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Abstract:  

An ultimate relevant translational scientific endeavour that contributes to human 

vulnerability and happiness might be the creation and advancement of medications. Fast 

drug discovery procedures necessitate using contemporary computational approaches to 

tackle pharma data's complexities and high complexity. By combining Evolutionary 

Computing with Hybrid Artificial Neural Networks (EC-HANNs), this research introduces 

a novel strategy for optimizing and speeding up the drug development process. To handle 

various drug-target relations, predict the efficacy of compounds, and discover more 

accurate potential medications, the proposed model employs EC to evolve the 

computational construction and hyperparameters of HANNs in real-time. This innovation 

makes the model a flexible framework. Through repeated refinement of EC- HANN 

designs, the EC Module uses Particle Swarm Optimization (PSO) to choose the best 

configuration for individual drug discovery tasks. The model's distinctive feature is that it 

dynamically adjusts the network configuration to match the details of each drug discovery 

activity by using PSO to optimize the HANN's architecture and hyperparameters. 

Regarding sequential biological data, the HANN Module employs Convolutional Neural 

Networks (CNNs) to glean features for pattern recognition over time. By extracting high-

level spatial information from genetic data, CNN can better identify prospective medication 

candidates. When tested on several benchmark datasets, the proposed framework 

demonstrates superior performance over traditional neural networks across the board 

regarding prediction accuracy, convergence speed, and model durability. As a powerful 

tool, this hybrid approach can simplify drug discovery, leading to more efficient drug 

development. 

Keywords: Drug discovery, Evolutionary Computing, Hybrid Artificial Neural Networks, 

Particle Swarm Optimization, Convolutional Neural Networks. 

 

1. INTRODUCTION 

In drug development, the goal is to find novel pharmaceutical compounds that can prevent or treat 

disease. This approach requires learning how illnesses work, finding new drug targets, and designing 

compounds that can attach to them. The routine stages are selecting the target, evaluating drugs, 

optimizing lead molecules, and conducting preclinical trials. Experimental and computational 

methods can evaluate large datasets and predict drug efficacy and safety. Drug development's 

ultimate goal is to find safe and effective ways to treat untreated medical conditions [10, 14]. 

Recognizing drug targets, authenticating targets, hit-to-lead fructification, lead refining, preclinical 

molecule commitment, experimental evaluation, clinical testing, and so on are all steps in the drug 

development process. The most innovative way to change this hopeless situation, dependent on 
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careful navigation during growth, is the advancement of computer-enabled drug design technology. 

Computerized assistance drug design is the definitive resource for drug discovery methods and 

related computer-enabled drug design approaches. To generate optimized molecules with desirable in 

silica properties, computational methods provide a systematic evaluation of the molecular attributes 

(including selectivity, bioactivity, pharmacokinetic parameters, side effects, and physicochemical 

properties) at the hypothetical level [5]. It is also possible to lower the failure rate of the preclinical 

lead compounds by using computational methods with multi-objective refinement. 

By integrating the latest developments in machine learning (ML) in a coherent and automated 

fashion, artificial intelligence (AI) opens up new possibilities for drug creation by facilitating 

software programs that analyze, learn, and disclose enormous data related to pharmaceuticals to 

discover novel medicinal compounds [1, 4, 8]. The development of chemical and pharmacological 

knowledge and improvements in ML techniques have allowed AI paradigms to carve out a space for 

data-driven computational processes in drug design. As a branch of artificial intelligence, ML-

facilitated approaches focus more on transforming massive biomedical big data into new insights and 

sustainable expertise than on the theoretical advancement of complicated and established physic-

chemical principles [16]. Artificial intelligence (AI) systems, especially Deep Learning (DL) 

paradigms, show great potential in drug design due to their remarkable ability to generalize and 

extract features [7]. While traditional ML methods rely on hand-crafted attributes, DL methods can 

automatically learn features from input data, reorganizing simple attributes into complex 

characteristics through multi-layer attribute extraction [2]. The DL paradigms often include auto 

encoders, Restricted Boltzmann Machines, DNN, CNN, and RNN. This study introduces the reader 

to EC models in drug design [6]. It focuses on how DL algorithms with optimization techniques like 

PSO are used to discover and develop new drugs [21]. 

The main contributions of the article include: 

1. This study utilizes Evolutionary Computing and Hybrid Artificial Neural Networks (EC-

HANNs) to optimize and accelerate drug development.  

