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Abstract

In this paper, we investigate unique variations of the Julia and Mandelbrot
sets, establishing criteria for the escape of a function Tcz = sin(zk) + az + c for
all z ∈ C, where k ∈ N \ {1} and a, c ∈ C with a ̸= 0 by utilizing a four-step
iterative scheme extended with s-convexity, we analyze the dynamics of these
fractals by formulating and implementing the algorithms. Our exploration focuses
on understanding how distinct parameters impact these fractals’ color, dynamics,
and overall visual characteristics. Our findings reveal that specific fractal patterns
resemble exquisite natural objects like flowers and spiders. These fractal designs
are also employed as visually striking artistic motifs on garments and textile
materials. The captivating and complex properties of fractal patterns within
dynamic systems make them an enticing and visually appealing area of research.

Keywords: Julia set; Mandelbrot set; Four-step iteration scheme with s-convexity
.
Mathematics Subject Classification: 28A80; 37F10; 47H10;.

1 Introduction

Fractals have developed as one of the most exciting fields of study because of its self-
similarity. In 1917, Julia [6] and Fatou [5] began researching complex-valued maps.

∗Corresponding author E-mail: nabaraj.adhikari@camath.tu.edu.np

Communications on Applied Nonlinear Analysis 
ISSN: 1074-133X 
Vol 32 No. 1s (2025)

https://internationalpubls.com 63



They focused on exploring the complex dynamics of complex-valued map, specifically
the iterative approximations of the function z2+ c, where z is complex variable and c is
a complex constant; however, he faced challenges when attempting to visually present
it due to the lack of computer. After Julia’s initial exploration, the field of complex
dynamics experienced a period of decreased activity lasting for five decades. However,
in the 1980s, complex dynamics experienced a revival, spearheaded by Mandelbrot [11],
re-emerging as a lively area of mathematical research. This resurgence persists to-
day, driven in part by advancements in computer technology that provide substantial
computational power, allowing for the revelation of the intricate beauty of complex
dynamics for the first time. He named these complex structure as ”fractals” and dis-
covered that the Julia sets have individually in their features for different values of the
parameter c. Furthermore, by interchanging the role of z and c, a new set obtained
using same iterative scheme, which is called the Mandelbrot set. In 1987s, Lakhtakia
et al.[9] extended the work of Julia and Mandelbrot for the complex valued function
zk + c for all z ∈ C, k ∈ N \ {1} and c is complex parameter. Many academics have
studied the Julia and Mandelbrot set in depth from different angles ever since it was
first introduced. In 2004, Rani and Kumar [14], began an approach that included using
iteration algorithms based on fixed-point theory. This strategy was one of the avenues
explored in the analysis of the Julia and Mandelbrot set. After that, different iterative
methods are used to create different sorts of fractals, like as Ishikawa-iteration [13],
Noor-iteration [4], Abbas iteration[7]. Many researcher use various iterative methods
such as Picard-Mann iteration [21], the Picard-Mann iteration with s-convexity [15],
and the Picard-Ishikawa iteration [1], viscosity approximation method [8], Jungck-Noor
iteration with s-convexity [18], Jungck-CR [17], have all been used to generate the Julia
and Mandelbrot sets. Tomar et al. [19] flourished escape criteria for the complex-valued
function sin(zk)−az+ c, for all k ∈ N\{1} using Noor-iteration, created and examined
numerous Mandelbrot sets. In order to estimate a fixed point for a contraction map-
ping with a weak type, Shatanawi et al.[16] have been introduced a four-step iterative
technique. By incorporating s-convexity into a four-step iterative technique, Tomar et
al. [20] proved an escape criterion for complex-valued cosine function and generate
fascinating fractal formations, including Julia and Mandelbrot sets. Recently Adhikari
and Sintunavarat create and analyze the properties of fractal for modified functions (see
details in [3] [2]).

The paper employs a systematic approach, integrating the four-step iterative method
with s-convexity, to investigate novel variations of the Julia and Mandelbrot sets. The
primary objective is to define criteria for determining escape conditions for the function
sin(zk) + az + c for all z ∈ C and k is a natural number excluding 1, and a, c are
complex constants with a ̸= 0. The study aims to devise and execute algorithms
capable of generating these fractal patterns, thereby expanding the scope for analyzing
these captivating fractal structures.

The paper is structured into several sections. Section 2 offers an overview of the
notation and definitions employed throughout the article. Section 3 introduces the
definition and proves the escape criterion and algorithm used for fractal generation.
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Section 4 provides visual examples that illustrate the behavior and patterns produced
by the proposed methodology. Finally, Section 5 summarizes the main results and
contributions of the research.

2 Preliminaries

In this paper, C, R,N, always stand for the set of complex numbers, all real numbers,
all positive integers, respectively. In this section, we define Julia set, Mandelbrot set,
s- convexity and four-step iteration which is use in this research paper.

Definition 2.1 ([6]). The set of complex numbers in which the orbit of function Tc :
C → C, where c ∈ C not diverges towards infinity is referred to as the filled Julia set
of Tc. It is denoted by JTc and write

JTc = {z ∈ C : {|T n
c (z)|}∞n=0 is bounded}.

Definition 2.2 ([11]). Let Tc : C → C be a complex mapping ,where c ∈ C is a
parameter. The Mandelbrot set is defined as

M = {c ∈ C : JTc is connected}.

