2
∥ υ̃κ+1 − υ̃κ ∥2) ≤ ℛ(f̃

𝒩
(υ̃κ+1 − υ̃(∗)))

= ℛ(f̃
𝒩
(υ̃κ+1)).

 (6) 

 Similarly,  

 
ℛ (

γ̃
max

2
∥ υ̃κ − υ̃(∗) ∥2) ≥ ℛ(f̃

𝒩
(υ̃κ) − υ̃(∗))

= ℛ(f̃
𝒩
(υ̃κ))

 (7) 

 Consequently (6) and (7), we get  

 

ℛ (
γ̃

min

2
∥ υ̃κ+1 − υ̃κ ∥2) ≤ ℛ(f̃

𝒩
(υ̃κ+1))

= ℛ((1− μ̃
κ
)f̃
𝒩
(υ̃κ))

≤ ℛ (
γ̃

max
−γ̃

min

2
∥ υ̃κ − υ̃∗ ∥2)
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 Which implies ℛ (
∥υ̃κ+1−υ̃∗∥

∥υ̃κ−υ̃∗∥
) ≤ ℛ (√

γ̃
max

−γ̃
min

γ̃
max

) as  ℛ (√
γ̃

max
−γ̃

min

γ̃
max

) > 0 

Hence  
∥υ̃κ+1−υ̃∗∥

∥υ̃κ−υ̃∗∥
⪯ √

γ̃
max

−γ̃
min

γ̃
max

. 

 It implies that the convergence of υ̃κ to υ̃∗ is linear. 

4.2 Exploring the Neutrosophic Fletcher-Reeves Technique (Neutrosophic Conjugate Gradient 

Method)  

In the Cauchy’s Steepest Descent Method, the determination of (d̃
κ
)𝒩 as −(𝔤̃κ)𝒩 leads the iterative 

process of υ̃κ towards the minimizer υ̃∗ in a zigzagging manner. Therefore, there is a necessity to 

generate a new search direction function (d̃
κ
)𝒩 that will accelerate the convergence of the iterates 

{υ̃κ} towards υ̃∗. 

Consider the quadratic function given in (3), f̃
𝒩
(υ̃) ≈

1

2
υ̃T𝒬̃υ̃ ≈

1

2
〈𝒬̃υ̃, υ̃〉 with 𝒬̃ positive definite. We 

shall generate ℛ((d̃
κ
)𝒩) as manually conjugate direction with respect to 

ℛ(𝒬̃),ℛ(〈𝒬̃ (d̃
j
)
𝒩

, (d̃
j
)𝒩〉) = 0, i ≠ j.  

The procedure for conjugate direction generation is 

 ℛ ((d̃
0
)𝒩) = −ℛ((𝔤̃0)𝒩) = −ℛ (∇f̃

𝒩
(υ̃0)) = −ℛ(𝒬̃𝒩(υ̃0)) with ℛ(υ̃0) being initial guess. 

Then 

 ℛ(υ̃κ+1) = ℛ(υ̃κ − α̃κ(d̃
κ
)𝒩), we get ℛ(α̃κ) = −ℛ (

〈(d̃
κ
)𝒩 ,(d̃

κ
)𝒩〉

〈(𝒬̃(d̃
κ
))𝒩 ,(d̃

κ
)𝒩〉
). This ℛ(α̃κ) minimize the 

function ℛ(Φ̃(α̃)) = ℛ (f̃(υ̃ − α̃d̃
κ
)) and hence ℛ(𝔤̃κ+1) is orthognal to ℛ(d̃

κ
), for ℛ(α̃) that 

minimizes the equation is given by ℛ(ϕ̃
′
(α̃)) = ℛ (〈∇f̃

𝒩
(υ̃− α̃(d̃

κ
))𝒩 , (d̃

κ
)𝒩〉) = 0 which is same 

as ℛ(〈(𝔤̃κ+1)𝒩 , (d̃
κ
)𝒩〉) = 0. The nextconjugate direction ℛ(d̃

κ+1
)𝒩 is given by 

 ℛ(d̃
κ+1
)𝒩 +ℛ(β̃

κ
(d̃

κ
)𝒩) where ℛ((d̃

κ
)𝒩) is so chosen that ℛ((d̃

κ
)𝒩) is conjugate to 

ℛ ((d̃
κ+1
)𝒩) with respect to ℛ(𝒬̃). This gives ℛ(β̃

κ
) = ℛ (

(𝔤̃κ+1)𝒩 ,𝒬̃(d̃
κ
)𝒩

(d̃
κ
)𝒩 ,𝒬̃(d̃

κ
)𝒩
). 