2. The EC Module employs PSO to determine the ideal configuration for drug discovery tasks 

by repeatedly refining EC-HANN designs. The model dynamically modifies the network 

configuration by optimizing the HANN's architecture and hyper parameters with PSO to match each 

drug discovery activity.  

3. The HANN Module uses CNNs to recognize patterns in sequential biological data. CNN uses 

high-level spatial information from genetic data to identify drug candidates. 

4. the proposed framework outperforms standard neural networks in prediction accuracy, 

convergence speed, and model durability on numerous benchmark datasets. A helpful tool, this 

hybrid strategy can simplify drug discovery and improve medication development.  

2. LITERATURE SURVEY 

Sagingalieva et al., [9] introduced a hybrid QNN(Quantum Neural Network) for medication response 

prediction. It uses 8 qubits of deep QNN and 363 convolutional and graph neural layers. This 

research sought to increase drug evaluation accuracy. With the decreased Genomics of Drug 

Sensitivity in Cancer dataset, we can show that the hybrid quantum model can predict IC50 drug 
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effectiveness values 15% better than its classical counterpart. This brings us closer to using quantum 

computers to build tailored medical applications. The hybrid quantum machine learning model 

advances deep quantum data-efficient algorithms using hundreds of quantum gates [3]. This 

breakthrough is vital in customized medicine, where data collection can be complex [18]. Movassagh 

et al., [22] aim to train a perceptron neural network with improved accuracy using a meta-heuristic 

approach (MHA). The article describes how the input coefficients of a neural network were 

determined using an integrated method [12]. To evaluate the efficacy of the suggested algorithm, it 

was later compared to others, including ant colony and invasive weed optimization. Compared to 

other methods, the suggested one achieves a higher rate of convergence with the neural network 

coefficient, according to the results. On the other hand, the neural network's prediction error was 

reduced by the suggested approach. 

By training computers in various ways, Arora et al., [11] introduced artificial intelligence (AI),which 

can create new algorithms and hypotheses using deep learning (DL), neural networks (NNs), and 

machine learning (ML). From chemical identification to clinical approval, artificial intelligence-

based drug development saves time and money. A COVID-19 vaccine and its clearance by the 

proper authorities within a year or two is the most convincing example of pharmaceutical product 

development. Artificial intelligence helps scientists quickly simplify their cutting-edge discoveries. 

FDA-approved Nano medicines powered by artificial intelligence are restoring the therapeutic side 

of the pharmaceutical industry, improving drug research, and targeting specific synergistic therapies. 

This in-depth examination focuses on AI and its applications in the pharmaceutical and life science 

industries. It studies AI in drug design, discovery, development, traditional Chinese medicine, drug 

repurposing, polypharmacology, and multi-omics data integration. 

Choudhuri et al., [19] studied computational drug design. This article covers many subjects, 

including computational drug design approaches, kinase enzyme computational drug design, deep 

learning and machine learning advances. By examining its current condition, we can better 

comprehend cheminformatics' potential, limitations, and beneficial outcomes. This research will 

concentrate on molecular data description, biological concerns, and machine learning algorithms. It 

will also discuss how algorithms are crucial to modern medication development. Drug discovery and 

development now emphasize computational drug design. A significant benefit of this strategy is the 

rapid discovery and optimization of promising pharmacological candidates. Despite the imprecision 

of mathematical techniques, the discipline constantly evolves, resulting in new and creative 

medications. 

Visan et al., examined various AI applications in the pharmaceutical industry [13]. AI-assisted 

medicine delivery design, innovative drug discovery, and creative AI approaches are explored. We 

cover target identification, virtual screens, and pharmaceutical formulation as we study deep learning 

and machine learning. The healthcare industry has been dramatically impacted by artificial 

intelligence (AI). Artificial intelligence can help reposition medications and develop new drug 

combinations, which could improve pharmaceutical delivery systems. A comprehensive study of 

drug discovery AI algorithms and platforms is provided in this article. This shows the field's 

technical advances and prospects. This work reviews AI in drug development. It also anticipates AI's 

future prospects and difficulties. 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 32 No. 2s (2025) 

 

67 
 

https://internationalpubls.com 

3. SYSTEM METHODOLOGY 

Computational drug development begins with target recognition, appraisal, and candidate search. 