Equivalently, the Mandelbrot set M can be defined in [10] as:

M = {c ∈ C : T n(κ) ↛ ∞ as n → ∞}

where, κ is any critical point of Tc.

In the year 2020, the following four-step iterative approach was proposed by Shatanawi
et al. [16] for the approximating a fixed point within a weak-type contraction mapping.

Definition 2.3 ([16]). Let Tc : C → C to be a complex-valued self-mapping. For initial
point z0 ∈ C The four-step iteration scheme for sequence {zn} with constant parameter
is defined as: 

un = (1− δ)zn + δTczn

vn = (1− γ)zn + γTcun

wn = (1− β)zn + βTcvn

zn+1 = (1− α)zn + αTcwn

(2.1)

for all n ∈ N ∪ {0} and α, β, γ, δ ∈ (0, 1].

Definition 2.4 ([12]). Let z1, z2, z3, · · · , zn ∈ C and s ∈ (0, 1]. The s-convex combina-
tion is defined by

λs
1 · z1 + λs

2 · z2 + λs
3 · z3 + · · ·+ λs

n · zn (2.2)

where, λk ≥ 0 and
∑n

k=1 λk = 1. When s = 1, the s-convex combination reduced to the
standard combination.

Communications on Applied Nonlinear Analysis 
ISSN: 1074-133X 
Vol 32 No. 1s (2025)

https://internationalpubls.com 65



Recently, Tomar et al. [20] added the s-convex combination to the four-step itera-
tion, which is defined as follows:

Definition 2.5 ([20]). Tc : C → C to be a complex-valued self-mapping. For initial
point z0 ∈ C, the four-step iteration scheme with s-convexity for sequence {zn}∞n=0 with
constant parameter is defined as:

un = (1− δ)szn + δsTczn

vn = (1− γ)szn + γsTcun

wn = (1− β)szn + βsTcvn

zn+1 = (1− α)szn + αsTcwn

(2.3)

for all n ∈ N ∪ {0} and α, β, γ, δ, s ∈ (0, 1].

Using the iterative scheme (2.3) they prove the escape criterion for the complex-
valued cosine function cos(zk)+az+c for all z ∈ C, k ∈ N\{1} and a, c ∈ C and create
the Julia sets, along with Mandelbrot sets.

If u, v, w, z ∈ C then by Taylor series expansion for the sine function, we have

| sin(uk)| =
∣∣∣∣uk − u3k

3!
+

u5k

5!
− · · ·

∣∣∣∣
=|uk|

∣∣∣∣1− u2k

3!
+

u4k

5!
− · · ·

∣∣∣∣
| sin(vk)| =|vk|

∣∣∣∣1− v2k

3!
+

v4k

5!
− · · ·

∣∣∣∣
| sin(wk)| =|wk|

∣∣∣∣1− w2k

3!
+

w4k

5!
− · · ·

∣∣∣∣
| sin(zk)| =|zk|

∣∣∣∣1− z2k

3!
+

z4k

5!
− · · ·

∣∣∣∣
Suppose

(i)
∣∣∣1− u2k

3!
+ u4k

5!
− · · ·

∣∣∣ ≥ |ω1|

(ii)
∣∣∣1− v2k

3!
+ v4k

5!
− · · ·

∣∣∣ ≥ |ω2|

(iii)
∣∣∣1− w2k

3!
+ w4k

5!
− · · ·

∣∣∣ ≥ |ω3|

(iv)
∣∣∣1− z2k

3!
+ z4k

5!
− · · ·

∣∣∣ ≥ |ω4|

where, |ω1|, |ω2|, |ω3|, |ω4| ∈ (0, 1].
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3 Main Results

In this section, we prove the escaping criteria, which plays a vital role in creating the
Julia and Mandelbrot sets.

3.1 Escape Criteria for Complex Sine Functions

Theorem 3.1. Let Tc : C → C be a complex-valued map defined by Tc(z) = sin(zk) +
az + c for all z ∈ C, k ∈ N \ {1} and a, c ∈ C such that a ̸= 0. Consider the iterative
sequence defined in (2.3) and |ω1|, |ω2|, |ω3|, |ω4| ∈ (0, 1] If

|z0| > max

{
|c|,

(2(1 + |a|)
sα|ω1|

) 1
k−1

,
(2(1 + |a|)

sβ|ω2|

) 1
k−1

,
(2(1 + |a|)

sγ|ω3|

) 1
k−1

,
(2(1 + |a|)

sδ|ω4|

) 1
k−1

}

then lim
n→∞

|zn| = ∞.

Proof. For n = 0 in (2.3) and using the binomial expansion for any index, we obtain

|u0| = |(1− δ)sz0 + δsTcz0|
= |(1− δ)sz0 + δs(sin(zk0 ) + az0 + c)|
≥ δs| sin zk0 + az0 + c| − (1− δ)s|z0|
≥ δs| sin(zk0 ) + az0 + c| − (1− sδ)|z0| [∵ (1− δ)s ≤ 1− δs]

≥ δs[| sin(zk0 )| − |a||z0| − |c|]− |z0|+ sδ|z0|
≥ sδ[| sin(zk0 )| − |a||z0| − |z0|]− |z0|+ sδ|z0|
= sδ| sin(zk0 )| − sδ|a||z0| − sδ|z0| − |z0|+ sδ|z0|
≥ sδ| sin(zk0 )| − |a||z0| − |z0|. (3.1)

We have | sin(zk0 )| = |zk0 |
∣∣∣1− z2k0

3!
+

z4k0
5!