To evaluate ℛ(〈(d̃
κ
)𝒩 , (𝔤̃κ)𝒩〉) 

ℛ(⟨(d̃
κ
)𝒩 , (𝔤̃κ)𝒩⟩) = −ℛ(⟨(𝔤̃κ)𝒩 , (𝔤̃κ)𝒩⟩) +ℛ (β̃

κ−1
⟨(d̃

κ−1
)𝒩 , (𝔤̃κ)𝒩⟩) 

                                                          = −ℛ(〈(𝔤̃κ)𝒩 , (𝔤̃κ)𝒩〉) as ℛ((𝔤̃κ)𝒩) ⊥ ℛ((d̃
κ−1
)𝒩) and hence 

ℛ(α̃κ) = −ℛ (
〈(d̃

κ
)𝒩 ,(𝔤̃κ)𝒩〉

〈𝒬̃(d̃
κ
)𝒩 ,(d̃

κ
)𝒩〉
).  

Theorem 4.2 The neutrosophic gradient vectors (𝔤̃κ)𝒩 are mutually orthogonal and the direction 

search neutrosophic vectors (d̃
κ
)𝒩 are mutually 𝒬-Conjugate.   
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  Proof: To prove the neutrosophic gradient vectors (𝔤̃κ)𝒩 are mutually orthogonal and the direction 

search neutrosophic vectors (d̃
κ
)𝒩 are mutually 𝒬-Conjugate, it is enough to prove the neutrosophic 

gradient vectors ℛ((𝔤̃κ)𝒩) are mutually orthogonal and the direction search neutrosophic vectors 

ℛ((d̃
κ
)𝒩) are mutually 𝒬-Conjugate. 

Let as prove the theorem by mathematical induction. The result is true for κ = 1, since ℛ((d̃
0
)𝒩) 

and ℛ((d̃
1
)𝒩) are 𝒬-conjugate by the choice of ℛ(β̃

0
). Also ℛ((𝔤̃0)𝒩) = ℛ((−d̃

0
)𝒩) is 

orthogonal to ℛ((𝔤̃1)𝒩). Assume that ℛ((d̃
0
)𝒩),ℛ((d̃

1
)𝒩), . . . . ,ℛ((d̃

m
)𝒩) are mutually 𝒬-

conjugate and ℛ((𝔤̃0)𝒩),ℛ((𝔤̃1)𝒩), . . . . ,ℛ((𝔤̃m)𝒩) are mutually orthogonal.  That is the result is 

true for κ = m. We shall prove the result for κ = m+ 1. 

Then ℛ((𝔤̃m+1)𝒩) = ℛ((𝔤̃m)𝒩) +ℛ(α̃m𝒬̃(d̃
𝑚
)𝒩), where ℛ(α̃m) = −ℛ (

〈(d̃
m
)𝒩 ,(𝔤̃m)𝒩〉

〈(𝒬̃(d̃
m
))𝒩 ,(d̃

m
)𝒩〉
) And 

hence  

   

ℛ(〈(𝔤̃(m+1))𝒩 , (𝔤̃i)𝒩〉) = ℛ(⟨(𝔤̃m)𝒩 , (𝔤̃i)𝒩⟩ + ⟨α̃m⟩⟨𝒬̃(𝔤̃m)𝒩 , (𝔤̃i)𝒩〉) 

                                   = ℛ(⟨(𝔤̃m)𝒩 , (𝔤̃i)𝒩⟩) +ℛ(⟨α̃m⟩⟨𝒬̃(𝔤̃m)𝒩 , (𝔤̃i)𝒩〉)

                           =  ℛ(⟨(𝔤̃m)𝒩 , (𝔤̃i)𝒩⟩) −ℛ(⟨(𝔤̃m)𝒩 , (𝔤̃i)𝒩⟩)   

= 0

 

