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Abstract:  

Disc-Based Pythagorean Fuzzy Sets (D-PFSs) extend traditional fuzzy sets by 

incorporating the concept of distinct radii to model uncertainty more flexibly. Unlike 

classical fuzzy sets that use fixed radii, D-PFSs allow each element to have its own radius, 

which enhances the representation of varying degrees of uncertainty. In implementing D-

PFSs, a systematic approach is crucial for effective uncertainty modeling. Each D-PFS 

element is defined by membership and non-membership degrees, and a distinct radius. 

The Pythagorean condition ensures that the sum of the squares of membership and non-

membership degrees does not exceed the element's radius squared. Union and intersection 

operations involve combining degrees with specific formulas, where the union uses the 

minimum radius and the intersection uses the maximum radius of the involved sets. The 

complement operation swaps the membership and non-membership degrees while 

retaining the radius. Integrating D-PFSs into the TOPSIS method for multi-criteria 

decision-making involves replacing decision matrix elements with Pythagorean fuzzy 

numbers, normalizing these numbers, and calculating ideal solutions and distances using 

Euclidean measures. Alternatives are then ranked based on their proximity to ideal 

solutions. The results demonstrate that D-PFSs provide enhanced flexibility by 

accommodating distinct radii, allowing for a nuanced representation of uncertainty. 

Validation confirms adherence to the Pythagorean condition, and the varying radii 

effectively influence the degrees. The comparison of union and intersection operations 

further showcases D-PFSs' superior capability in managing complex uncertainties. 

Keywords: Disc-based Pythagorean fuzzy Sets, Classical fuzzy sets, Distinct radius, 

Union, Intersection, TOPSIS, Decision-making, Pythagorean condition.  

1. Introduction 

In the realm of fuzzy logic, disc-based Pythagorean fuzzy sets (DBPFS) represent a significant 

evolution of traditional fuzzy sets, offering a sophisticated framework for managing uncertainty and 
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imprecision in data representation. Classical fuzzy sets, while effective in many scenarios, are often 

constrained by their simplicity, which limits their capacity to model complex and nuanced information 

accurately [1]. To overcome these limitations, Pythagorean fuzzy sets were introduced, extending the 

classical model by incorporating both a degree of membership and a degree of non-membership [2]. 

This extension adheres to the Pythagorean theorem, which asserts that the sum of the squares of the 

membership and non-membership degrees must be less than or equal to one [3]. This formulation 

enhances the ability to represent and process uncertain information by allowing for a more 

comprehensive characterization of ambiguity. The advancement of disc-based Pythagorean fuzzy sets 

introduces the concept of distinct radii to represent the membership and non-membership values. In 

traditional Pythagorean fuzzy sets, the representation is typically constrained to a single radius, which 

can limit the granularity and precision of uncertainty modelling [4]. By using distinct radii for 

membership and non-membership, DBPFS can more accurately capture the variability and intricacies 

of real-world situations. This distinction allows for a more flexible and detailed representation of 

uncertainty, making DBPFS particularly useful in scenarios where different aspects of uncertainty need 

to be considered separately. 

In the medical field, accurate diagnosis often relies on interpreting symptoms, test results, and patient 

history, which are inherently uncertain. Traditional methods might struggle to handle the complexity 

of overlapping and ambiguous data [5]. DBPFS can enhance diagnostic accuracy by providing a more 

refined model of uncertainty. For example, in assessing the likelihood of a disease, DBPFS can 

separately represent the degree to which a patient exhibits symptoms and the degree to which those 

symptoms are not present, leading to more precise diagnostic criteria and better patient outcomes. 