− · · ·
∣∣∣ ≥ |zk0 ||ω4|, where |ω4| ∈ (0, 1] except the

value for which |ω4| = 0 and |z0| >
(

2(1+|a|)
sδ|ω4|

) 1
k−1

, from inequality 3.1 we obtain

|u0| ≥sδ|ω4||zk0 | − (1 + |a|)|z0|
=|z0|[sδ|ω4||zk−1

0 | − (1 + |a|)]
≥|z0|[2(1 + |a|)− (1 + |a|)]
=(1 + |a|)|z0|
≥|z0|. (3.2)
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Moving forward to the subsequent stage of the four-step iteration, we have

|v0| = |(1− γ)sz0 + γsTcu0|
= |(1− γ)sz0 + γs(sin(uk

0) + au0 + c)|
≥ γs| sin(uk

0) + au0 + c| − (1− γ)s|z0|
≥ γs| sin(uk

0) + au0 + c| − (1− sγ)|z0|
≥ γs[| sin(uk

0)| − |a||u0| − |c|]− |z0|+ sγ|z0|
≥ sδ[| sin(uk

0)| − |a||u0| − |z0|]− |z0|+ sγ|z0|
= sδ| sin(uk

0)| − sδ|a||z0| − sδ|z0| − |z0|+ sγ|z0|
≥ sγ| sin(uk

0)| − |a||z0| − |z0|. (3.3)

We have | sin(uk
0)| = |uk

0|
∣∣∣1− u2k

0

3!
+

u4k
0

5!
− · · ·

∣∣∣ ≥ |uk
0||ω3|, where |ω3| ∈ (0, 1] except the

value for which |ω3| = 0 and |z0| >
(

2(1+|a|)
sγ|ω3|

) 1
k−1

, from inequality 3.3 we obtain

|v0| ≥sγ|ω3||uk
0| − (1 + |a|)|z0|

=|z0|[sγ|ω3||zk−1
0 | − (1 + |a|)]

≥|z0|[2(1 + |a|)− (1 + |a|)]
=(1 + |a|)|z0|
≥|z0|. (3.4)

For the next step of the four-step iteration, we have

|w0| = |(1− β)sz0 + βsTcv0|
= |(1− β)sz0 + βs(sin(vk0) + av0 + c)|
≥ βs| sin(vk0) + av0 + c| − (1− β)s|z0|
≥ βs| sin(vk0) + av0 + c| − (1− sβ)|z0|
≥ βs[| sin(vk0)| − |a||v0| − |c|]− |z0|+ sγ|z0|
≥ sβ[| sin(vk0)| − |a||v0| − |z0|]− |z0|+ sβ|z0|
= sβ| sin(vk0)| − sβ|a||z0| − sδ|z0| − |z0|+ sβ|z0|
≥ sβ| sin(vk0)| − |a||z0| − |z0|. (3.5)

We have | sin(vk0)| = |vk0 |
∣∣∣1− v2k0

3!
+

v4k0
5!

− · · ·
∣∣∣ ≥ |vk0 ||ω2|, where |ω2| ∈ (0, 1] except the
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value for which |ω2| = 0 and |z0| >
(

2(1+|a|)
sβ|ω2|

) 1
k−1

, from inequality 3.5 we obtain

|w0| ≥sβ|ω2||vk0 | − (1 + |a|)|z0|
≥sβ|ω2||zk0 | − (1 + |a|)|z0|
=|z0|[sβ|ω2||zk−1

0 | − (1 + |a|)]
≥|z0|[2(1 + |a|)− (1 + |a|)]
=(1 + |a|)|z0|
≥|z0|. (3.6)

For the last step of the four-step iteration, we have

|z1| = |(1− α)sz0 + αsTcv0|
= |(1− β)sz0 + βs(sin(wk

0) + aw0 + c)|
≥ αs| sin(wk

0) + aw0 + c| − (1− β)s|z0|
≥ βs| sin(wk

0) + aw0 + c| − (1− sβ)|z0|
≥ βs[| sin(wk

0)| − |a||w0| − |c|]− |z0|+ sγ|z0|
≥ sβ[| sin(wk

0)| − |a||w0| − |z0|]− |z0|+ sβ|z0|
= sβ| sin(wk

0)| − sβ|a||w0| − sδ|z0| − |z0|+ sβ|z0|
≥ sβ| sin(wk

0)| − |a||z0| − |z0|. (3.7)

We have | sin(wk
0)| = |wk

0 |
∣∣∣1− w2k

0

3!
+

w4k
0

5!
− · · ·

∣∣∣ ≥ |wk
0 ||ω1|, where |ω1| ∈ (0, 1] except

the value for which |ω1| = 0 and |z0| >
(

2(1+|a|)
sα|ω1|

) 1
k−1

, from inequality 3.7 we obtain

|z1| ≥sα|ω1||wk
0 | − (1 + |a|)|z0|

≥sα|ω1||zk0 | − (1 + |a|)|z0|
=|z0|[sα|ω1||zk−1

0 | − (1 + |a|)]
≥|z0|[2(1 + |a|)− (1 + |a|)]
=(1 + |a|)|z0|. (3.8)

From equation (3.8)

|z1| ≥(1 + |a|)|z0|
>|z0|

>max

{
|c|,

(2(1 + |a|)
sα|ω1|

) 1
k−1

,
(2(1 + |a|)

sβ|ω2|

) 1
k−1

,
(2(1 + |a|)

sγ|ω3|

) 1
k−1

,
(2(1 + |a|)

sδ|ω4|

) 1
k−1

}
.