Also  ℛ((𝑑̃m+1)𝒩) = −ℛ((𝔤̃m+1)𝒩) +ℛ(β̃
m
(d̃
𝑚
)𝒩), where  

ℛ(β̃
m
) = ℛ(

〈(g̃m+1)𝒩 , 𝒬̃(d̃
m
)𝒩〉

〈(d̃
m
)𝒩 , 𝒬̃(d̃

m
)𝒩〉

) 

As ℛ(d̃
0
)𝒩 ,ℛ(d̃

1
)𝒩 , . . . . ,ℛ(d̃

m
)𝒩 are 𝒬-conjugate. Taking inner product with ℛ(𝒬̃(d̃

m
)𝒩), we 

have 

 

〈ℛ(d̃
𝑚+1

)𝒩 ,ℛ(𝒬̃(d̃
m
)𝒩)〉 = −ℛ(〈(𝔤̃m+1)𝒩 , 𝒬̃(d̃

m
)𝒩〉) +ℛ(〈β̃

m
〉〈(d̃

m
)𝒩 , 𝒬̃(d̃

m
)𝒩〉)

= −ℛ(〈(𝔤̃m+1)𝒩 , 𝒬̃(d̃
m
)𝒩〉) +ℛ(〈(𝔤̃m+1)𝒩 , 𝒬̃(d̃

m
)𝒩〉)

= 0     

 

 Then, ℛ(𝒬̃(d̃
𝑚
)𝒩) = ℛ (

(𝔤̃m+1)𝒩−(𝔤̃m)𝒩

α̃m ). 

and hence we have  

 ℛ (〈(d̃
κ
)𝒩 , 𝒬̃(d̃

𝑖
)𝒩〉) = ℛ (

〈(𝔤̃κ)𝒩 ,(𝔤̃i+1)𝒩−(𝔤̃i)𝒩〉

α̃i ) (8) 

 Combining the result we have ℛ(〈(𝔤̃κ)𝒩 , (𝔤̃i)𝒩〉) = 0 = ℛ(〈(d̃
κ
)𝒩 , 𝒬̃(d̃

 κ
)𝒩〉), for all κ. 

5. Algorithms  

This section provides the step-by-step procedures for the Neutrosophic steepest descent and the 

Fletcher-Reeves methods. These algorithms are developed to iteratively improve solutions by 

considering uncertainties and inconsistencies during the process. They represent the principles of 

Neutrosophy and provide valuable insights into managing uncertainty during optimization. 
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     5.1 Algorithm for neutrosophic Cauchy’s Steepest Descent Method 

  Step 1.   Let us take the SVNNLPP with unconstrained optimization problem incorporate the 

neutrosophic triangular coefficient 𝔤̃𝒩(υ̃(κ)
𝒩
). 

  Step 2.  Convert the triangular neutrosophic number coeffecients into arithmetic neutrosophic 

number and then covert to parametric form. 

  Step 3.  Compute first and second derivative for the given function, and choose any initial points. 

  Step 4.  Input υ̃(0)
𝒩
, let κ ← 0 

  Step 5.  Calculate S̃i

𝒩
, S̃i

𝒩
= −∇𝔤̃i

𝒩, where 𝔤̃i
𝒩 = f̃

𝒩
(υ̃), ∇𝔤̃i

𝒩 = ∇f̃
𝒩
(υ̃κ). 

  Step 6.  Find Hessian for 𝔤̃i
𝒩(x) 

  Step 7.  Find the (υ̃κ+1)𝒩 = (υ̃κ)𝒩 − (γ̃
i
𝔤̃κ)𝒩 then κ ← κ + 1. where γ̃ =

−(∇𝔤̃i
𝒩(x))TS̃i

𝒩

(S̃i
𝒩
)THi

𝒩
S̃i
𝒩  

  Step 8.  Repeat the process until ∥ ∇𝔤̃i
𝒩(υ̃κ) ∥< ε (or) ∥ (υ̃κ)𝒩 − (υ̃κ+1)𝒩 ∥< ε. Then halt the 

process if we get an optimal solution; otherwise, go to step 5. 

        Step 9.  Verify the optimum. 

5.2  Algorithm for neutrosophic fletcher reeves method 

  Step 1.  Let us take the SVNNLPP with an unconstrained optimization problem and incorporate the 

neutrosophic triangular coefficient. 𝔤̃𝒩(υ̃(κ)
𝒩
). 