Target selection transforms disease pathophysiology by determining lead chemical drug ability and 

selecting targets. Human diseases are complicated; thus, selecting targets requires all-encompassing 

methodologies that combine heterogeneous data, understand the molecular-level process of disease 

manifestations, and help find patient-specific changes. The proposed EC-HANN architecture creates 

a resilient, adaptive, and efficient drug discovery system. It is using evolutionary optimization and 

advanced neural network modelling. Particle Swarm Optimization (PSO) precisely tunes the HANN 

architecture for each drug development problem. In addition, the hybrid neural network structure 

allows in-depth chemical and biological data investigations. Researchers and pharmaceutical 

companies can profit from this method since it speeds up drug discovery and illuminates drug-target 

interaction mechanisms. 

3.1. Overall Structure of the EC-HANN Model 

Figure 1 shows a complete plan to improve drug development using EC-HANNs and evolutionary 

computing. First, the flow gathers chemical and biological data from several sources. These include 

disease-specific datasets, small molecule, protein structure, and genomic sequence data. Using this 

wealth of data, the Protein-Ligand Complex displays the interaction between a target protein and a 

potential therapeutic chemical (ligand). It's essential to determine the drug applicant's binding 

affinity for the target protein before clinical testing to assess its efficacy and safety [15]. The Protein-

Ligand Complex is crucial in drug development because it outlines potential binding interactions 

between a medication and its target. This complex's assembly requires contrasting the ligand's 

molecular information with that of the protein structure to determine compatibility. Analyse protein 

interactions to see if medicine can lessen disease symptoms by changing protein behaviour. After the 

Protein-Ligand Complex was developed, data was collected and categorized into three categories:  

Interaction data: To determine ligand specificity and binding affinities, encode the type and strength 

of chemical-target protein interactions. These data are crucial when predicting a drug's target protein 

activity-altering efficacy. Small Molecules information: Chemical properties affect a molecule's 

ADME profile. This includes solubility, polar surface area, charge transfer, and other 

pharmacokinetic variables.Target protein: Data contains structural motifs, active binding locations, 

and approved activators and inhibitors. This information helps the computer identify protein areas 

likely to bind drugs [17]. By applying element-specific mathematical representation to each data type 

after categorization, we may prepare them for machine learning. Numerical matrices and vectors are 

created using interaction patterns, chemical fingerprints, and protein sequence data. This helps the 

neural network process and recognizes crucial patterns. Simplifying complex biological data with a 

mathematical model simplifies downstream modelling.  
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Fig. 1: EC-HANN model 

The model optimizes the HANN structure and hyper parameters using Evolutionary Computing. This 

is the model's most significant innovation. Evolutionary computing simulates natural selection by 

repeatedly altering the model to improve its fitness function. PSO neural network configurations 

resemble swarm particles. Each particle uses its own and neighbours' experiences to travel the 

solution space and find the best solution. To optimize performance, PSO modifies the neural 

network's architecture (layer count, activation function, learning rate, and hyper parameters like 

batch size and optimization method). Performance parameters, including prediction accuracy, 

processing efficiency, and approach resilience, determine the validity of any arrangement. This 

technique dynamically changes the HANN to meet each drug discovery challenge, making the model 

more efficient and successful. The HANN module processes various data sources using many CNNs. 

It can understand complex chemical interactions and three-dimensional protein structure patterns 

since the CNN component is good at extracting spatial properties. 

CNNs excel at capturing spatial relationships between things. It includes binding sites, hydrogen 

bonding patterns, and ligand-receptor van der Waals forces.Due to CNNs' temporal pattern 

recognition capabilities, the model can handle sequential data like protein conformation changes or 

drug-protein interactions. The hybrid CNN can use the best features of both CNNs, making it 

adaptable for studying drug-protein interactions. The results from the EC-HANNs module are 

subsequently fed into Virtual Screening. The computational approach quickly evaluates several 

candidate compounds to determine which ones have the best chance of binding to the target protein. 

Virtual screening is a powerful tool that uses the best HANN configurations to assess specific 

molecules' binding capacity, particularity, and ADME features [20]. Time and money spent on 

conventional experimental screening approaches are drastically cut with the suggested frameworks in 

silico drug-target interaction simulations. 