Therefore, |z1| satisfied all the conditions as |z0|. So, by using the same technique for
n = 0, we obtain the result for for n = 1, as

|z2| ≥(1 + |a|)|z1|
>(1 + |a|)2|z0|
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Continuing the iteration process up to the nth steps, we obtain

|zn| > (1 + |a|)n|z0|.

Since 1 + |a| > 1, we obtain lim
n→∞

|zn| = ∞.

Theorem 3.2. Let Tc : C → C be a complex-valued map defined by Tc(z) = sin(zk) +
az + c for all z ∈ C, k ∈ N \ {1} and a, c ∈ C such that a ̸= 0. Consider the iterative
sequence defined in (2.3) and |ω1|, |ω2|, |ω3|, |ω4| ∈ (0, 1] If

|zm| > max

{
|c|,

(2(1 + |a|)
sα|ω1|

) 1
k−1

,
(2(1 + |a|)

sβ|ω2|

) 1
k−1

,
(2(1 + |a|)

sγ|ω3|

) 1
k−1

,
(2(1 + |a|)

sδ|ω4|

) 1
k−1

}

for some m ∈ N ∪ {0}, then lim
n→∞

|zn| = ∞.

Proof. By using a similar technique of the Theorem 3.1, we have

sα|ω1||z0|k−1| − (1 + |a|) > 1

and

|zm+n| >|z0|(1 + |a|)m+n

Hence, |zn| → ∞ as n → ∞.

Remark 3.3. We have

R = max

{
|c|,

(2(1 + |a|)
sα|ω1|

) 1
k−1

,
(2(1 + |a|)

sβ|ω2|

) 1
k−1

,
(2(1 + |a|)

sγ|ω3|

) 1
k−1

,
(2(1 + |a|)

sδ|ω4|

) 1
k−1

}
is called escape radius that enable the generation of novel Julia and Mandelbrot sets
based on complex-valued sine functions.

4 Generation of Fractals

Fractals being produced by using Algorithm 1 (for Julia set) and Algorithm 2 (for
Mandelbrot set), for creating beautiful fractal sketches for complex-valued function
Tcz = sin(zk) + az+ c using a four-steps iteration process enhance with s-convexity via
MATLAB R2021a on a computer system featuring an AMD Ryzen 5 7520U processor
with a clock speed of 2.80 GHz, 8 GB of RAM, and running the Microsoft Windows
11 (64-bit) operating system. We employed the ”Jet” colormap shown in Figure 1,
a widely adopted standard colormap, to assign colors to the data points to enhance
the visual representation. Our four-step iteration with given complex-valued function
involves 13 parameters, it can be challenging to discuss the Julia and Mandelbrot sets
comprehensively by changing all of these parameters. However, we only discuss the
behavior of a fractals by varying some parameters values.
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Figure 1: A colormap is used to create Julia and Mandelbrot sets.

Algorithm 1: Creating Julia set

Input: Tc(z) = sin(zk) + az + c for all z ∈ C, k ∈ N \ {1}, a, c ∈ C : a ̸= 0 -
complex constants; B ⊂ C - area; K - the maximum number of
iterations; s, α, β, γ, δ, |ω1|, |ω2|, |ω3|, |ω4| ∈ (0, 1] - parameters for the
approximation of four-steps iterative method with s-convexity and
colourmap [0..F ] - colour map with F + 1 colours.

Output: Julia set for area B
1 for z0 ∈ A do

2 R = max

{
|c|,

(
2(1+|a|)
sα|ω1|

) 1
k−1

,
(

2(1+|a|)
sβ|ω2|

) 1
k−1

,
(

2(1+|a|)
sγ|ω3|

) 1
k−1

,
(

2(1+|a|)
sδ|ω4|

) 1
k−1

}
3 n = 0
4 z0 = 0
5 while n ≤ K do
6 un = (1− δ)szn + δsTczn
7 vn = (1− γ)szn + γsTcun

8 wn = (1− β)szn + βsTcvn
9 zn+1 = (1− α)szn + αsTcwn

10 if |zn+1| > R then
11 break

12 n = n+ 1

13 i = ⌊F n
K
⌋

14 color z0 with color map [i]
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Algorithm 2: Creating Mandelbrot set

Input: Tc(z) = sin(zk) + az + c for all z ∈ C, k ∈ N \ {1}, a, c ∈ C : a ̸= 0 -
complex constants; B ⊂ C - area; K - the maximum number of
iterations; s, α, β, γ, δ, |ω1|, |ω2|, |ω3|, |ω4| ∈ (0, 1] - parameters for the
approximation of four-steps iterative method with s-convexity;
κ-critical point of T , and colourmap [0..F ] - colour map with F + 1
colours.