  Step 2.  Convert the triangular neutrosophic number coeffecients into arithmetic neutrosophic 

number and then covert to parametric form. 

  Step 3.  Compute first and second derivative for the given function, and choose any initial points. 

  Step 4.  Input υ̃(0)
𝒩
, let κ ← 0 

  Step 5. Calculate S̃i

𝒩
, S̃i

𝒩
= −∇𝔤̃i

𝒩, where 𝔤̃i
𝒩 = f̃

𝒩
(υ̃), ∇𝔤̃i

𝒩 = ∇f̃
𝒩
(υ̃κ). and S̃i+1

𝒩
= −∇𝔤̃i

𝒩 +

|∇𝔤̃i
𝒩|2

|∇𝔤̃i−1
𝒩 |2

S̃i

𝒩
 

  Step 6.  Find Hessian for 𝔤̃i
𝒩(υ̃) 

  Step 7.  Find the (υ̃κ+1)𝒩 = (υ̃κ)𝒩 − (γ̃
i
𝔤̃κ)𝒩 then κ ← κ + 1. where γ̃ =

−(∇𝔤̃i
𝒩(υ̃))TS̃i

𝒩

(S̃i
𝒩
)THi

𝒩
S̃i
𝒩  

  Step 8.  Repeat the process until ∥ ∇𝔤̃i
𝒩(υ̃κ) ∥< ε (or) ∥ (υ̃κ)𝒩 − (υ̃κ+1)𝒩 ∥< ε. Then halt the 

process if we get an optimal solution; otherwise, go to step 5. 

  Step 9.  Verify the optimum. 
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6. Numerical Examples  

This section presents numerical examples of two significant methods utilized in Neutrosophic 

optimization: the Fletcher-Reeves method (also known as the conjugate gradient method) and the 

Neutrosophic Steepest Descent. These examples provide an in-depth demonstration of how these 

algorithms are applied, discussing their convergence properties and their ability to traverse uncertain 

solution domains. 

Example 6.1 Consider the problem of unconstrained optimization with single-valued neutrosophic 

triangular coefficients.  

 

𝑚𝑖𝑛 f̃(υ̃1, υ̃2) = (19,20,21); (0.69,0.51,0.52)υ̃1 + (25,26,27); (0.67,0.54,0.5)υ̃2

+(3,4,5); (0.74,0.75,0.68)υ̃1υ̃2 + (−5, −4, −3); (0.8,0.75,0.6)υ̃1
2

+(−4, −3, −2); (0.7,0.65,0.75)υ̃2
2

 (9) 

Starting with initial point 

 Ỹ
0
= (

(0,1,2); (0.65,0.6,0.5)
(0,1,2); (0.65,0.6,0.5)

) 

 Solution: The parametric form of the given SVNNLPP (only triplet)(9) is given by  

 

𝑚𝑖𝑛 f̃(υ̃1, υ̃2) = (20,1− r, 1 − r); (0.69,0.51,0.52)υ̃1 + (26,1− r, 1− r);

(0.67,0.54,0.5)υ̃2 + (4,1− r, 1− r); (0.74,0.75,0.68)υ̃1υ̃2

+(−4,1− r, 1 − r); (0.8,0.75,0.6)υ̃1
2 + (−3,1− r, 1 − r);

(0.7,0.65,0.75)υ̃2
2

 (10) 

 Ỹ
0
= (

(1,1− r, 1− r); (0.65,0.6,0.5)
(1,1− r, 1− r); (0.65,0.6,0.5)

) 

The condition required for υ̃ to be the optimum solution for (10)  ∇f̃(υ̃1, υ̃2) ≈ 0̃. Hence we have  

 

∂f̃

∂υ̃1
= (20,1− r, 1 − r); (0.69,0.51,0.52) + (4,1− r, 1− r); (0.74,0.75,0.68)υ̃2

+(−8,1− r, 1− r); (0.8,0.75,0.6)υ̃1

∂f̃

∂υ̃2
= (26,1− r, 1 − r); (0.67,0.54,0.5) + (4,1− r, 1− r); (0.74,0.75,0.68)υ̃1

(−6,1− r, 1− r); (0.7,0.65,0.75)υ̃2

 

 The condition required for υ̃ to be the optimum solution for (10)  ∇2f̃(υ̃1, υ̃2) ≈ 0̃. Hence we have  