3.2. Evolutionary Computing Model based on PSO 

The Evolutionary Computing Module of the proposed model is rooted in the optimization method 

assembled with the proposed model, an EC Module based on the PSO optimization model. Similar to 

how schools of fish or birds work together, PSO uses search spaces to find the best solution. Within 

Search Space, every particle in PSO stands for a potential structure. To better handle the complicated 

data sets associated with protein-ligand connections, PSO optimizes the HANNarchitecture and 
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hyper parameters within the context of the suggested paradigm for drug discovery.Identifying every 

particle as a possible HANN configuration is the job of the PSO algorithm. These configurations can 

contain additional features, such as activation functions, batch size, learning rate, and layer count. All 

things being equal, the particles "fly" around the solution at various speeds and places. In the first 

iteration, the location determines the exact HANN configuration; in the subsequent iterations, the 

velocity determines how that configuration should develop.Every possible configuration of particles 

has a fitness rating that indicates how efficiently it finds medicines. Several performance metrics, 

including computational efficiency, model resilience, and prediction accuracy, are used to determine 

the fitness function of this model. 

Each particle primarily monitors two factors: Pbest (Particlel Best Position) and Gbest (Global Best 

Position). A swarm of particles is first initialized randomly, with an individual setup of the HANN 

allocated to each particle. Layer count, neuron density, and other characteristics might change in the 

beginning configurations. Next, initialize the solution space with each particle's arbitrary location 

and velocity. A fitness function is selected, and each particle's fitness is assessed using it. This fitness 

function is developed to capture the computational efficiency and accuracy of the HANN 

configuration in predicting protein-ligand interactions within the context of drug discovery. For drug 

development, the fitness value helps gauge how "excellent" a specific HANN configuration is at 

modelling complicated data. When the fitness evaluation is complete, if the present configuration 

outperforms all prior configurations, each particle updates its Pbest accordingly. The swarm also 

updates Gbest to reflect the optimal configuration for all particles.Updating the position and velocity 

of each particle is the central mechanism of PSO. There are three primary sources of information on 

a particle's speed: The part of inertia that keeps some momentum from the last step is the current 

velocity. Attraction of the particle to its optimal position (Pbest) is a cognitive component. The social 

component is the particle's drawnness to the swarm's best global position (Gbest). 

The velocity update position of the equation is given in Equation 1. 

𝑣𝑖(𝑡 + 1) = 𝜔. 𝑣𝑖(𝑡) + 𝑐1. 𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
− 𝑥𝑖(𝑡) + 𝑐2. 𝑟2(𝐺𝑏𝑒𝑠𝑡𝑖

− 𝑥𝑖(𝑡))(1) 

Where 𝑣𝑖(𝑡)the current velocity of the particle is, 𝑥𝑖(𝑡)denotes the current position of the particle, 

𝜔 is the inertia weight,𝑐1 and 𝑐2is the cognitive and social coefficients, and r is the random value 

between 0 and 1.The updated position of the particle is included in Equation 2 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)     (2) 

Each iteration consists of carrying out the previous one until some termination requirement is 

satisfied, like a certain number of iterations or a reasonable fitness value. In each iteration, particles 

try out various HANN configurations until they find one that works best regarding prediction 

accuracy and processing overhead. Gbest is the recommended HANN setup by the PSO algorithm 

after convergence. The pharmacological discovery process uses this arrangement as its final 

architecture for the Hybrid Neural Network. The suggested methodology uses PSO to set up the 

appropriate HANN configuration to accelerate drug discovery and increase the likelihood of finding 

viable therapeutic candidates.  
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Algorithm of PSO in EC-HANN 

1. Initialize the swarm by populating it with particles and giving them random speeds and 

locations in the solution space. 

2.  Utilize the objective function to assess the fitness of every particle. 

3.  The 𝑝𝑏𝑒𝑠𝑡𝑖
 and fitness of each particle should be updated if their current fitness is better 

than their previous best. 

4. Determine which swarm particle is the most fit, and then modify 𝐺𝑏𝑒𝑠𝑡𝑖
 and fitness 

accordingly. 

5.  For each particle update the velocity using Equation 1. 

6.  Update the position of the particle: 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝑣𝑛𝑒𝑤 

7.  Proceed with steps 2–6 until you reach the maximum iterations or meet the 

convergence criteria. Then, set the 𝐺𝑏𝑒𝑠𝑡𝑖
 Position as the optimal solution. 

3.3. HANN Module Utilizing CNNs 

The suggested method relies on the Hybrid Artificial Neural Network (HANN). This network can 

analyze protein-ligand interactions, forecast medicine efficacy, and identify therapeutic candidates in 

high-dimensional data. This model's HANN uses CNNs and other neural network topologies to 

manage and accurately predict a variety of inputs,as shown in Figure 2. These inputs include image-

like molecular structures, interaction data, and chemical characteristics. This specially built HANN 

combines CNNs with RNN networks to improve learning capacity and capture complicated 

correlations across a wide range of data sources in the drug discovery pipeline. 