Output: Mandelbrot set for area B
1 for c ∈ A do

2 R = max

{
|c|,

(
2(1+|a|)
sα|ω1|

) 1
k−1

,
(

2(1+|a|)
sβ|ω2|

) 1
k−1

,
(

2(1+|a|)
sγ|ω3|

) 1
k−1

,
(

2(1+|a|)
sδ|ω4|

) 1
k−1

}
3 n = 0
4 z = κ
5 while n ≤ K do
6 un = (1− δ)szn + δsTczn
7 vn = (1− γ)szn + γsTcun

8 wn = (1− β)szn + βsTcvn
9 zn+1 = (1− α)szn + αsTcwn

10 if |zn+1| > R then
11 break

12 n = n+ 1

13 i = ⌊F n
K
⌋

14 color c with color map [i]

4.1 Julia set

In this subsection we create the Julia set by using the Algorithm 1 varying the pa-
rameters one by one. We take a maximum iteration limit of K = 30 and B =
[−4.5, 4.5] × [−4.5, 4.5] as the area for Julia set. Initially, we fix the parameters
a = 1.2001, c = 0.501, s = 0.6767, α = 0.005, β = 0.003, γ = 0.002, δ = 0.001, ω1 =
0.110, ω2 = 0.112, ω3 = 0.114, ω4 = 0.115, k = 2.

4.1.1 Julia set for the function Tcz = sin(zk) + az + c varying the parameter
a

Upon examining Figure 2, we observe intriguing representations of Julia sets with a
degree of two while varying a parameter a ∈ C. For real number a, each Julia set
exhibits symmetry about the real axis. As the value of a increases, the intensity of
brown color decreases, and the intensity of sky blue color increases along the axes,
accompanied by a rise in the number of branches or lashes. On the other hand, when a
is a complex number, each Julia set loses its symmetry, and the shape and size remain
almost constant for all complex numbers of a, which we are taking for investigation.
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(a) a = −0.03 (b) a = 0.5 (c) a = 1.2001

(d) a = i (e) a = 0.5− 0.4i (f) a = 1 + 1.5i

Figure 2: The impact on Julia sets for varying the parameter a

4.1.2 Julia set for the function Tcz = sin(zk)+az+ c varying the parameter c

We observe captivating depictions of Julia sets with a degree of two, varying a parameter
a as illustrated in Figure 3. When a is a real number, each Julia set displays symmetry
about the real axis. With an increase in the value of a, there is an augmentation in
the intensity of brown color, accompanied by a decrease in the intensity of sky blue.
Simultaneously, there is a reduction in the number of branches or lashes, and the size
of the set increases. Conversely, when a is a complex number, each Julia set loses its
symmetry, and lashes are formed more arbitrarily. The mesmerizing Julia sets mainly
manifest when the parameter a is a real number.
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(a) c = −0.5 (b) c = 0.5 (c) c = 2.02

(d) c = i (e) c = −0.744 + 0.148i (f) c = −0.293− 0.629i

Figure 3: The impact on Julia sets for varying the parameter c

4.1.3 Julia set for the function Tcz = sin(zk) + az + c varying the convexity
parameter s

We observe stunning representations of Julia sets with a degree of two, varying a param-
eter s as shown in Figure 4. When the value of s is small, approaching zero, most points
in the considered area escape to infinity, resulting in a minor, undeclared Julia set with
a predominant sky blue color. As s increases, the size of the Julia set also increases,
accompanied by an intensification of the brown and yellow color and a reduction in
the intensity of the sky-blue hue. Additionally, the boundary exhibits numerous lashes.
When s approaches 1, the Julia set is predominantly filled with brown color. Interest-
ingly, for all the values of s considered in our observations, each Julia set maintains
symmetry with respect to the real axis.
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(a) s = 0.01 (b) s = 0.2 (c) s = 0.3573

(d) s = 0.505 (e) s = 753 (f) s = 0.912

Figure 4: The impact on Julia sets for varying the convexity parameter s

4.1.4 Julia set for the function Tcz = sin(zk) + az + c varying the parameter
α

We observe captivating depictions of Julia sets with a degree of two while varying a
parameter α as illustrated in Figure 5. When the value of α is close to zero, indicating
a minimal value, the intensity of the brown color is high. Each lash is fully developed,
featuring tiny lashes at the tip, and lashes look like cactus leaves. In this scenario,
there are more non-escaping points within the considered area. As α increases, the
number of escaping points also increases, resulting in a decrease in the size of Julia
sets. Simultaneously, the intensity of brown color decreases, and the intensity of the
sky blue hue increases. For values of α approaching 1, the brown color is completely
removed, causing the Julia set to appear weakened, making the details less clearly
visible. Notably, for each value of α, the Julia sets exhibit symmetry about the real
axis.
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(a) α = 0.0001 (b) α = 0.1 (c) α = 0.301

(d) α = 0.491 (e) α = 0.752 (f) α = 1

Figure 5: The impact on Julia sets for varying the parameter α

4.1.5 Julia set for the function Tcz = sin(zk) + az + c varying the parameter
β

We observe captivating depictions of Julia sets with a degree of two, varying a parameter
β as shown in Figure 6. For each value of β, the Julia sets maintain symmetry about
the real axis. When the value of β approaches zero, the brown color intensity is high,
and each lash is fully developed with tiny lashes at the tip, resembling cactus leaves
and forming intricate Julia sets. In this scenario, there are more non-escaping points
within the considered area. With increasing values of β, the number of escaping points
also rises, reducing the size of Julia sets. Concurrently, the intensity of the brown color
diminishes ultimately after β ≥ 0.312, leaving only the sky blue hue. This causes the
Julia set to appear weakened, resulting in less clear visibility of details.
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(a) β = 0.0001 (b) β = 0.01 (c) β = 0.312