 

∂2f̃

∂υ̃1
2 = (−8,1− r, 1− r); (0.8,0.75,0.6),

∂2f̃

∂υ̃2
2 = (−6,1− r, 1− r); (0.7,0.65,0.75)

∂2f̃

∂υ̃1 ∂υ̃2
= (4,1− r, 1− r); (0.74,0.75,0.68),

∂2f̃

∂υ̃2 ∂υ̃1
= (4,1− r, 1− r); (0.74,0.75,0.68)
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Table  1: Cauchy’s Steepest Descent Method 

 Iteration  𝐘𝐢 = (𝛖𝟏, 𝛖𝟐)   𝐘̃𝐢+𝟏 = (𝛖𝟏, 𝛖𝟐)  𝛁𝐟𝐢  

 

 

      1  

(

 
 

(1,1− r, 1 − r);
(0.65,0.6,0.5)
(1,1− r, 1 − r);
(0.65,0.6,0.5)

)

 
 

   

(

 
 

(6.4736,1− r, 1− r);
(0.8,0.75,0.75)
(9.2104,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(5.0528,1− r, 1− r);
(0.8,0.75,0.75)
(−3.368,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

 

 

 

      2  

(

 
 

(6.4736,1− r, 1− r);
(0.8,0.75,0.75)
(9.2104,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(6.9299,1− r, 1− r);
(0.8,0.75,0.75)
(8.9063,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(0.186,1− r, 1− r);
(0.8,0.75,0.75)
(0.2818,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

  

 

 

      3  

(

 
 

(6.9299,1− r, 1− r);
(0.8,0.75,0.75)
(8.9063,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(6.993,1− r, 1− r);
(0.8,0.75,0.75)
(9.002,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(0.064,1− r, 1− r);
(0.8,0.75,0.75)
(0.2818,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

  

 

 

      4  

(

 
 

(6.993,1− r, 1− r);
(0.8,0.75,0.75)
(9.002,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(6.9993,1− r, 1− r);
(0.8,0.75,0.75)
(9.002,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(0.064,1− r, 1− r);
(0.8,0.75,0.75)
(−0.04,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

  

Table  2: Fletcher Reeves Method 

  Iteration  𝐘̃𝐢 = (𝛖𝟏, 𝛖𝟐)   𝐘̃𝐢+𝟏 = (𝛖𝟏, 𝛖𝟐)  𝛁𝐟𝐢  

 

 

        1    

(

 
 

(1,1− r, 1− r);
(0.65,0.6,0.5)
(1,1− r, 1− r);
(0.65,0.6,0.5)

)

 
 

  

(

 
 

(6.4736,1− r, 1− r);
(0.8,0.75,0.75)
(9.2104,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(5.0528,1− r, 1− r);
(0.8,0.75,0.75)
(−3.368,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

 

 

 

        2   

(

 
 

(6.4736,1− r, 1− r);
(0.8,0.75,0.75)
(9.2104,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(6.9975,1− r, 1− r);
(0.8,0.75,0.75)
(9.000,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

    

(

 
 

(0.02,1− r, 1− r);
(0.8,0.75,0.75)
(−0.01,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

  

 

 

        3   

(

 
 

(6.9975,1− r, 1− r);
(0.8,0.75,0.75)
(9.000,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

   

(

 
 

(6.999,1− r, 1− r);
(0.8,0.75,0.75)
(8.999,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

    

(

 
 

(0.001,1− r, 1− r);
(0.8,0.75,0.75)
(0.003,1− r, 1− r);
(0.8,0.75,0.75)

)

 
 

  

   

From the above tables(1),(2), we observed that the SDM converges at iteration 4 while the FRM at 

iteration 3. Hence the optimal solution of the given SVNNLPP (9) is 
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 υ̃1 = (6.999,1− r, 1 − r); (0.8,0.75,0.75), υ̃2 = (8.999,1− r, 1− r); (0.8,0.75,0.75) with f̃(υ̃1, υ̃2) =

(186.999,1− r, 1− r); (0.8,0.75,0.75) 

That is the optimal solution of the SVNNLPP (9) is  

 υ̃1 = (5.999+ r, 6.999,7.999− r); (0.8,0.75,0.75), υ̃2 = (7.999+ r, 8.999,9.999− r); (0.8,0.75,0.75) 

with 𝑚𝑖𝑛 f̃(υ̃1, υ̃2) = (185.999+ r, 186.999,187.999− r); (0.8,0.75,0.75). 