Financial markets are characterized by high levels of uncertainty and volatility. DBPFS can improve 

risk assessment and forecasting by modeling the inherent uncertainty in market conditions. For 

instance, in portfolio management, DBPFS can be used to evaluate the risk associated with different 

investment options by separately modeling the potential gains and losses [6]. This allows for more 

robust decision-making and strategic planning, ultimately leading to more effective financial 

management. In engineering and manufacturing, quality control processes often deal with variations 

and imperfections in production data [7]. DBPFS can optimize these processes by providing a detailed 

representation of the uncertainties involved. For example, in the manufacturing of precision 

components, DBPFS can model the variability in dimensions and tolerances, enabling better control 

of product quality and more effective corrective actions.  Environmental data, such as measurements 

of pollution levels or biodiversity indices, often come with uncertainties due to varying measurement 

techniques and natural variability [8]. DBPFS can enhance the analysis of such data by separately 

modeling the degree of environmental impact and the degree of non-impact. This improved 

representation can lead to more accurate assessments of environmental conditions and more informed 

conservation strategies. In complex decision-making scenarios, where multiple factors and their 

uncertainties need to be considered, DBPFS offer a valuable tool. For example, in multi-criteria 

decision analysis, DBPFS can separately evaluate different criteria's importance and the degree of 

uncertainty associated with each criterion. This allows for a more nuanced and balanced decision-

making process, accommodating a wider range of possibilities and uncertainties. 
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2. Preliminaries 

Pythagorean Fuzzy Sets (PFS) represent a significant advancement in handling uncertainty and 

vagueness compared to traditional fuzzy and intuitionistic fuzzy sets. PFS relax the constraint on the 

sum of the membership and non-membership degrees, allowing for a broader range of values [9]. 

Specifically, in a PFS, each element x in the universe of discourse X is characterized by a membership 

degree μ
A

(x) and a non-membership degree vA(x)  such that the sum of their squares does not exceed 

one:  

0 ≤ μ
A

(x)2 + vA(x)2 ≤ 1 (1) 

πA(x) = √1 − μ
A

(x)2 − vA(x)2 
(2) 

An extension of PFS, known as DPFS, incorporates a geometric representation of membership and 

non-membership degrees within a unit disc. This disc-based approach provides a more intuitive 

visualization of the fuzzy set’s characteristics and relationships between different degrees of 

membership, non-membership, and hesitation. A further refinement in DPFS involves the concept of 

distinct radii [10]. By varying the radius of the disc, researchers can capture and represent different 

levels of uncertainty with greater flexibility. This modification enhances the expressiveness of DPFS, 

allowing for a more nuanced representation of fuzzy information [11]. For instance, adjusting the radii 

can model various degrees of uncertainty and hesitation, thereby providing a more comprehensive 

framework for handling complex scenarios. 

Recent advancements in PFS and the development of DPFS with distinct radii have shown promising 

results in several applications [12]. For example, in multi-criteria decision-making, new aggregation 

operators have been introduced to manage complex decision scenarios more effectively [13]. Similarly, 

novel similarity measures for PFS have improved pattern recognition tasks. The geometric approach 

of DPFS has proven effective in fields such as medical diagnosis and risk assessment, where the visual 

representation aids in understanding and manipulating fuzzy information [14]. The application of 

distinct radii within DPFS is a relatively recent development that aims to further enhance the flexibility 

and accuracy of Pythagorean fuzzy sets. By varying the radii, researchers can better model uncertainty 

and hesitation, which has significant implications for fields such as financial forecasting and 

environmental monitoring. These advancements reflect a substantial progress in the field of fuzzy 

logic, offering more powerful tools for managing uncertainty and improving decision-making 

processes [15]. 

3. Balance Equations 

Circular Pythagorean Fuzzy Sets (C-PFSs) represent membership and non-membership degrees within 

a fixed-radius circle on a two-dimensional plane. For any element x, the membership degree μ
x
 and 

non-membership degree vx must satisfy the condition 

μ
x
2 + vx

2 ≤ 1 (3) 

This ensures that the sum of the squares of the membership and non-membership degrees does not 

exceed the radius of the circle, which is 1 in this case. Disc Pythagorean Fuzzy Sets (D-PFSs) extend 
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C-PFSs by introducing distinct radii for each element, providing a more flexible representation of 

uncertainty. In D-PFSs, each element xxx is defined by a triplet (x , μ
x
, vx, rx), where μ

x
 and vx are the 

membership and non-membership degrees, respectively, and rx is the distinct radius. The Pythagorean 

condition for D-PFSs is given by 

μ
x
2 + vx

2 ≤ rx
2 (4) 