 

Figure 2: HANN Module Utilizing CNNs 

The HANN module accepts protein-ligand complex, interaction, small molecule, and target data in 

various formats. The first step in training a HANN to process any input is transforming it into math. 

Different inputs require different pre-processing methods. The Protein-Ligand Bond Chemical 

descriptions or three-dimensional biological molecule architectures represent the data. Described as 

feature vectors or graphs that show the molecules' nature, intensity, interactions and vectors of 

integers with molecular fingerprints or chemical descriptions. Divided into categories that reveal 

target protein properties and probable interactions. The model starts with a CNN, which is great at 
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spotting spatial patterns and extracting abstract information from raw data. For many reasons, CNN 

is essential to drug discovery: It provides crucial information on medicine binding to a target protein 

in three-dimensional chemical structures. It encompasses spatial interactions, bond topologies, and 

molecular conformations. RNN can collect interaction patterns and chemical similarities from graphs 

or vectors, which may affect binding affinity and activity. The CNN runs convolutional filters on the 

input data and pools the features to a down sample. This lets the CNN reduce data dimensionality 

and focus on essential patterns. The CNN sends feature maps to fully connected, dense layers after 

processing the incoming data. Based on CNN spatial and interaction data, these layers make 

decisions. Thick layers let RNN-based drug discovery networks discern detailed patterns by 

flattening high-dimensional feature maps. Neurons in these layers predict binding affinity, toxicity, 

and efficacy. Fully linked layers perform intricate computations to augment feature representations 

and increase the model's understanding of complex chemical interactions.  

• Using Evolutionary Computing for Optimization: HANN's PSO Evolutionary Computing 

Module is a standout feature. 

• Evolutionary optimization fine-tunes HANN hyperparameters and structural configurations in 

real-time. This ensures that the HANN is tailored to the drug discovery task.  

• The PSO algorithm adjusts these parameters: The last component of HANN, the output layer, 

offers model predictions. The following drug discovery tasks could use this layer 

setup.Categorization tasks include determining if a chemical binds or not. This knowledge could aid 

drug development.  

• Regression includes forecasting pharmaceutical efficacy and binding affinity. Classification 

output layers use sigmoid or softmax activation functions. 

• However, regression activation is linear, and choosing which activation function depends on 

whether the output is continuous, binary, or categorical. 

The innovative part of the HANN is its hybrid structure, which incorporates evolutionary computing 

for adaptability and the decision-making power of dense layers with the feature extraction 

capabilities of CNNs. Because each drug discovery dataset differs, the model may adapt its learning 

technique on the fly to account for these differences. Using evolutionary computing, we can be 

confident that HANNs aren't static but rather that they learn and adapt to new tasks over time, 

leading to better generalization and less overfitting. 

4. EXPERIMENTAL RESULTS 

This study used drug/cell line combinations from the GDSC database (https://www.mdpi.com/2072-

6694/15/10/2705) with adequate IC50 values to evaluate the EC-HANN. Data included 173,114 

drug-cell line pairs, split by 224 and 947, or 172,114. Normalize the replies from 0 to 1. A logistic-

like function gave us the formula for each IC50 value y: The norm of 𝑦 is 1/(1+𝑦0.1) for 𝑦 higher 

than 0. Use a positive integer to appropriately represent the observed or projected IC50 value. We 

separated the pre-processed data into training and testing sets. Each batch had 173,114 data pairs. 

Although data on personal medicine and the pharmaceutical sector is scarce, HQNNs solved 

difficulties on a short dataset. This decreased the dataset to 4000 training samples and 1500 testing 
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samples. This split ratio allowed us to reserve enough data for model training and testing. No 

division had a predetermined order. Adam implemented as an optimizer, had a learning rate of 

1.8×10−3. The suggested model is evaluated against QNN, MHA, and CNN using the following 

performance metrics: model durability, convergence speed, and prediction accuracy. 

4.1. Prediction Accuracy 

The proposed Hybrid Artificial Neural Network (HANN) using Evolutionary Computing 

outperforms QNNs, MHAs, and CNNs in prediction accuracy. Due to its ideal design and multi-

layered structure, HANN combines the strengths of numerous neural network architectures, 

improving accuracy. The CNN and RNN layers can capture tiny spatial properties and interaction 

patterns in drug discovery data, while the HANN's linked layers allow high-level judgments. The 

EC module adjusts hyperparameters, activation functions, and layer count to improve model 

accuracy and reduce prediction errors.CNNs, QNNs, and MHA perform poorly on high-dimensional 

drug discovery datasets whilebeing able to discern quantum mechanics patterns. Because these 

neural networks cannot generalize complex spatial associations.The HANN is better at managing 

spatial and contextual patterns to find drug candidates more accurately. The hybrid HANN structure 

and evolutionary optimization improve prediction accuracy for various drug discovery jobs, ensuring 

more dependable and insightful results. 