(d) β = 0.5241 (e) β = 0.7482 (f) β = 1

Figure 6: The impact on Julia sets for varying the parameter β

4.1.6 Julia set for the function Tcz = sin(zk) + az + c varying the parameter
β

We observe fascinating depictions of Julia sets with a degree of two, varying a parameter
β as shown in Figure 7. For each value of β, the Julia sets maintain symmetry about
the real axis. When the value of β approaches zero, the brown color intensity is high,
and each lash is fully formed with tiny lashes at the end, resembling cactus leaves and
intricate Julia sets. In this procedure, there are more non-escaping points within the
considered area. With increasing values of β, the number of escaping points also rises,
reducing the size of Julia sets. Concurrently, the intensity of the brown color diminishes
ultimately after β ≥ 0.312; only the sky blue hue is present, and the Julia set appears
weakened, resulting in less clear visibility of details.
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(a) β = 0.0001 (b) β = 0.01 (c) β = 0.312

(d) β = 0.5241 (e) β = 0.7482 (f) β = 1

Figure 7: The impact on Julia sets for varying the parameter β

4.1.7 Julia set for the function Tcz = sin(zk) + az + c varying the parameter
γ

We observe captivating depictions of Julia sets with a degree of two while manipulating
a parameter γ as depicted in Figure 8. Notably, for each value of γ, the Julia sets
exhibit symmetry with respect to the real axis.

When γ is close to zero, a striking Julia set is formed with a high-intensity brown
color. Numerous lashes are present, each exhibiting a shape reminiscent of cactus leaves.
This configuration results in a visually appealing Julia set with intricate details. As
the value of γ increases, there is a reduction in the size of Julia sets, accompanied by a
decrease in the number of lashes and a diminishing intensity of brown color.

After γ exceeds 0.2, the brown color completely disappears, and only the sky blue
color remains in the Julia sets. These sets require more prominence, making perceiving
the finer details difficult. This transition suggests that as γ approaches one, the number
of escaping points increases, significantly altering the Julia sets’ visual characteristics.
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(a) γ = 0.0001 (b) γ = 0.02 (c) γ = 0.035

(d) γ = 0.421 (e) γ = 0.751 (f) γ = 0.965

Figure 8: The impact on Julia sets for varying the parameter γ

4.1.8 Julia set for the function Tcz = sin(zk)+az+ c varying the parameter δ

We observe enchanting illustrations of quadratic Julia sets while altering a parameter δ
as illustrated in Figure 9. Notably, for each value of δ, the Julia sets preserve symmetry
regarding the real axis.

When δ approaches zero, an impressive Julia set emerges, characterized by a rich,
high-intensity brown color. The set features numerous lashes, each resembling the shape
of cactus leaves, resulting in a visually appealing and intricately detailed Julia set. Many
tiny lashes are present at the tip of each central lash. As the value of δ increases, there
is a noticeable reduction in the size of the Julia sets, accompanied by a decrease in the
number and size of lashes and a gradual reduction in the intensity of the brown color.

When δ > 0.1, the brown color completely vanishes, leaving Julia’s sets dominated
by a sky blue color behind. However, these sets require heightened prominence, and
discerning finer details becomes challenging. This shift implies that as δ approaches
one, the number of points escaping to infinity increases, leading to a significant trans-
formation in the visual characteristics of the Julia sets.
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(a) δ = 0.00001 (b) δ = 0.002 (c) δ = 0.124

(d) δ = 0.432 (e) δ = 0.684 (f) γ = 0.912

Figure 9: The impact on Julia sets for varying the parameter δ

4.1.9 Julia set for the function Tcz = sin(zk) + az + c varying the k

We generate captivating fractal patterns, as illustrated in Figure 10, by varying the
parameter k. For k = 2, the resulting Julia set displays four distinct lashes formed by
blending sky blue, light yellow, and brown colors along the real and imaginary axes.
Additionally, numerous cactus leaf-like lashes with a brown hue are present within the
Julia set. When k = 3, the outer part of the Julia set exhibits six lashes with a sky blue
color, while the inner region features numerous lashes with a brown hue. As the value of
the parameter k increases, the size of the Julia set decreases, and the set adopts a more
circular shape. Each Julia set, regardless of the value of k, showcases 2k outer lashes,
with smaller lashes forming in the central region. The Julia set is more aesthetically
pleasing when the parameter k is lower.
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(a) k = 2 (b) k = 3 (c) k = 4

(d) k = 5 (e) k = 10 (f) k = 15

Figure 10: The impact on Julia sets for varying k

4.2 Mandelbrot set

In this segment, we generate Mandelbrot sets using Algorithm 2. We systematically vary
each parameter individually while keeping the remaining parameters fixed, discussing
the resulting properties. We set the maximum iteration limit to K = 30, and define
the area for the Mandelbrot set as B = [−3.5, 3.5] × [−3.5, 3.5]. Initially, we set the
parameters to specific values: a = −0.51, s = 0.5001, α = 0.0078, β = 0.0056, γ =
0.0046, δ = 0.00, ω1 = 0.8383, ω2 = 0.119, ω3 = 0.7474, ω4 = 0.6556, and k = 2.