Example 6.2 Consider the problem of unconstrained optimization with single-valued neutrosophic 

triangular fuzzy coefficients,  

 

𝑚𝑖𝑛 f̃(υ̃1, υ̃2) = (0,1,2); (0.68,0.51,0.55)υ̃1 − (0,1,2)(0.67,0.53,0.54)υ̃2 + (1,2,3);

(0.7,0.65,0.72)υ̃1
2 + (1,2,3); (0.69,0.51,0.52)υ̃1υ̃2

+(0,1,2); (0.67,0.5,0.51)υ̃2
2

(11) 

Starting with initial point 

 Ỹ
0
= (

(0,0,0); (0.66,0.52,0.53)
(0,0,0); (0.66,0.52,0.53)

)  

 Solution: The parametric form of the given SVNNLPP (only triplet)(11) is given by  

 

𝑚𝑖𝑛 f̃(υ̃1, υ̃2) = (1,1− r, 1 − r); (0.68,0.51,0.55)υ̃1 − (1,1− r, 1− r);

(0.67,0.53,0.54)υ̃2 + (2,1− r, 1− r); (0.7,0.65,0.72)υ̃1
2

+(2,1− r, 1− r); (0.69,0.51,0.52)υ̃1υ̃2 + (1,1− r, 1− r);

(0.67,0.5,0.51)υ̃2
2

 (12) 

 Ỹ
0
= (

(0,1− r, 1− r); (0.66,0.52,0.53)
(0,1− r, 1− r); (0.66,0.52,0.53)

) 

The condition required for υ̃ to be the optimum solution for (12)  ∇f̃(υ̃1, υ̃2) ≈ 0̃. Hence we have  

 

∂f̃

∂υ̃1
= (1,1− r, 1 − r); (0.68,0.51,0.55) + (4,1− r, 1− r); (0.7,0.65,0.72)υ̃1

+(2,1− r, 1− r); (0.69,0.51,0.52)υ̃2

∂f̃

∂υ̃2
= −(1,1− r, 1− r); (0.67,0.53,0.54) + (2,1− r, 1 − r); (0.69,0.51,0.52)υ̃1

(2,1− r, 1 − r); (0.67,0.5,0.51)υ̃2

 

 The condition required for υ̃ to be the optimum solution for (12)  ∇f̃(υ̃1, υ̃2) ≈ 0̃. Hence we have  

 

∂2f

∂υ̃1
2 = (4,1− r, 1− r); (0.7,0.65,0.72),

∂2f

∂υ̃2
2 = (2,1− r, 1− r); (0.67,0.5,0.51)

∂2f

∂υ̃1 ∂υ̃2
= (2,1− r, 1− r); (0.69,0.51,0.52),

∂2f

∂υ̃2 ∂υ̃1
= (2,1− r, 1− r); (0.69,0.51,0.52)
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Table  3: Cauchy’s Steepest Descent Method 

 Iteration  𝐘̃𝐢 = (𝛖𝟏, 𝛖𝟐)   𝐘̃𝐢+𝟏 = (𝛖𝟏, 𝛖𝟐)  𝛁𝐟𝐢  

 

 

        1  

(

 
 

(0,1− r, 1 − r);
(0.66,0.52,0.53)
(0,1− r, 1 − r);
(0.66,0.52,0.53)

)

 
 

   

(

 
 

(1,1− r, 1 − r);
(0.7,0.65,0.72)
(1,1− r, 1 − r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−1,1− r, 1− r);
(0.7,0.65,0.72)
(−1,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

 

 

 

        2  

(

 
 

(1,1− r, 1 − r);
(0.7,0.65,0.72)
(1,1− r, 1 − r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−0.8,1− r, 1− r);
(0.7,0.65,0.72)
(1.2,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(0.2,1− r, 1− r);
(0.7,0.65,0.72)
(−0.2,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

  

 

 

        3  

(

 
 

(−0.8,1− r, 1− r);
(0.7,0.65,0.72)
(1.2,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−1,1− r, 1− r);
(0.7,0.65,0.72)
(1.4,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−0.2,1− r, 1− r);
(0.7,0.65,0.72)
(−0.2,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