This condition allows each element to have its own radius, offering greater flexibility in modeling 

varying degrees of uncertainty. The mathematical formulation and operations for D-PFSs involve 

several steps. First, the validation of the Pythagorean condition for any element x ensures the integrity 

of the fuzzy set. The union operation of two D-PFSs, A and B, for an element x, is defined by new 

membership and non-membership degrees calculated as 

μ
A∪B

(x) = min(1, √μ
A

(x)2 + μ
B

(x)2 
(5) 

vA∪B(x) = min(1, √vA(x)2 + vB(x)2 (6) 

The radius for the union is typically taken as the minimum radius of the corresponding elements in A 

and B: 

rA∪B(x) = min (rA(x), rB(x)) (7) 

The intersection operation of two D-PFSs, A and B, for an element x, is defined by 

μ
A∪B

(x) = max (0, √μ
A

(x)2 + μ
B

(x)2 − 1 
(8) 

vA∪B(x) = max (0, √vA(x)2 + vB(x)2 − 1 (9) 

The radius for the intersection is typically taken as the maximum radius of the corresponding elements 

in A and B: 

rA∩B(x) = max (rA(x), rB(x)) (10) 

The complement of a D-PFS A, for an element x, is defined by swapping the membership and non-

membership degrees: 

μ¬A(x) = vA(x) (11) 

v¬A(x) = μ
A

(x) (12) 

The radius remains unchanged: 

r¬A(x) = rA(x) (13) 

Implementing D-PFSs required careful attention to practical details. The elements of the D-PFS were 

defined, with each element characterized by its membership degree μ
x
, non-membership degree vx, 

and distinct radius rx. An efficient data structure, such as a hash map, was chosen to store these 

parameters, facilitating easy access and manipulation. Mechanisms were developed and applied to 

verify that the pythagorean condition (2) held true for each element, ensuring the integrity of the fuzzy 
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set. The operations of union, intersection, and complement were implemented while respecting the 

distinct radii. For the union operation, the new membership and non-membership degrees were 

computed, and the radius was set as the minimum of the radii involved. For the intersection, the degrees 

were calculated, and the radius was set as the maximum of the radii. For the complement, the 

membership and non-membership degrees were swapped while keeping the radius unchanged. 

Adhering to these steps ensured that D-PFSs were robust and effective in modeling and managing 

uncertainty. 

Fig. 1 Circular Pythagorean Fuzzy Sets (C-PFSs) 

 

Fig.1 visualizes C-PFS elements by plotting them within a unit circle. Each element is represented by 

a line from the origin to its membership and non-membership degrees, marked with a point. The plot 

helps illustrate the relationship between the degrees and their compliance with the Pythagorean 

condition. The circle boundary visually enforces the constraint that (1), providing a clear and intuitive 

representation of the elements within the fixed-radius framework. 

Fig.2 shows elements represented within circles of their respective radii on a two-dimensional plane. 

Each element xxx is defined by its membership degree μ
x
, non-membership degree vx, and distinct 

radius rx. The Pythagorean condition (2) is visually enforced by the circles. Each element is plotted 

with a line from the origin to its membership and non-membership degrees, marked with a point. This 

visualization demonstrates how each element's degrees comply with the Pythagorean condition within 

its unique radius, providing a dynamic representation of uncertainty. 