4.2.1 Mandelbrot set for the function Tcz = sin(zk) + az + c varying the
parameter a

We generate captivating fractal patterns, as depicted in Figure 11, by manipulating the
parameter a. When a is a real number, specifically a = −0.51, a prominent cardioid
shape dominates the center of the Mandelbrot set. The size of this cardioid diminishes
continuously along the real axis, creating a sequence of progressively smaller cardioids.
As a increases, the size of the Mandelbrot set decreases, accompanied by a reduction in
the intensity of the brown color. This decrease in intensity signifies that an increasing
number of points within the considered area escape to infinity as a increases. Each
Mandelbrot set, corresponding to a real number a, maintains symmetry about the real
axis.
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On the other hand, when a is a complex number, the symmetry of the Mandelbrot
sets becomes less pronounced, introducing twists in the patterns. The resulting images
display a more chaotic arrangement, making interpreting the details difficult.

(a) a = −0.51 (b) a = 0.5123 (c) a = 2.01

(d) a = −i (e) a = 0.5 + 0.31i (f) a = −1− 2i

Figure 11: The impact on Julia sets for varying a

4.2.2 Mandelbrot set for the function Tcz = sin(zk) + az + c varying the
parameter s

We create mesmerizing fractal patterns, as showcased in Figure 12, by varying the
parameter s. For each value of s yields, Mandelbrot sets that exhibit a symmetrical
about the real axis. In instances where s is close to zero, signifying a small value,
the resulting Mandelbrot sets are characterized by reduced size, indicating most points
within the defined area escape to infinity. As we increment the value of s, the size of the
Mandelbrot sets gradually enlarges. Simultaneously, there is a discernible augmentation
in the intensity of the brown color, creating a visually dynamic effect. Eventually, when
s approaches a value close to 1, the entire Mandelbrot set adopts a uniform brown hue,
providing a fascinating visual outcome.
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(a) s = 0.001 (b) s = 0.013 (c) s = 0.241

(d) s = 0.513 (e) s = 0.764 (f) s = 0.986

Figure 12: The impact on Mandelbrot sets for varying the parameter s

4.2.3 Mandelbrot set for the function Tcz = sin(zk) + az + c varying the
parameter α

We generate captivating fractal patterns, as depicted in Figure 13, by adjusting the
parameter α. Each specific value of α produces Mandelbrot sets with symmetrical
arrangements about the real axis. Notably, when α is close to zero, signifying a small
value, the resulting Mandelbrot sets are characterized by a significant size, showcasing
a remarkable structure reminiscent of beautiful, hair-like patterns. The entire set is
adorned with a rich brown color, creating an aesthetically pleasing and intricate design.

As α increases, a notable transformation occurs. The size of the Mandelbrot sets
gradually diminishes, accompanied by an increase in the intensity of the sky-blue hue
along the boundary of the sets. This alteration in color dynamics adds a captivating
contrast to the fractal patterns. When α approaches a value near 1, a distinct visual
effect emerges. The Mandelbrot set becomes disconnected and elongated along the
real axis, presenting a unique and intriguing characteristic that sets it apart from the
patterns observed at lower α values. This variation in structure and coloration showcases
the sensitivity of the fractal patterns to changes in the parameter α.
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(a) α = 0.0001 (b) α = 0.003 (c) α = 0.213

(d) α = 0.513 (e) α = 751 (f) α = 1

Figure 13: The impact on Mandelbrot sets for varying the parameter α

4.2.4 Mandelbrot set for the function Tcz = sin(zk) + az + c varying the
parameter β

We generate captivating fractal patterns, as illustrated in Figure 14, by manipulating the
parameter β. Each specific value of β results in Mandelbrot sets exhibiting symmetrical
arrangements about the real axis. When β is close to zero, the resulting Mandelbrot
sets showcase a substantial size, featuring two prominent sky-blue lashes along the
imaginary axis. The entirety of the set is adorned with a rich brown color, contributing
to an aesthetically pleasing and intricate design.

As β increases, a significant transformation unfolds. The size of the Mandelbrot
sets gradually diminishes, concurrent with an intensification of the sky-blue hue along
the sets’ boundaries. This shift in color dynamics introduces a captivating contrast to
the fractal patterns. A distinct visual effect emerges as β approaches a value near 1.
The Mandelbrot set takes on a disconnected and elongated form along the real axis,
and small dot-like structures in yellow color become apparent on the outer parts of the
Mandelbrot sets. This variation in structure and coloration underscores the sensitivity
of the fractal patterns to alterations in the parameter β.
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(a) β = 0.0001 (b) β = 0.004 (c) β = 0.321