Table 1: Prediction Accuracy 

Model Prediction Accuracy (%) 

HANN 93.5 

QNN 89.7 

MHA 84.5 

CNN 81.4 

4.2. Convergence Speed 

During training, a model's convergence speed is the rate at which it finds an optimal solution. In 

comparison to more traditional approaches, such as QNN, MHA, and CNN, the evolutionary 

computing module of the HANN dramatically improves the convergence speed,as shown in Figure 4. 

PSO and neural network algorithms efficiently use hyperparameter adjustment and structural 

adaptation, mainly responsible for this improvement. The complicated computations involving 

quantum states and entanglement make convergence challenging for QNNs, MHA, and CNN. Since 

QNNs use an iterative approach, fine-tuning may take longer and include more iteration. However, 

HANN maximizes its structure with fewer iterations and faster convergence because of its adaptive 

evolutionary learning process. It makes HANN a more efficient training tool, especially for 

complicated drug discovery datasets and speeds up its convergence to an optimal solution. Because 

of this benefit, HANN is a viable option for large-scale drug discovery projects, even when time and 

computing resources are constrained. 
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Figure 3: Convergence Speed 

4.3. Model Durability 

A HANN can be made more resistant to input patterns and environment changes by using 

Evolutionary Computing. The HANN outlasts QNN, MHA, and CNN. The average accuracy 

stability of 94% of HANN over fifty test circumstances showed its longevity. This was achieved by 

exposing the models to noise, new data, and environmental changes. Under high-noise conditions, 

HANN did not lose prediction accuracy, decreasing only 2.3%. QNN fell 6.7%, MHA 4.9%, and 

CNN 5.6%. For medications its users had never seen, HANN maintained 96.2% of its prediction 

accuracy, compared to QNN (88.5%), MHA (91.4%), and CNN (89.7%). The network may adapt to 

new inputs through evolutionary computing and an adaptable topology, ensuring stable performance. 

The table below compares the model's stability under various test settings. 

Table 2: Model Durability Analysis 

Model Accuracy drop Accuracy retained 

HANN 2.4% 96.2% 

QNN 6.6% 88.5% 

MHA 4.8% 92.45% 

CNN 5.6% 88.7% 

HANN's prediction accuracy of 92.5% shows that it manages difficult drug development jobs better 

than any other model. HANN had the fastest learning rate and lowest loss compared to CNN, QNN, 

and MHA, which had slower convergence rates and losses that stabilized at higher levels. The model 

durability research shows that HANN (2.3%) has a moderate accuracy decline under high-noise 

conditions. In comparison, QNN (6.7% accuracy loss), MHA (4.9% loss), and CNN (5.6% loss) lose 

accuracy more. Due to its high accuracy, rapid convergence, and robust performance under many 

conditions, the HANN model is a reliable and successful drug development method.  

5. CONCLUSION 

The paper suggests a new drug discovery technique using Evolutionary Computing and Hybrid 

Artificial Neural Networks (HANN). It outperforms CNN, QNN, and MHA. Its 92.5% prediction 

accuracy showed that the HANN model can navigate the complex drug development process. HANN 

also had excellent model endurance and convergence speed, with loss values falling rapidly and 

accuracy dropping minimally under high-noise conditions, demonstrating its practical resilience. 

This allowed HANN to show its durability in practice. Due to the study's singular dataset, the 
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conclusions may not apply to other drug discovery settings. Researchers may be unable to get the 

resources needed to run the EC-HANN model due to its high processing needs. Even though PSO 

improved model performance, alternative evolutionary methods may be better studied in the future. 

Future studies should employ larger datasets for training and validation to improve model accuracy 

and usability. Try hybrid models that combine PSO with other optimization methods to improve 

prediction accuracy and efficiency. Future research should improve the interpretability of the EC-

HANN model by studying its mechanisms to understand better and trust its predictions.Finally, real-

world case studies are needed to assess the practical application of the EC-HANN model in drug 

development. It is necessary to evaluate the model and detect implementation issues.  
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