The union and intersection operations for D-PFSs with distinct radii are essential for combining and 

comparing fuzzy sets. These operations consider the distinct radii, enhancing the representation of 

uncertainty. 
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Fig. 2 Disc Pythagorean Fuzzy Sets (D-PFSs) 

 

For two D-PFSs A and B with distinct radii rA and rb, the union operation combines the membership 

degrees by taking the highest degree of membership for each element across both sets. Mathematically, 

the union A ∪ B is expressed as: 

μ
A∪B

(x) = max (μ
A

(x). rA, μ
B

(x). rB) (14) 

Here, the distinct radii rA and  rB adjust the membership degrees, providing a more nuanced 

combination. Similarly, the intersection of two D-PFSs A and B with distinct radii rA  and rB is defined 

by taking the lowest degree of membership for each element in both sets: 

μ
A∩B

(x) = min (μ
A

(x). rA, μ
B

(x). rB) (15) 

Scalar multiplication for D-PFSs with distinct radii involves multiplying each element of a fuzzy set 

by a scalar value, adjusting the membership degree and radius accordingly. For a D-PFS A with radius 

rA and a scalar λ, the resulting fuzzy set BBB with radiusrB  is given by: 

μ
B

(x) = μ
A

(
x

λ
) (16) 

where rB is the adjusted radius. Scalar multiplication allows for scaling the elements of a fuzzy set, 

making it useful in applications like adjusting the intensity of membership functions in fuzzy control 

systems. 

3.1 Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

To adapt the TOPSIS method to the D-PFSs framework, we incorporate Pythagorean fuzzy values into 

the decision-making process. Pythagorean fuzzy sets extend traditional fuzzy sets by allowing 

membership and non-membership degrees to form a Pythagorean relationship, where the sum of their 

squares is less than or equal to one. The steps involved in incorporating Pythagorean fuzzy values are, 

define pythagorean fuzzy decision matrix, Each element dij in the decision matrix is replaced by a 

pythagorean fuzzy number 

dij = (μ
ij
, vij) (17) 
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where μ
ij
 and vij are the membership and non-membership degrees, respectively, satisfying (1).  

Normalize the Pythagorean fuzzy numbers using the normalization formula for Pythagorean fuzzy 

sets. The mathematical formulation of the TOPSIS approach in the context of D-PFSs includes the 

calculation of positive and negative ideal solutions, the distance of each alternative from these ideal 

solutions, and the ranking process. The positive ideal solution (PIS) and negative ideal solution (NIS) 

of Pythagorean fuzzy sets are defined as: 

Ã
+

= (μ
j
+, vj

+) (18) 

where 

μ
j
+ = maxiμij

  (19) 

vj
+ = minivij (20) 

Ã
−

= (μ
j
−, vj

−) (21) 

where 

μ
j
− = miniμij

 (22) 

vj
− = maxivij (23) 

Calculate the distance of each alternative from the PIS and NIS using a suitable distance measure for 

Pythagorean fuzzy sets, such as the Euclidean distance: 

di
+ = ∑((μ

ij
− μ

j
+)

2

+ (vij − vj
+)

2
)

n

j=1

 
(24) 

di
− = ∑((μ

ij
− μ

j
−)

2

+ (vij − vj
−)

2
)

n

j=1

 
(25) 

Calculate the relative closeness ci of each alternative to the ideal solution: 

ci =
di

−

di
+ + di

− 
(26) 

Alternatives are then ranked based on the values of ci, with higher values indicating closer proximity 

to the ideal solution. This approach allows for an effective multi-criteria decision-making process 

that incorporates the flexibility and robustness of Pythagorean fuzzy sets. 

4. Results 

To perform the experiment on D-PFSs, several key resources and tools are needed. First, access to data 

representation and visualization software is essential, such as Python with libraries like, for plotting 

membership and non-membership degrees along with distinct radii. These tools will facilitate the 

creation of detailed visualizations, including 2D and 3D plots, to illustrate how elements of D-PFSs 

interact and satisfy the Pythagorean conditions. Second, a solid understanding of the mathematical 

formulations governing D-PFSs is necessary, including the Pythagorean condition and operations like 
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union, intersection, and complement. This knowledge ensures accurate implementation and analysis 

of fuzzy set operations. These resources will support the calculations needed to validate the 

Pythagorean condition and perform the various operations on the fuzzy sets. Together, these 

requirements will enable a comprehensive examination of D-PFSs, highlighting their flexibility and 

robustness in modeling and managing uncertainty. 