  

 

 

        4  

(

 
 

(−1,1− r, 1− r);
(0.7,0.65,0.72)
(1.4,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−0.96,1− r, 1− r);
(0.7,0.65,0.72)
(1.44,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(0.04,1− r, 1− r);
(0.7,0.65,0.72)
(−0.04,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

  

 

 

        5 

(

 
 

(−0.96,1− r, 1− r);

(0.7,0.65,0.72)
(1.44,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−1,1− r, 1− r);

(0.7,0.65,0.72)
(1.48,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−0.04,1− r, 1− r);

(0.7,0.65,0.72)
(−0.04,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

 

 

 

       6  

(

 
 

(−1,1− r, 1− r);

(0.7,0.65,0.72)
(1.48,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−0.992,1− r, 1− r);

(0.7,0.65,0.72)
(1.488,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(0.008,1− r, 1− r);

(0.7,0.65,0.72)
(−0.008,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

 

Table  4: Fletcher-Reeves Method 

Iteration  𝐘̃𝐢 = (𝛖𝟏, 𝛖𝟐)   𝐘̃𝐢+𝟏 = (𝛖𝟏, 𝛖𝟐)  𝛁𝐟𝐢  

 

 

        1  

(

 
 

(0,1− r, 1 − r);
(0.66,0.52,0.53)
(0,1− r, 1 − r);
(0.66,0.52,0.53)

)

 
 

   

(

 
 

(1,1− r, 1 − r);
(0.7,0.65,0.72)
(1,1− r, 1 − r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−1,1− r, 1− r);
(0.7,0.65,0.72)
(−1,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

 

 

 

        2  

(

 
 

(1,1− r, 1 − r);
(0.7,0.65,0.72)
(1,1− r, 1 − r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(−1,1− r, 1− r);
(0.7,0.65,0.72)
(1.5,1− r, 1− r);
(0.7,0.65,0.72)

)

 
 

   

(

 
 

(0,1− r, 1 − r);
(0.7,0.65,0.72)
(0,1− r, 1 − r);
(0.7,0.65,0.72)

)
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  From the above tables(3),(4), we observed that the CSDM converges at iteration 6 and the FRM 

converges at iteration 2. Hence the optimal solution of the given SVNNLPP (11) is 

 υ̃1 = (−1,1− r, 1− r); (0.7,0.65,0.72), υ̃2 = (1.5,1− r, 1− r); (0.7,0.65,0.72) with 

 f̃(υ̃1, υ̃2) = (−1.25,1− r, 1− r); (0.7,0.65,0.72) 

That is the optimal solution of the SVNNLPP (11) is υ̃1 = (−2+ r, −1,0− r); (0.7,0.65,0.72), υ̃2 =

(0.5+ r, 1.5,2.5− r); (0.7,0.65,0.72) with f̃(υ̃1, υ̃2) = (−2.25+ r, −1.25, −0.25− r); (0.7,0.65,0.72) 

7. Result and Discussion  

we focused on using the Fletcher-Reeves method Table (2) Table (4) and the Cauchy's Steepest 

Descent Method Table (1), Table (3) to solve two different problems, each with a unique set of 

notations. Our study determined that both methods produced the same solution, but the Fletcher-

Reeves method converged to the solution in fewer iterations than the Steepest Descent Method, 

making it the more efficient method for obtaining the single-valued neutrosophic optimal solution to 

the problems. 

Table (5),(6) represent the single-valued neutrosophic optimal solution of the SVNNLPP (9) for 

various values of r. 

Table  5: Neutrosophic the optimum technique to solve the provided neutrosophic a triangular 

coefficients for different values of r ∈ [0,1] 

   𝐫   𝛖𝟏  𝛖𝟐  

           0  (5.999,6.999,7.999); (0.8,0.75,0.75) (7.999,8.999,9.999); (0.8,0.75,0.75)  

          0.25   (6.249,6.999,7.749); (0.8,0.75,0.75)  (8.249,8.999,9.749); (0.8,0.75,0.75)  

          0.5   (6.499,6.999,7.499); (0.8,0.75,0.75) (8.499,8.999,9.499); (0.8,0.75,0.75)  

          0.75   (6.749,6.999,7.249); (0.8,0.75,0.75) (8.749,8.999,9.249); (0.8,0.75,0.75)  