(d) β = 0.497 (e) β = 0.803 (f) β = 0.975

Figure 14: The impact on Mandelbrot sets for varying the parameter β

4.2.5 Mandelbrot set for the function Tcz = sin(zk) + az + c varying the
parameter γ

We create captivating fractal patterns, as depicted in Figure 15, by varying the param-
eter γ. Each specific value of γ gives rise to Mandelbrot sets that exhibit symmetrical
arrangements about the real axis. When γ is close to zero, the resulting Mandelbrot sets
display a significant size, featuring two prominent sky-blue lashes along the imaginary
axis. The entire set is adorned with a rich brown color, contributing to an aesthet-
ically pleasing and intricate design. This configuration showcases the sensitivity of
the fractal patterns to variations in the parameter γ, producing visually dynamic and
appealing results. With an increase in γ, the size of the Mandelbrot sets gradually
decreases, accompanied by an intensification of the sky-blue hue along the boundaries
of the sets. This alteration in color dynamics introduces a captivating contrast to the
fractal patterns. A distinct visual effect emerges as γ approaches a value near 1, and
small dot-like structures in yellow color become apparent on the outer parts of the
Mandelbrot sets. This variation in structure and coloration highlights the sensitivity of
the fractal patterns to changes in the parameter γ, resulting in visually dynamic and
intriguing patterns.
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(a) γ = 0.0001 (b) γ = 0.002 (c) γ = 0.356

(d) γ = 0.557 (e) γ = 0.796 (f) γ = 1

Figure 15: The impact on Mandelbrot sets for varying the parameter γ

4.2.6 Mandelbrot set for the function Tcz = sin(zk) + az + c varying the
parameter δ

We generate captivating fractal patterns, as illustrated in Figure 16, by varying the
parameter δ. Each δ results in Mandelbrot sets that exhibit symmetrical arrangements
about the real axis. When δ is close to zero, the resulting Mandelbrot sets showcase a
significant size, featuring two prominent sky-blue lashes along the imaginary axis. The
entire set is adorned with a rich brown color, contributing to an aesthetically pleasing
and intricate design.

As δ increases, the size of the Mandelbrot sets gradually diminishes, accompanied
by an intensification of the sky-blue hue along the boundaries of the sets. A distinct
visual effect emerges as δ approaches a value near 1, and small dot-like structures in
yellow color become apparent on the outer parts of the Mandelbrot sets. This variation
in structure and coloration highlights the sensitivity of the fractal patterns to changes
in the parameter δ, resulting in visually dynamic and intriguing patterns.
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(a) δ = 0.00001 (b) δ = 0.01 (c) δ = 0.38

(d) δ = 0.478 (e) δ = 0.809 (f) δ = 1

Figure 16: The impact on Mandelbrot sets for varying the parameter δ

4.2.7 Mandelbrot set for the function Tcz = sin(zk) + az + c varying the
parameter k

We generate captivating fractal patterns, as showcased in Figure 17, by varying the
parameter k. The behavior of the Mandelbrot sets is contingent on whether k is an even
or odd natural number. For even values of k, the resulting fractals display symmetry
solely concerning the real axis. In contrast, when k is an odd natural number, the
Mandelbrot sets exhibit symmetrical characteristics about both the real and imaginary
axes.

For the specific case of k = 3, the fractals have a unique appearance reminiscent of a
brown spider-like shape. As the parameter k increases, there is a noticeable reduction in
the size of the Mandelbrot sets. The sets transform into circular shapes, and the number
of primary lashes corresponds to k− 1. Additionally, intricate structures emerge at the
tips of each lash, adding complexity to the overall visual composition. This detailed
variation in the value of k significantly influences the Mandelbrot sets’ symmetry, size,
and the formation of intricate details in the fractal patterns.
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(a) k = 2 (b) k = 3 (c) k = 4

(d) k = 5 (e) k = 10 (f) k = 15

Figure 17: The impact on Mandelbrot sets for varying the parameter k

5 Conclusions

Certainly! The paper discusses a novel approach for establishing escape criteria for the
complex sine function Tc(z) = sin(zk)+az+c. The method involves a four-step iterative
scheme extended with s-convexity. This approach is implemented in Algorithms 1 and
2, which enable the visualization of Julia and Mandelbrot sets through a four-step
iteration orbit.

The size of the generated fractals is influenced by the convexity parameter s, with
larger values of s generally resulting in larger fractals. However, when parameters like
α, β, γ, and δ approach 1, the size of the fractals decreases, and many points escape to
infinity, making the images of the fractals weaker.

Parameters a and c play a crucial role in determining the specific shape and symme-
try of the fractals. Changing these parameters leads to different patterns, symmetries,
and visual characteristics in the generated fractals. Notably, certain fractals exhibit
patterns resembling spiders, flowers, or other natural phenomena, emphasizing the fas-
cinating connection between mathematical fractals and the complexity found in nature.

The parameter k is discussed as influencing the compactness and appearance of the
fractals. Higher values of k result in more compact fractals with circular or rounded
shapes, featuring numerous lashes in the case of Julia sets and k − 1 lashes in the case
of Mandelbrot sets. This change in shape is attributed to the iterative process and the
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specific dynamics of the underlying function.
The paper suggests practical applications in the cloth and ceramics industries. Tex-

tile engineers can utilize the generated fractal patterns to design unique and visually
appealing fabric patterns. The findings of the paper contribute to a deeper understand-
ing of the behavior and characteristics of fractal sets, showcasing the potential of the
four-step iteration scheme in generating intricate and captivating fractals.

The future direction mentioned involves extending the results for the Jungck-four
step iteration with s-convexity, indicating potential advancements and applications of
the proposed methodology.
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