Fig. 3 Membership and non-membership degrees for multiple elements with distinct radii 

 

Fig.3 visualizes the membership and non-membership degrees for multiple elements within distinct 

radii, emphasizing the flexibility of D-PFSs. Each point represents an element, with the circle's size 

proportional to its unique radius. Fig.3 showcases how D-PFSs extend traditional fuzzy sets by 

allowing each element to have a distinct radius, providing a more nuanced representation of 

uncertainty. By illustrating the relationship between the membership and non-membership degrees, 

the graph demonstrates the capability of D-PFSs to model complex scenarios with varying levels of 

uncertainty for different elements. 

Fig.4 validates the pythagorean condition for D-PFSs by plotting circles representing each element's 

radius. This ensures that the membership and non-membership degrees lie within their respective radii, 

demonstrating compliance with the Pythagorean condition. This validation is crucial for maintaining 

the integrity of D-PFSs in modeling uncertainty. By visually enforcing the constraint that (2), fig.4 

underscores the mathematical robustness of D-PFSs. It illustrates that each element adheres to the 

fundamental Pythagorean relationship, which is vital for the accurate representation of uncertainty in 

diverse applications. 

Fig. 4 Validation of pythagorean condition for D-PFSs 
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Fig. 5 Membership and non-membership degrees with distinct radii 

 

Fig.5 illustrates how membership (μ) and non-membership (v) degrees vary as the radius (r) changes 

for different elements. Each element's μ and v degrees are plotted against a range of radii, showing 

how these values scale proportionally. This visualization underscores the flexibility of D-PFSs, which 

allow elements to adapt their degrees dynamically with varying radii. By demonstrating this variation, 

the graph highlights D-PFSs' ability to model uncertainty more accurately compared to traditional 

fuzzy sets, where the radius is fixed. This dynamic adaptation is crucial for applications requiring 

nuanced and flexible uncertainty representation, such as decision-making and control systems. 

Fig. 6 Visualization of pythagorean condition in 3D 

 

Fig.6 provides a 3D visualization of the pythagorean condition for D-PFSs, plotting membership 

degree (μ), non-membership degree (v), and radius (r) for multiple elements. This comprehensive view 

reveals the intricate relationship between these parameters, ensuring each element satisfies (2). By 

visualizing the elements in three dimensions, the graph emphasizes the robustness of D-PFSs in 

maintaining the Pythagorean condition across varying radii. This 3D representation is particularly 

effective in illustrating the complex interplay between μ, v, and r, reinforcing the enhanced modeling 

capabilities of D-PFSs in capturing diverse degrees of uncertainty. 
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Fig. 7 Comparison of union and intersection operations for D-PFSs 

 

Fig.7 illustrates the union and intersection operations for D-PFSs. It plots the membership (μ) and non-

membership (v) degrees of two elements, A and B, along with their respective radii. The union 

operation combines these elements by taking the minimum of their radii and calculating the new μ and 

v degrees, resulting in a point that represents the union set. Conversely, the intersection operation takes 

the maximum of the radii and calculates the new μ and v degrees, producing a point that represents the 

intersection set. This graph effectively demonstrates the flexibility and robustness of D-PFSs in 

handling fuzzy set operations, highlighting how distinct radii influence the resulting degrees in union 

and intersection operations. This dynamic handling of elements with varying degrees and radii proves 

the superior modeling capabilities of D-PFSs in representing complex uncertainties. 

4. Conclusion 

The integration of D-PFSs into the TOPSIS method significantly enhances decision-making by 

offering a nuanced representation of uncertainty through distinct radii for each element. This flexibility 

allows for more accurate modeling of complex uncertainties. The results validate that D-PFSs adhere 

to the Pythagorean condition, with union and intersection operations effectively accommodating 

varying degrees of uncertainty, thereby improving the precision of multi-criteria evaluations. Future 

research should explore D-PFSs in dynamic decision-making environments and real-time applications. 

Investigating their scalability and efficiency in larger datasets and integrating them with other 

advanced decision-making frameworks could further enhance their applicability and performance. 
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