1  (6.999,6.999,6.999); (0.8,0.75,0.75) (8.999,8.999,8.999); (0.8,0.75,0.75)  

Table  6: Continue on the table (5) 

   𝐫   𝐟(𝛖𝟏, 𝛖𝟐)  

 0  (185.999,186.999,187.999); (0.8,0.75,0.75)  

0.25   (186.249,186.999,187.749); (0.8,0.75,0.75)  

0.5   (186.499,186.999,187.499); (0.8,0.75,0.75)  

0.75   (186.749,186.999,187.249); (0.8,0.75,0.75)  

1 (186.999,186.999,186.999); (0.8,0.75,0.75) 

 

When r = 1, we see that  𝛖𝟏 =  (6.999,6.999,6.999); (0.8,0.75,0.75), 

 𝛖𝟐 = (8.999,8.999,8.999); (0.8,0.75,0.75) and  

 𝑚𝑖𝑛 𝐟(𝛖̃𝟏, 𝛖𝟐)  =  (186.999,186.999,186.999); (0.8,0.75,0.75) 

Table (7), (8) represent the single-valued neutrosophic optimal solution of the SVNNLPP (11) for 

various values of r.  
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Table  7: Neutrosophic the optimum technique to solve the provided neutrosophic a triangular 

coefficients for different values of r ∈ [0,1] 

 𝐫   𝛖𝟏  𝛖𝟐 

0  (−2, −1,0); (0.7,0.65,0.72)  (0.5,1.5,2.5); (0.7,0.65,0.72)  

0.25   (−1.75, −1, −0.25); (0.7,0.65,0.72)  (0.75,1.5,2.25); (0.7,0.65,0.72)  

0.5   (−1.5, −1, −0.5); (0.7,0.65,0.72)  (1,1.5,2); (0.7,0.65,0.72)  

0.75   (−1.25, −1, −0.75); (0.7,0.65,0.72)  (1.25,1.5,1.75); (0.7,0.65,0.72) 

1  (−1, −1, −1); (0.7,0.65,0.72)  (1.5,1.5,1.5); (0.7,0.65,0.72)  

Table  8: Continue on the table (7)  

𝐫   𝐟(𝛖𝟏, 𝛖𝟐)  

0  (−2.25, −1.25, −0.25); (0.7,0.65,0.72)  

0.25   (−2, −1.25, −0.5); (0.7,0.65,0.72)  

0.5   (−1.75, −1.25, −0.75); (0.7,0.65,0.72)  

0.75   (−1.25, −1.25, −1); (0.7,0.65,0.72)  

1  (−1.25, −1.25, −1.25); (0.7,0.65,0.72)  

  

When r = 1, we see that  𝛖𝟏 =  (−1, −1, −1); (0.7,0.65,0.72), 

 𝛖𝟐 = (1.5,1.5,1.5); (0.7,0.65,0.72)  and  

 𝑚𝑖𝑛 𝐟(𝛖̃𝟏, 𝛖𝟐)  =  (−1.25, −1.25, −1.25); (0.7,0.65,0.72)  

The above tables (5), (6), (7), and (8) illustrate that the proposed method provides decision makers 

with the flexibility to select their preferred solutions by making appropriate choices of r. 

8. Conclusion  

In this paper, we discussed a solution concept for SVNNLPP involving neutrosophic triangular 

numbers. First, the given SVNNLPP is expressed in terms of its location index number , left and 

right fuzziness index functions. In the parametric forms of neutrosophic numbers, a new type of 

neutrosophic arithmetic and neutrosophic ranking are introduced and utilized. The neutrosophic 

quadratic and neutrosophic conjugate gradient theorems for SVNNLPP are established. The 

neutrosophic versions of the CSDM and the FRM are used, and the neutrosophic optimal solution of 

the SVNNLPP is obtained without having to convert the given problem. The neutrosophic fuzzy 

optimal solution of the given SVNNLPP is tabulated for different values of r ∈ [0,1]. It is important 

to note that by utilizing the suggested procedure and selecting an appropriate value for r ∈ [0,1], the 

decision maker has the flexibility to select his or her preferred optimal solution based on the 

situation. The numerical solutions have been presented and discussed. Both methods provide same 

solution but FRM requires less number itreration comparing with CSDM. 
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